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Abstract 

When a superposition of on/off sources is offered to a deterministic server, we are faced with a particular 
queueing system, the analysis of which has a significant role in ATM networks. Periodic cell generation during active 
times is a major feature of these sources. We provide an analytical approach to solve for this queueing system via an 
approximation to the transient behavior of the nD/D/l queue. The solution to the queue length distribution is 
given in terms of a solution to a linear differential equation with variable coefficients. The technique proposed here 
has close similarities with the fluid flow approximation and is amenable to extension for more complicated queueing 
systems with such correlated arrival processes. A numerical example for a packetized voice multiplexer is finally 
given to demonstrate our results. 

Keywords: ATM networks; Fluid-flow models; nD/D/l queue 

1. Introduction 

The Asynchronous Transfer Mode (ATM) is the preferred transfer mode for the Broadband 
ISDN (B-ISDN). The B-ISDN will be required to support a wide mix of services (e.g., voice, 
video, high-speed data) over a common ATM transport network. The core of an ATM network 
is “asynchronous multiplexing” on the basis of which transmission links and switching devices 
are shared by different virtual connections independent of connections’ traffic characteristics 
and performance requirements. Information is transmitted in the form of constant length 
packets, called “cells”. Since ATM has the potential to improve bandwidth efficiency via the 
use of statistical multiplexing of variable bit-rate sources, characterization of a traffic stream 

* Corresponding author. 

0166-5316/95/$09.50 0 1995 Elsevier Science B.V. All rights reserved 

SUM 0166-5316(93)E0058-D 



176 N. Akar, E. Ankan /Performance Evaluation 22 (1995) 175-190 

Fig. 1. 2-state Markov model for an on-off source. 

belonging to a particular connection turns out to have a critical role. In fixed bit rate coding 
schemes, sources emit cells periodically with a frequency determined by their bit rate. On/off 
sources emit cells periodically during activity (on> times alternating with silence (off) times 
during which there is no cell generation. These two periods are in general of variable length. In 
this paper, we focus on a queueing system in which several on/off sources with an identical 
period share a buffer of infinite size. Given the number of sources and the associated traffic 
parameters, we are interested in the probability distribution function of the buffer content. A 
2-state continuous-time Markov chain model (see Fig. 1) will be used to describe the above- 
mentioned traffic stream. In this model, the silence times and the activity times are exponen- 
tially distributed with means l/A and l/p, respectively. This 2-state model can easily be 
extended to construct an N-state Markov chain to describe the superposition process of N 
on/off sources (Fig. 2). The state of the Markov chain is defined to be the number of active 
sources. In an arbitrary state, say IZ, of the Markov chain whose state holding time is 
exponentially distributed with parameter a,, = (N - n)h + np, n sources independently trans- 
mit cells with an identical period. Our approach has a significant feature of combining the 
discrete-time nature of periodic arrivals in a slotted system and the continuous-time nature of 
the underlying Markov chain. In general, we call the arrival process as a Markov modulated 
periodic arrival process. 

The arrival process associated with the superposition possesses two kinds of correlations: 
l negative correlations of arrivals in successive time slots due to the periodic nature of cell 

transmissions, 
l positive correlations among the average arrival rates in successive periods of length greater 

than the intercell times of the multiplexed sources. 
There are various approaches proposed in the literature which take into account of these 
correlation effects in the performance analysis of the queueing system. A promising approach is 
to approximate the superposition nonrenewal point process by a renewal process [l] in which 
positive correlations are accounted for by the choice of the second moment of the cell 

P 2P 3P (N - 1)~ NP 

Fig. 2. Birth-death model for the superposition of N on-off sources. 
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interarrival time distribution. Another common approach is to approximate the superposition 
by fitting certain parameters of the original process to another stochastic process, the Markov 
modulated Poisson process (MMPP). The MMPP is a nonrenewal doubly stochastic process 
where the Poisson arrival intensity is varied according to the state of a continuous-time Markov 
chain. A 2-state MMPP is proposed in [2] where certain four parameters are chosen to match 
four arrival process characteristics which is then used to evaluate the average delay for an 
infinite buffer voice multiplexer with good accuracy. Other choices for the four fitting 
parameters have also been proposed to yield more accurate results [3,4]. In [5], superposition of 
N on/off sources is modelled by an N-state MMPP where the arrival intensity is proportional 
to the number of active sources. This model, however, overestimated the queue lengths due to 
discard of negative correlation effects. Matrix geometric methods [2] and spectral expansion 
techniques [6] are proposed computational methods to solve for queueing systems for which the 
input is an MMPP. These models do not generally give sufficiently accurate results since they 
do not capture the short-term effects, besides, the extendibility of these models for the 
performance analysis of more complicated queueing systems (e.g., queues with overload 
control) is not well understood. 

Fluid flow models have attracted the attention of many researchers in the telecommunica- 
tions literature due to their simplicity. These models approximate the cell arrival and service 
process by continuous arrival and departure of a fluid. The superposition of a finite number of 
on/off fluid sources is considered in [7] where the arrival rate is modulated with respect to the 
state of a Markov chain as in MMPP. The authors [7] give a computationally efficient algorithm 
to evaluate the buffer occupancy distribution. However, the model does not give accurate 
results for low to moderate traffic when cell layer contention dominates over burst layer 
contention. The model and technique proposed in [7] is generalized for the finite buffer case in 
[8] to solve for the cell loss rate, a critical value in ATM networks. In spite of inaccuracies 
encountered in input traffic modeling, many extensions of fluid flow models have been 
proposed to analyze certain congestion control schemes (e.g., call admission control [4], access 
regulator [9], cell discarding mechanisms [lo]) which are of fundamental importance in ATM 
networks. It is actually the ease of computation in fluid flow approximations which makes these 
extensions and generalizations possible. 

For an accurate analysis of an ATM multiplexer, the negative correlation between cell 
interarrival times should be taken into consideration. Actually, when the instantaneous arrival 
rate is less than the link rate, the queueing system behaves like the so-called nD/D/l queue: a 
superposition of independent periodic sources (n sources) with an identical period but with 
random phase feeds a constant service time buffer. This queue is investigated in [11,12] to find 
the steady-state distribution of the queue length. Different periods are also allowed in [13] 
where accurate approximate formulas for the queue length distribution are derived. 

In the Markov modulated periodic arrivals case, the transient behavior of the nD/D/l 
queue turns out to have a significant role. The focus of the present paper is the derivation of a 
relationship between fluid sources and periodic sources, arrival rates of which are Markov 
modulated, through an approximation of the transient behavior of the nD/D/l queue. This 
approximation is mainly based on an interpolation of the queue length whose distribution is 
exactly known at certain epochs. The solution for the overall problem is then reduced to the 
solution of a linear differential equation with variable coefficients whereas in fluid flow 
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approximations, the corresponding equation is simply linear with constant coefficients. A 
numerical example is finally given in the context of a packetized voice multiplexer. 

2. Problem formulation and analysis 

The method used in solving for the steady-state distribution of the queue length for the 
Markov modulated periodic arrival case is composed of two main stages. The first stage consists 
of an approximation to the transient behavior of the nD/D/l queue in a continuous-time 
framework. In the second stage, we extend our results for the nD/D/l queue to solve for the 
continuous-time Markov model which characterizes the input traffic. 

2.1. Transient analysis of the nD / D / 1 queue 

In our queueing model, the time axis is slotted, where each time slot is as long as the 
transmission time of a cell. The cells arriving to the queue are served on a first-come-first-serve 
basis and the queue has infinite size. The n active sources each transmit fixed length cells with 
a period of R slots, independently of each other. In an arbitrary frame of R slots, each input 
source’s cell can be in any of these R slots with equal probability. The peak source rate in 
cells/s in denoted by P and the service rate of the buffer is denoted by C, which actually 
equals to PR cells/s. Without loss of generality, we assume that the departures take place at 
the beginning of slots, and arrivals during slots. Let us assume a stable queue (n < R) for the 
time being and define the following random variables: 

Qk = queue length at the end of kth slot, 

ak = number of arrivals in the kth slot. 

The queueing strategy is the following: 

Qk= ” 

i 

if k=O, 

max(Q,_, - 1, 0) + ak if k > 0. 

By iteration on k, one can check using algebraic manipulations that 

Q, = max(a,, Q. + a, - l), 
Q, = max(a,, a, + a2 - 1, Q. + aI + a2 - 2) 

where the random variable Q,, is defined via 

(1) 

(2) 
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The cumulative distribution function for the random variable Q, is expressed by the following 
summation [12,14]: 

“-GR-n+q 

l- c - 
x=1 R-x 

c(n,q+x)(;)““il-;)“-~-x, Olqsn-1, (3) 

1, q>n-1 

where 4 is the largest integer smaller than 4. In [12], the change in the number of active 
sources, iz, is-assumed to happen slowly. In this case, the queue length reaches its steady-state 
distribution Q,< *) whenever y1 <R. Equation (3) is then sufficient to compute the distribution 
of the queue length and the queueing delay assuming that y1 does not exceed R so that the 
queueing system is stable. Considering the Markov model which modulates the number of 
incoming active sources, we have two significant observations: (1) there are possible overload 
states (n > R) in which case there is no limiting distribution, (2) even for the underload states 
(n < RI, the state holding-time is not generally long enough for the queue length to reach its 
steady-state distribution Q,< *) before the Markov chain makes a transition to another state. In 
regard of these observations, the transient analysis of the nD/D/l queue becomes the major 
issue for our purposes. 

In order to obtain the queue length evolution equations for 12 <R, we iterate on Eq. (1) on 
an R-slot basis so that by periodicity of arrivals we have 

QkR=max(Q,,, Q,+k(n-R)), k=l,2 ,... (4) 

There is, in fact, a strong interconnection between periodic models and fluid flow models. In 
the latter models, information is assumed to arrive uniformly to the multiplexer and the server 
similarly removes information from the queue, in a continuous manner. The computational 
tractability and buffer size independent solvability of fluid flow approximation techniques 
suggest a further study of this interconnection. 

If we define Q(t) as the queue length at time t, the fluid flow approximations suggest that [7] 

Q(t)=max(O, Q,+(Pn -c)f>- (5) 
Note the noninteger values that Q(t) may take due to the absence of the concept of 
packetization in fluid models. 

There are two major differences between the expressions (4) and (5). The f&t term 
associated with the short term fluctuations of the queue length is the random variable Q, in the 
periodic model whereas it equals zero in the fluid model. This is in fact why the fluid flow 
models do not give accurate results in light to moderate traffic when several on/off sources are 
multiplexed on a common link. This deficiency belonging to fluid models has been mentioned 
by several authors [15,16]. The second term associated with the dynamical behavior of the 
queue length in (5) is just a linear interpolation of the corresponding term in (4). 

For the overload states, since the probability that the queue length is zero at some time 
epoch is negligible, fluid flow approximation gives accurate results in the analysis of the 
transient response of the queue. Taking (4) as our key equality, our approach is mainly based 
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on interpolating the second term as in (5) while preserving the first term, @,, which captures 
the short term fluctuations in the cell layer. In regard of these observations, we approximate 
Q<t> by 

Q(t) = 
max(&, Q, + (f’n - C)t), n -CR, 

Q, + (pn - C)t, nzR. 

The analysis of the problem can also be made in a discrete-time framework but due to a large 
deal of literature on fluid flow approximations, continuous-time methods have been preferred 
to make comparisons clear both in formulation and analysis stages. In the next section, the 
fundamental approximation in (6) will be used to derive formulas for the queue length 
distribution when the number of active sources is changed according to the state of the 
birth-death model. 

2.2. Markov modulated periodic arrivals 

Let us now consider the traffic model in Fig. 2 and concentrate on a particular state 
(n, 0 I n I N) of the Markov chain. Let X(t) be the buffer content and s(t) be the state of the 
Markov chain at time t. Also let rn be the stationary probability of n sources being active. We 
then define the following stationary probabilities (as t + cc, At + 0): 

Fb(n, x) = Pr{S(t) =n}F,(n, x), 

where 

Fg(n, x) = Pr{X(t) 5x 1 s(t + At) =n, S(t) # S(t + At)} 

and 

F,(n, x) = Pr(S(t) = n}F,(n, x), 

(7) 

(8) 
where 

@n, x)=Pr{X(t)~xIS(t+At)#S(t), S(t)=n}. 

Note that, since S(t) is the state of a continuous-time Markov chain, given S(t), the buffer 
content X(t) is independent of S( t + At). This fact yields 

F,(n, x) = Pr{X(t) Ix ) S(t) = n}, 

and we therefore write 

FJn, x) = Pr(X(t) Ix, S(t) =n}, (9) 
To interpret, &,(n, x) is the equilibrium probability that the queue length is less than x given 
that a state transition to state n is about to occur. Similarly, F’(n, x) is the stationary 
probability that the queue length is less than x given that a state transition from state n is 
about to occur. In other words, we observe the queue length at the time epochs when state 
transitions occur and henceforth define the corresponding random variables. Recall that, the 
state holding time at state n is exponentially distributed with parameter an which is the total 
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probability flow rate out of state n. Each time the Markov system changes a state, a complete 
phase randomization of all the sources is assumed to occur whereas for the original system an 
active source’s phase is independent of the other sources’ state transitions. With th& assump- 
tion, the stationary queue length at the moment of state transition to n and Q, become 
independent. 

By exploiting the approximation (6) and with the above assumption one obtains 

(10) 

where 

Ff(n, x) 2 iaFb(,, x + (C -Pn)t)a,, exp( -a,$) dtju(x), 

the subscript f denotes the fluid flow term and u( 0) is the unit step function. We can therefore 
write 

I 

&(n, x> * sexp( &I”(-x)). x20, n CR, 

F@, x)= ( &(4 x)7 n=R, 

&(k x) * 
\ 

&exp(&)u(x)), x20, n>R. 

(11) 

Here, * is the convolution operator. Note the analogy between the above expression and the 
output equation (pertaining to Ff(n, x>> of a first order linear system with the input F,(n, x). 
This analogous linear system is anti-causal in the case n < R whereas it is causal when n > R. 
Writing down the state equations of this system, we now have 

-&F&,x), xzO,n #R. (12) 

Let p(m, n> be the state transition rate from state m to state IZ. We now relate F&n, xl’s to 
F,(. , x>‘s. For this purpose, we rewrite F&n, x) in definition (7) as t + ~0, At + 0: 

c Pr{X(t) IX, S(t + At) =n, S(t) = m} 

“(” ‘) = ~‘&-(,S(t + At) = n I S(t) = m} Pr{S(t) =m] 
m#n 

c Pr{X(t) IX 1 S(t + At) = n, S(t) = m} Pr{S(t + At) = II I S(t) = m}n;, 

m+n = 

c I+, ++t 

m#n 

c F,(% x)p(m, +-m 
m+n = 

c I-+% 4% . 
mfn 
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Multiplying the last equality by T,, and recalling the balance equations 

rn@n = c P(T +L, 
m#n 

we have 

%Fb(% x) = c P(? n)F,(m, x). 
m#il 

For our birth-death model, 

p(n, 12 + 1) = (N-n)& It = 0, l)...) N- 1, 

p(n, Iz - 1) =nj_&, n = 1, 2 )...) N. 

of the Markov process, 

(13) 

Combining (lo), (12) and (13), we finally obtain the following differential equations for 
Ff(Tz, x)‘s: 

n, x) = n#R, (14) 

F’(R, x) = ; c I@, R)C&(x)Ff(m x). 
m#R 

In the above equations, a,(x) p 1, Vx 2 0, m 2 R. If the term d,(x) is taken as unity Vn, 
n=O,l , . . . , IV, then the above equations are equivalent to the fluid flow equations [7]. 
Eliminating the algebraic equation pertaining to Ff(R, x) and defining 

FJx)= [Ff(O, x) Ff(l, x)... Ff(R- 

we finally have 

;Ff(x) =A(x)Ff(x>, ,x 2 0, 

1, x> F,(R+ 1 

(15) 

where the N x N matrix A(x) is determined through a suitable arrangement of the differential 
equations in (14). Actually, 

A(x) =Ai, XE [i,i+ 1),&Z+, O<i<R-2, 

and 

A(x)=& ~E[R-1,~) 

for some appropriate constant matrices Ai’S and A, due to the piecewise constant structure of 
the distributions o,< *>‘s. Given the initial condition Ff(0), the differential equation (15) has a 
unique continuous solution described by 

Ff(x)=exp(Aj(x-i))Ff(i), XE [i, i+ 11, OsisR-2, (16) 

and 

Ff(x) = exp(A(x - (R - l)))Ff(R - l), x 2 R - 1. (17) 
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In order to find the initial condition, we make use of the following observations: 

183 

(a) 

(b) 

(cl 

For n > R, the queue is always increasing, so the queue length cannot be zero. Therefore, 
F’(n, 0) = 0 for n > R. 
The matrix A is, in fact, equivalent to the state matrix in fluid flow models, therefore it is 
known to have R - 1 positive real eigenvalues, N -R negative real eigenvalues and an 
eigenvalue at the origin. In order for the solution not to blow up as x -+ ~0, no positive 
(unstable) modes of A should be excited by the choice of F’(O). 
The behavior of F’(n, x) as x --) ~0 is easy to write; 

Now, let zi be a stable eigenvalue of A and 4i be its corresponding right eigenvector. Then, by 
observation (b) and (171, the solution to Ff(x) can be written in the form 

N-R 

F,(x)=F~(~)+ C exp(z,(x-R+l))pi4i, xrR_1 
i=l 

which yields 

N-R 

F’(R - 1) =Ff(m) + C cLi+i, (18) 
i=l 

where pi’s are coefficients to be determined. The relationship between F&O) and F&R - 1) 
now needs to be established. Using (161, one can write 

(19) 

Besides, by observation (a), Ff(0) is in the form 

where f is of size R X 1. Combining (18) and (191, one can solve for pi’s and f, and thus the 
initial condition FJO) through a linear matrix equation of size N. Having found the initial 
condition, the solutions given in (16) and (17) complete our description of the queue length 
distribution at the state transition instants through the equation (10). The essential difference 
between the method presented here and computations encountered in solving the fluid flow 
models is the calculation of the linear operator 2 in (19). 

The overall cdf of queue length is the sum of the individual elements F,(n, x): 

N 

Pr(queue length I X) = c F,( n, x). 
n=O 

One other aim is actually finding the distribution of the queueing delay rather than the queue 
length. Queue length can easily be converted to queueing delay by substituting Ct for x. 
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Table 1 
Comparison of approximations of the mean waiting time in the queue (R = 10) 

No. voice Simulation % 95 conf. Approximations [ms] 
sources results (ms.) interval Analysis Fluid flow 

4 0.0929 f 0.0021 0.0948 0.00 
6 0.1638 f 0.003 0.1591 0.00 
8 0.2474 f 0.003 0.2383 0.00 

12 0.4716 f 0.0035 0.4813 0.0023 
14 0.6474 k 0.0065 0.6918 0.0383 
16 1.044 f 0.03 1.136 0.269 
18 2.205 f 0.04 2.311 1.199 
20 5.32 f 0.26 5.46 4.09 
22 13.64 f 0.38 13.61 12.02 
24 35.53 f 0.96 35.16 33.40 
25 61.6 * 2.0 58.8 57.0 
26 111.0 f3.5 105.6 103.8 
27 258.1 f8.7 224.6 222.9 

However, to form the cdf of the queueing delay, each F,(n, X) should be weighted before 
summation [8,15]: 

Pr(delay I t S) = --& $ d$( n, ct) 

n-0 

where 

is the average fraction of sources being active. 

2.3. Numerical examples 

We first consider a packetized voice system with line speed 320 Kbits/s, voice peak rate 32 
Kbits/s, mean active period 353 ms and mean silent period 650 ms. The mean number of cells 
in a talkspurt is approximately 22. The cells are 64 bytes and the cell transmission time is 1.6 
ms. The simulation results are obtained based on the discrete-time queueing scheme as 
described in Section 2.1. Within an active period, cells from an individual voice source are 
transmitted in a periodic manner, each source’s phase being uniform between 0 and R - 1 
(R = 10 for this example). In Table 1, the mean waiting time in the queue with respect to the 
number of voice sources by our analysis method and the fluid flow approximation is given and 
these values are compared with the simulation results. The analysis method proposed in this 
paper gives highly accurate results independent of the degree of utilization in the system 
whereas fluid flow approximation is only satisfactory in the heavy load regime. Figs. 3 and 4 are 
devoted to the queue length survivor function, which are obtained for the cases N = 15 and 20, 
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Fig. 3. Comparison of the queue length survivor function for our proposed method with simulation results and the 
fluid flow approximations (N = 15, R = 10, utilization = 0.52). 
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Fig. 4. Comparison of the queue length survivor function for our proposed method with simulation results and the 
fluid flow approximations (N = 20, R = 10, utilization = 0.70). 
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Table 2 
Comparison of approximations of the mean waiting time in the queue CR = 48) 

No. voice Simulation % 95 conf. Approximations [msl 
sources results (ms.) interval Analysis Fluid flow 

60 0.1243 * 0.0004 0.0774 
80 0.222 + 0.001 0.186 
90 0.298 + 0.003 0.290 

100 0.431 f 0.016 0.482 
110 0.976 f 0.077 1.096 
120 4.52 kO.2 4.72 
125 12.51 * 0.7 12.20 
130 36.91 f 1.15 36.20 
132 66.0 k5.2 64.26 
134 151.5 k 12.7 142.7 

0.00 
0.00 
0.00 
0.02 
0.36 
3.49 

10.14 
32.60 
57.90 

124.6 

respectively. In both cases, the method we propose is able to capture the simulation curve for 
the buffer survivor function very accurately. 

We then extend the example to the case where the link speed = 1.536 Mbits/s and the cell 
transmission time = 0.333 ms (R = 48 in this case). This is actually the classical packetized voice 
example found in the literature [8,15]. To avoid numerical inaccuracies in the calculation of the 
initial condition FJO), we approximate Ai by A for i 2 9. Actually, a closer study of &( *> 
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Fig. 5. Comparison of the queue length survivor function for our proposed method with simulation results and the 
fluid flow approximations (IV = 60, R = 48, utilization = 0.44). 
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Fig. 6. Comparison of the queue length survivor function for our proposed method with simulation results and the 
fluid flow approximations (N = 90, R = 48, utilization = 0.66). 
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Fig. 7. Comparison of the queue length survivor function for our proposed method with simulation results and the 
fluid flow approximations (N = 120, R = 48, utilization = 0.88). 
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shows that this leads to an error of no more than 2% for each entry of Ai. We note that, as can 
be verified easily, fluid flow approximation is equivalent to setting 

We further use the trapezoidal approximation [17]: 

exp(Ai) = (I-A,/2)-‘(IfAJ2) 

to avoid eigensystem calculations. The results associated with the mean waiting time in the 
queue is given in Table 2. 

The queue length survivor functions, for the cases N = 60, 90, and 120 are presented in Figs. 
5-7, respectively. Remarkably accurate results are obtained for all the cases compared with the 
fluid flow approximations in spite of the employment of the above-mentioned approximations. 
The numerical results provided here demonstrate three significant aspects of our proposed 
method: 

l mathematical formulation is simple and similar to fluid flow models and yields better 
results, 

l the method provides satisfactory results through all traffic regimes, 
l besides the averaged performance criteria (e.g., mean queueing delay, mean buffer size), 

the method is able to capture the cdf of the queue length. 

3. Conclusions 

In the present paper, a new theory for the approximation of the queue length distribution for 
the Markov modulated periodic arrival process is presented. This method is a natural extension 
and generalization of fluid flow models which are commonly used in the communications 
literature. From a multi-layer concept, the technique is capable of capturing the short term 
fluctuations of the queue length at the cell layer. Therefore, highly accurate results are 
obtained in the analysis of a packetized voice multiplexer for all possible loads. 

Except for the determination of the linear operator Z defined in (19), numerical procedures 
are the same as the ones used in solving the fluid models. One may propose many approxima- 
tive schemes for determining Z (e.g., trapezoidal approximation, moment matching techniques) 
so that a computationally tractable algorithm is proposed. Usage of the same underlying 
mathematical framework provides an easy generalization of this idea for more complicated 
queueing problems for which fluid flow techniques are successfully applied. We believe that the 
method demonstrated here can be used to develop techniques for the performance evaluation 
of typical traffic control schemes proposed for ATM networks. 

The methodology developed here is valid for discrete-time queueing schemes where the 
modulating process is a continuous-time Markov chain. This choice is due to the discrete-time 
operation of ATM multiplexers and the continuous-time nature of the fluid flow approxima- 
tions on the basis of which we make the performance comparisons. The framework presented 
here can readily be reformulated to cover other models (e.g., both the multiplexer and the 
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chain work in continuous-time (or in discrete-time)). These extensions and the computational 
aspects of the method need to be investigated. One other future work is to develop perfor- 
mance analysis schemes in the case of multi-class traffic which, in this framework, needs an 
accurate approximation to the transient response of the CDJD/l queue where multiple 
periods are allowed. 
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