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Abstract 

We propose a method for finding the efficient set of a multiple objective linear program based on the well-known facial 
decomposition of the efficient set. The method incorporates a simple linear programming test that identifies efficient faces 
while employing a top--down search strategy which avoids enumeration of efficient extreme points and locates the maximally 
efficient faces of the feasible region. We suggest that discrete representations of the efficient faces could be obtained and 
presented to the Decision Maker. Results of computational experiments are reported. 
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1. Introduction 

Given a nonempty polyhedral set X defined as 
X = { x E ~ n  I Ax < b ,  x > 0}, whereA is an 
m × n m a t r i x a n d b E R  m , a n d a p × n m a t r i x C o f  
objective function coefficients where p > 2, we can 
define the Multiple Objective Linear Programming 
problem (MOLP) as follows: 

(MOLP) Maximize Cx, subject to. x E X. 

Throughout the paper we employ the following 
notation: For two scalars a and b, a < b denotes 
a < b o r a - - b .  For two vectorsx, y E ~n, x < y 
denotes xi < yi for i = 1. . .n,  and x~<y denotes 
x < y b u t x ~ y .  

Incorporation of p objective functions simultane- 
ously into the linear programming framework ne- 
cessitates the consideration of efficient solutions for 
problem (MOLP). 

Definition 1. x ° E ~n is an efficient solution for prob- 
lem (MOLP) i f x  ° E X and there exists no x E X such 
that Cx >~ Cx °. 

Let XE denote the set of  all efficient solutions for prob- 
lem (MOLP). The vector maximization approach to 
problem (MOLP) is based on the assumption that the 
Decision Maker (DM) prefers more to less in each ob- 
jective. Therefore XE contains all the relevant trade-off 
information to be conveyed to the DM. Thus vector 
maximization algorithms aspire to find all of  XE and 
present it to the DM. (For an overview of alternative 
approaches to problem (MOLP), the reader is referred 
to, for instance, [7, 10, 14] and references therein.) 

It has been shown that the efficient set for prob- 
lem (MOLP) can be represented as a union of effi- 
cient faces of X [15]. However, finding all of XE is 
a computationally-demanding problem. Furthermore, 
presenting XE to the DM is a difficult task since it 
is usually a nonconvex continuous set. Thus most 
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vector maximization methods have directed their ef- 
fort to finding the set of all efficient extreme points of 
X (see, for instance, [9, 11]). 

Typically, most of the vector maximization al- 
gorithms suggested for problem (MOLP) follow a 
"bottom-up search". That is, effÉcient faces are gen- 
erated based on the information provided by efficient 
extreme points by incorporating certain tests (see, for 
instance, [8, 12]). Recently, Armand and Malivert 
[2] and Armand [1] presented such algorithms and 
reported computational results. A partial exception to 
the bottom-up search approach is the method of Yu 
and Zeleny [15] where a "top-down" search strategy 
is incorporated into the procedure without giving up 
the bottom-up search. 

Since efficient extreme points are zero-dimensional 
faces, their number could be expected to be much more 
than the number of maximally efficient faces due to 
the combinatorial nature of the problem assuming that 
maximal efficient faces are of high dimensionality (see 
Remark 3 in Section 2). It has also been discussed 
that X may "collapse" under the mapping C, and the 
structure of the efficient set in outcome space may be 
much simpler than in decision space. Recently, Dauer 
and Gallagher [6] have shown that maximally effi- 
cient faces of X and maximally efficient faces in the 
outcome space are in one-to-one correspondence, sup- 
porting the hypothesis that the structure of XE when 
considered as a union of  maximally efficient faces 
directly could be relatively simple. 

Developing a method for finding maximally effi- 
cient faces of X by employing a top-down search, that 
is, by avoiding the generation of lower dimensional 
efficient faces including efficient extreme points may 
be a viable idea. Discrete representations of the indi- 
vidual faces could then be obtained and presented to 
the DM [4]. 

In this paper, we propose an algorithm for locating 
X" E for problem (MOLP). We base our method mostly 
on the results presented in [15]. Our algorithm dif- 
fers from the method presented in [15] mainly in its 
disregarding of the efficient extreme points of X, and 
in the test employed to detect efficient faces. We use 
the characterization of faces as a collection of indices 
that correspond to the constraints holding as equal- 
ity at that particular face [15]. Thus the problem of 
searching for maximal efficient faces can be reduced to 
the problem of searching for collection of indices that 

correspond to maximal efficient faces. Therefore a 
search is performed over the space of collection of 
indices by employing a simple test that identifies effi- 
cient faces. Since the search procedure considers faces 
of possibly higher dimension prior to those of lower di- 
mension, the obtained solution consists of maximally 
efficient faces of X. 

The purpose of this paper is twofold. First, we want 
to formulate a method that is easy to understand and 
implement to find XE. By means of the facial decom- 
position and the top-down search approach, we aspire 
to synchronize the vector maximization problem with 
problems of discrete nature that arise in various other 
contexts for which search techniques are utilized. Sec- 
ond, we want to gather empirical information about 
the structure Of XE and observe its sensitivity to certain 
factors such as the number of objectives, the number 
of variables and the number of constraints. The paper 
is organized as follows. In Section 2, we establish the 
theoretical background and state our results. Section 
3 contains the algorithm. In Section 4, computational 
results are presented. 

2. Problem definition and theoretical background 

Let F be a subset of  X. F is a face of X if every 
line segment in X with a relative interior point in F 
has both end-points in F [13]. A face F is an efficient 
face if  all the elements o f F  are efficient. A face F is 
a maximally efficient face i f F  is an efficient face and 
there exists no efficient face of X that contains F as a 
strict subset. Let 

E and 
where In is the n x n identity matrix and 0 E En. Note 
that we can now rewrite X = {x E ~n[~X ~ b}. 
L e t M  = {1 . . . . .  m + n }  and, /g  = {I ] I C M } .  

Define .~l as the matrix derived from ,4 by deleting 

rows of ,4 not in I. Define /~J as the vector derived 
from/~ by deleting elements of/~ not in 1. For I E Jg, 

define F(1) = {x E X I Alx =/~z}. For I E ~ ' ,  F(1) 
represents a face of X [15]. Note that, F(0)  = X and 
for I E J / ,  F(I)  = (~ is possible. We will refer to 
F(I) as a proper face o f X  i f F ( I )  ¢ ~). 



S. Saym I Operations Researc :h Letters 19 (1996) 87-94 89 

The following observations about the characteriza- 
tion, some of which are given in [ 151, will be useful 
in understanding the algorithm. 

Remark 1. Given a face of X, its representation by 
F(Z) may not be unique. In other words, for Z, J E Jlt 
such that Z # J, it is possible to have F(Z) = F(J). 

Remark 2. Let 111 denote the number of elements of 
I. If 111 s JJ(, then dim(F(Z)) zdim(F(J)). Indeed, 

in the absence of degeneracy, for )I) > n, F(Z) = 0 
and for ]I) 5 n, dim(F(Z)) = n - (I]. 

Remark 3. The number of faces of X of dimension k 

is bounded from above by the quantity 

(n+m)! 
= (n - k)!(m + k)! 

Remark 4. If Z C J, then F(J) &F(Z). 

The following results will help us identify those F(Z) 
that are efficient. First, for Z E A, define the problem 

(SPI) 

(SPt) VJ = max : erCx - erCy, (1) 

s.t. r?x 5 6, (2) 

Jy 5 6, (3) 

jly = &‘, (4) 

-cx+cy 5 0, (5) 

where x E Iw” and y E W. 

Proposition 1. Let Z E A%‘. F(Z) is aproperface of X 
tf and only ifproblem (SPI) has a feasible solution. 

Proof. (i) Assume that F(Z) is a proper face of X. 
Then there exists a point y E F(Z). By definition of 

F(Z), y satisfies Ay 5 6 and A’y = 6’. Let x = y. 
Then (x, y) constitutes a feasible solution for problem 

(SPI ). 
(ii) Assume that problem (SPI) has a feasible 

solution (x, y). Then, by (3) and (4), y E F(Z). Thus 
F(Z) is a proper face. 0 

Theorem 1. Let Z E A. F(Z) is a proper efJicient 
face of X if and only if the optimal objective function 
value vt exists and is equal to 0. 

Proof. (i) Suppose that F(Z) is a proper efficient face 
of X. Assume, to the contrary, that the optimal objec- 
tive value VI for problem (SPI) does not exist or is not 

equal to 0. 
Case 1: vt does not exist. Since F(Z) is a proper 

face, problem (SPl) has a feasible solution by Propo- 
sition 1. Thus VI does not exist implies that prob- 
lem (SPI) is unbounded. This implies that there exists 

y E F(Z) (by (3) and (4)) and x E X (by (2)) such 
that Cx 2 Cy (by (5)) and eTCx - eTCy > 0 (by 
(1)). This implies that Cx 2 Cy. Thus y E F(Z) is not 
efficient, which contradicts the supposition that F(Z) 
is an efficient face. 

Case 2: VI # 0. Observe that VI > 0 should hold 
since for any y E F(Z), (x, y) with x = y is a feasible 
solution for problem ( SPI) and results in an objective 
value of 0. Then, by an argument similar to that in 
Case 1, there exists y E F(Z) and x E X such that 
Cx 2 Cy, which contradicts the supposition that F(Z) 
is an efficient face. 

(ii) Suppose that VI exists and is equal to 0. Then 
there exists no x, y E [w” that satisfies (2H5) with 
eTCx > eTCy. Then for all x E X and y E F(Z) such 
that Cx 2 Cy, 

cx = cy (6) 

holds. Since F(Z) # 0, we can pick any y E F(Z). 
Then by (6), there exists no x E X such that Cx > Cy. 
Hence y E Xs follows. Since y E F(Z) was chosen 
arbitrarily, it follows that F(Z) is an efficient face of 

x. 0 

Let .,#Yk = {I E & 1 IZ) = k} fork = 0, 1, . . , m+n. 
Since & = UrLl Ak, it follows that (cf. Theorem 
4.1 in [15]) 

??+?I 

XE= (_j u &nF(Z). 
k=O IE& 

(7) 

Since X, n F(Z) = F(J) for some J 2 Z ([ 15]), there 
exists b” C A”, 8’ & Ai,. . . &“‘+” & &Pin such that 

m+n 

XE = u u F(Z). 
k=O I& 

(8) 

Note that, by Remark 1, 6, k = 0,. . . , m + n, need 
not be unique. However, based on (8), it is possible 
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to formulate an algorithm that identifies XE by identi- there are no more index sets in ~/¢ to be processed. A 
fying d 'k, k = 0 . . . .  , m + n. formal description of the algorithm is given below. 

3. The algorithm 

3.1. The aloorithm statement 

Step 0 0.0 

The proposed algorithm for finding XE is based on 
checking elements of ~¢k starting with k = 0. For 

0.1 k = 0, the only element of J t  'k is 0 and F(0)  = X. 
Thus, by solving problem (SP0), the algorithm first 
checks if problem (MOLP) is completely efficient Step I 1.0 
or not [3]. If problem (MOLP) is completely effi- 
cient, the algorithm terminates with the conclusion 
XE = X. If not, then for each element I of ~t '1, 1.1 
problem (SP1) is solved. If problem (SP1) is infea- 
sible, I is dropped from further consideration since 
F(I) = 0 (by Proposition 1), and is placed in a 1.2 
list that keeps index sets yielding infeasible combi- 
nations. If problem (SP1) has an optimal objective 
value of 0, I is dropped from further consideration 1.3 
since F(I) is efficient (by Theorem 1). In this case, 
I is placed in a list that keeps index sets yielding 1.4 
efficient faces. If problem (SP1) is unbounded or has 
a positive optimal objective value, we can conclude 
that F(I) has at least one element that is not effi- 
cient. Therefore, it is possible to have F(J)C F(I) 
efficient and thus J D I should be checked via solv- 3.2. Validation 
ing problem (SPj). Hence, immediate supersets 
of I, i.e., index sets that contain I and belong to 
~t '111+1, are placed in a list for later consideration. 
After all the elements of ~¢/1 are considered, the XE = ] [ F(I). 
index sets that were placed in the list are consid- ieg.~ 
ered in the order they were placed in the list. For 
an index set I, first it is checked if it is a super- 
set of an index set previously placed in the list of 
infeasible index sets. If so, I is also an index set 
that yields an infeasible combination by Remark 4 
and therefore is discarded. Next it is checked if I 
is a superset of an index set previously placed in 
the list of index sets that yield an efficient face. If 
so, I is also an index set yielding an efficient face 
that is a subset of a previously identified efficient 
face by Remark 4 and therefore is discarded. If 
these tests fail, then problem (SPI) is solved and 
I is placed in an appropriate list based on the re- 
sult obtained from the solution of the linear pro- 
gram as described above. The procedure stops when 

Set I = 0. Solve problem (SPj). If v / =  0, 
then X = X~. Set 8L~' = {0} and STOP. 
Else, go to step 0.1. 
Set k = 1,gL, e = O, JLP  = O, La = d ¢  'k, 
and go to Step 1. 
If  LP f~ J t  'k = 1~, set k = k + 1. If  k = 
m + n + 1 or £P N jCk = 0, STOP. 
Else, pick I c Le fq ~gk. 
If I ~ J for some J E JL~' or I ~ J for 
some J G g6q, set ~ = ca \ {i} and go tc 
1.0. Else solve problem (SPI). 
If problem (SP~) is infeasible, set J L P =  

u set = \ { I } .  
Go to 1.0. 
If vl = O, set gLP = g ~  U {I}, 
set £P = £P \ {I}. Go to 1.0. 
Set ~ = &a \ {i} U j l ,  where j l  denote, 
supersets of I that belong to J t  'k+l. 
Go to 1.0. 

To validate the algorithm, we need to show that 

By construction, g&a contains index sets I such that 
problem (SPt) has an optimal objective value of 0. 
Thus ATE D UIEt.~ F(I) is obvious by Theorem 1. 

To see XE C_ U/Et.~' F(I), it is necessary to observe 
that all elements of ~ are inspected by the algorithm 
explicitly or implicitly. Indeed, a search procedure is 
conducted over ~g by considering elements I in the 
order of nondecreasing cardinality (Step 1.0) to iden- 
tify those elements that correspond to efficient faces of 
X. Note that £P is initialized to ~¢1, and whenever an 
element I is removed from LP, its immediate supersets 
are added to L~ (Step 1.4) unless it is guaranteed that 
F(I) = 0 (Step 1.2) or F(I)C_XE (Step 1.3). Thus, 
by (7) and Step 1.3, it follows that XE C_ UI~g.~ F(I). 



3.3. Implementation issues 

r({1}) 

A crucial part of the algorithm is keeping various 
lists of sets of discrete elements. To increase the 
efficiency of  the list-keeping procedures, it is 
possible to consider I E ~ as an (m + n)-tuple 
~I 1 1 1 1 if i E I, and 0 = (~1 . . . . .  ~(m+,)) such that ~i = 
otherwise. Thus it becomes possible to avoid dupli- 
cate evaluations of index sets by following a lexico- 
graphic order of  ~I,s in the processing of the list A a 
and in generation of j 1  in Step 1.4. 

In addition to list-keeping schemes, the only re- 
quirement to implement the algorithm is a tool to 
solve the linear programming problems. This re- 
quirement can be met, for instance, by utilizing the 
simplex method, which is simple and easy to imple- 
ment. Furthermore, the following observations can 
be made regarding the use of  simplex method in the 
algorithm. 

(1) When solving problem (SPt) for I E d,/, if  the 
objective value is detected to be positive at any 
iteration, there is no need to solve the problem 
to optimality since it is guaranteed that vt > 0 or 
problem (SPi) is unbounded, and F(I )  is not an 
efficient face. 

(2) For J E j i ,  problem (SPs) differs from problem 
(SPt) in only one constraint. Therefore, the solu- 
tion to problem (SPz) can be used as a starting 
solution for problem (SPj). This could possibly 
improve computational performance. 

It can be noted that the proposed algorithm does not 
require an explicit treatment of  degeneracy and un- 
bounded feasible region since it does not concentrate 
on efficient extreme points or efficient bases. Thus by 
avoiding complex book-keeping schemes, it remains 
simple and easy to implement. 

3.4. An example 

Consider the problem (MOLP) with 

1 , C = 1 and b =  8 "  
0 

The efficient set is the union of  the two maximally 
efficient faces that correspond to I1 = { 1 } and 12 = 
{2} (see Fig. 1). Here, M = { 1 . . . . .  5}. The algorithm 
proceeds as follows. 

Z3 

X2 

Xl 

F({2}) 
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Fig. 1. Example: X and XE. 

0.0 Solve problem (SP1) with I = O. vt > O. 
0.1 k = 1,8£# = 0,Y.LP = 0,La = {{1},{2},{3}, 

{4},{5}}. 
1.1 Solve problem ( SPz ) with I = { 1 }. 
1.3 vz = 0. g£# = {{1}},La = {{2},{3},{4},{5}}. 
1.1 Solve problem (SPt) with I = {2}. 
1.3 /)I = 0. ~ . ~  = {{1},{2}},.LP = {{3},{4},{5}}. 
1.1 Solve problem (SP~) with I = {3}. 
1.4 LP = {{4},{5},{3,4},{3,5}}. 
1.1 Solve problem (SPI) with I = {4}. 
1.4 L~ ° = {{5},{3,4},{3,5},{4,5}}. 
1.1 Solve problem (SP1) with I = {5}. 
1.4 L# = {{3,4},{3,5},{4,5}}. 
1.1 Solve problem (SPI) with I = {3,4}, (k = 2 

in Step 1.0). 
1.4 £P = {{3,5},{4,5},{3,4,5}}. 
1.1 Solve problem (SPI) with I = {3,5}. 
1.4 ~ = {{4,5},{3,4,5}}. 
1.1 Solve problem (SPI) with I = {4,5}. 
1.4 £P = {{3,4,5}}. 
1.1 Solve problem (SPI) with I = {3,4,5}, (k = 3 

in Step 1.0). 
1.4 & a=0 .  
1.0 k = 4, ~e N ~¢/k = 0. STOP. 

4. Computational results 

In this section we present our computational ex- 
perimentation with the algorithm. The algorithm was 
coded in C, and the CPLEX Callable Library [5] 
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Table 1 
Computational results:CPU and primary storage requirements 

CPU time (seconds) Total LP pivots Working list size Infeasible list size 

p x m x n Min. Avg. Max. Min. Avg. Max. Min. Avg. Max. Min. Avg. Max. 

03 × 10 × 03 a 0.2 0.3 0.3 26 71.6 112 8 14.4 22 7 8.4 10 
03 × 10 × 03 0.2 0.3 0.4 50 120.2 231 12 21.6 28 8 11.1 15 
03 × 10 × 10 203.1 559 1247.7 37803 151825.3 452446 17200 38399.4 77968 30 95.5 203 
03 × 15 × 10 237.4 1143.3 2105.9 34187 264859.8 500728 18650 61733.2 105580 64 197.9 399 
05 × 10 × 05 a 0.5 1.1 1.9 97 417.8 925 48 92.4 156 6 10.2 19 
05 × 10 × 05 1.2 2.4 3.7 373 1150.6 2030 96 179.4 292 8 15.9 22 
05 × 10 × 10 201.9 634 1500 35757 202883.8 661551 17112 37960.2 76762 29 95.4 203 
05 x 15 × 10 284.5 1224.1 2252.9 65231 332334.8 598421 18268 59108.6 105434 63 191.1 399 
07 x 10 x 07 a 3 7.5 12.7 595 2244.7 4071 304 636.2 936 11 15.4 22 
07 x 10 × 07 9.4 19.7 29.3 3 2 1 6  7876.8  15182 604 1293.8 1772 12 25.7 38 
07 × 10 x 10 212.2 700.6 1532.8 47454 245629.4 580017 14906 3 6 2 7 7  76572 25 91.9 202 
07 x 15 × 10 322.8 1092.3 2327.2 103954 328146.6 617840 17544 49952 105304 57 162.9 399 

a Problems that are solved for admissible points. 

was used to solve the linear programming problems 

(SPt). The computational experiments were con- 
ducted on a multi-user SunSparc workstation. In our 
computational experiments, the class of a problem is 
determined by the number of objectives (p) ,  num- 
ber of constraints (m) and the number of variables 
(n). For each problem class, we created a set of  10 
test problems. In the test problems, the elements of 
the constraint matrix A, the right-hand-side vector b, 
and the objective function coefficient matrix C were 

randomly generated integers belonging to the discrete 
uniform distribution in the intervals (1,20), (50, 100) 
and ( - 1 0 ,  20), respectively. A 25% zero density was 
provided in the matrix A. Nine different classes were 
constructed according to the values of p, m and n. 
Three additional problem classes were created by 
solving the test problems in three categories with 
p = n for admissible points (i.e., with C = Ip, where 
Ip is the p × p identity matrix). 

The results of computational experiments are re- 
ported in two separate tables. The first table contains 
information regarding the computational performance 
of the algorithm. Along with CPU times, we report 
total number of LP-pivots as an indicator of computa- 
tion time. As an indicator of storage requirements, the 
size of the working list (LP) and the size of the list of 
infeasible I ' s  ( J S e )  are reported. In Table 1, it can 
be observed that computational requirements increase 
rapidly with problem size. It can also be observed that 

number of variables seems to have the most signif- 
icant effect on computation time where the number 

of constraints also seems to be important. Based on 
these preliminary results, number of objectives does 
not seem to be a very important factor. Another obser- 
vation is that solving for admissible points is likely to 
be easier than solving for efficient points, especially 
as the problems get larger. 

Table 2 contains the information pertaining to the 
structure of the test problems solved. Basically, it 
would be interesting to know the number of distinct ef- 

ficient faces and the dimensions of each for each prob- 
lem. As one pseudo-measure, we report the efficient 
list size (~f~q), which is an upper bound on the number 
of distinct efficient faces (see Remark 1 ). To have an 
idea about the dimension of the highest dimensional 
efficient face, we report Illmin = minse¢~lI[ ,  since 
n - lI[min is a lower bound on this quantity. Note that, 
in the absence of degeneracy, these are exact values 
rather than bounds. Finally, as an approximate mea- 
sure in the variation in the dimensions of the efficient 
faces, we report Illmax -- [I[min- The results in Table 
2 indicate that the efficient set has a relatively sim- 
ple structure. The efficient list size, though increasing 
with problem size, seems to be rather reasonable when 
the combinatorial nature of the total number of faces 
is considered (Remark 3). That seems to be more in 
effect for the set of  admissible points. As far as the 
dimensions of the efficient faces are concerned, an 
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Table 2 
Computational results: Structure of XE. 

93 

Efficient list size [IImin Illm~x --I11mm 

p x m x n Min. Avg. Max. Min. Avg. Max. Min. Avg. Max. 

03 x 10 x 03 a 1 2.2 4 1 1 1 0 0.2 1 
03 x 10 x 03 I 1.8 3 1 1.6 3 0 0.3 1 
03 × 10 x 10 4 11.4 27 8 8 8 0 0.7 1 
03 x 15 x 10 4 15.5 45 8 8 8 0 0.6 1 
05 x 10 x 05 a 2 3.5 8 1 1 1 0 0.3 1 
05 x 10 × 05 1 4.4 9 1 1.9 3 0 0.9 2 
05 x 10 x 10 3 25.1 49 6 6.4 8 1 1.8 3 
05 x 15 x 10 12 37.3 92 6 6.3 7 1 1.7 2 
07 × 10 × 07 a 3 6.4 10 1 1.1 2 0 1 2 
07 × I0 × 07 4 12.5 21 2 2.6 4 2 2.2 3 
07 x 10 x 10 16 43.6 57 4 4.8 6 2 2.8 3 
07 × 15 × 10 16 48.1 93 4 4.7 6 2 3.1 4 

a Problems that are solved for admissible points. 

Table 3 
CPU times (in seconds) for Armand-Malivert test problems 

Tube Pyramid Tent 

m 20 30 40 50 20 30 40 50 21 31 41 51 

0.6 0.9 1.5 2.0 0.6 0.9 1.4 1.8 0.9 1.2 1.8 2.6 

important observation is that the variation across the 
efficient set is rather small. Furthermore, if we take 
n - II]min as an indicator of the dimension of the high- 
est dimensional efficient face, for a given value of p, 
this quantity shows little variation for different values 
ofm and n. However, more experimentation would be 
necessary to draw strong conclusions. 

In addition to the computational experiments con- 
ducted, the 12 problems presented by Armand and 
Malivert [2] were solved for comparison purposes 
since theirs is the only algorithm with reported com- 
putational results. The definitions of these problems, 
where n = 3, p = 2 or p = 3, which possess cer- 
tain geometrical structures, can be found in [2]. The 
results are given in Table 3. 

The results of computational experiments motivate 
heuristic modifications of the algorithm. For instance, 
one may aspire to find efficient faces that belong to a 
particular set ~gk, where k is determined by finding 
an appropriate face F(I) E jCk in which an initial 

efficient point that has been obtained lies. To see if 
this type of an approach would generate good results 
and if it would bring computational benefits requires 
further study. 
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