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Abstract: Suppose that we observe bivariate data (X,. q) only when Y, < Xi (left truncation). Denote with F the marginal d.f. of 

the X’s In this paper we derive a Bahadur-type representation for the quantile function of the pertaining product-limit estimator 

of F. As an application we obtain confidence intervals and bands for quantiles of F. 
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Let y), 1 < i < be sample (i.i.d.) some population such that Xi is independent of 

Y. Denote with 

F(t) = P(X<l) and G(t) = P(Y<r) 

the marginal distribution functions (d.f.‘s) of X and Y, respectively. In the random left truncation model 
one observes only those pairs (Xi, yi) for which Xi > yi but the label i is not observed. This model arises 
in various fields, e.g., astronomy, economics and medical studies. See, e.g., Woodroofe (1985). Let 
(xi, yi>, 1 Q i < n, denote the observed values of the sample. Note that IZ is a random variable itself. The 
problem now becomes one of reconstructing F and G from (xi, yi), 1 < i G n. In most applications the 
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main interest is in the X-variable. Since in many examples X turns out to be nonnegative we shall 
restrict ourselves to this case though this assumption in no way limits the method. 

Now, given n, we may look at the data as the outcomes of an i.i.d. sample with d.f. 

H*(x, y) = P(X<x, Y<y I Y<X). 

where we assume that 

Ly=lqY<X)>O. 

Denote with 

F”(x) =H*(x, “) and G*(y) =H*(m, y) 

the marginals of H *. The actually observed X’s and Y’s thus have d.f. F * and G”, respectively. The 
nonparametric maximum likelihood estimator (NPMLE) of F was derived by Lynden-Bell (1971) and is 

of the form 

where 

r,(x) =#{j<n:X,=x), C,(X) =n-‘#(j<n:~<x<xj), 

and n’ extends over all pairwise distinct X’S. (1.1) may be motivated as follows: 

(1.1) 

Denote with 

the so-called cumulative hazard function of F. Then we have the representation 

1 -F(x) = (J-I<, [I - +)I) exd -4(4l 7 > . 
in which 

h(x) =A(x) -A(x-), A,(x) =4x) - c h(z) 
r&4,z<x 

and A = (z: h(z) > 0} is the set of atoms of A. Putting 

a .=inf(x:F(x) >O} and b,=sup{x:F(x) <I}, 

and similarly for G, Woodroofe (1985) observed that, when a, < aF and bo < b,, 

F*(dz) 

A(x)=Ja,l, C(z) ’ 

with 

C(z) =G*(z) -F*(z-) =dG(z)[l-F(z-)]. 

The function C may be consistently estimated by C,,, uniformly on LO, co). Write F,,* for the empirical d.f. 

of Xl,..., X, and set 
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Since A, is a pure step function (so that A,, = 0), we may define fin, in obvious notation, by 

1 -E’,(x) = n [I -A,(z)], 
z<x 

which is identical to (1.1). 
The distributional convergence of this estimator has been studied by Woodroofe (1985), Wang, Jewel1 

and Tsai (1986), Gu and Lai (1990), Keiding and Gill (1990) and Lai and Ying (1991). Chao and Lo 
(1986) and Stute (1993) obtained almost sure representations with rate. In this article we explore 
properties of its quantile function fin-‘, where for any d.f. L, 

L-‘(p)=inf{xEiW:L(x)&p}, O<p<l. 

Elementary properties of a quantile function are listed on p. 5 of Shorack and Wellner (1986). We show 
in Theorem 1 that almost surely (a.s.) 

E-‘(p) +F-‘(p), 

if F-l(p) is the unique solution of F(x) =p, i.e. if F is strictly increasing at F-‘(p). Finer results on the 
difference jn-‘(p) - F-‘(p) are studied in Theorem 2, via asymptotic representations of the form 

in-‘(p) -F-'(p) 
P -C(WP)) 

f(F-‘( p)) +Rn(p)’ (1.2) 

where f= F’ and R,(p) = O((ln n/n>3/4) as. or o(K’/~) in probability. The a.s. part of (1.2) is the 
analogue of the Bahadur (1966) representation for quantiles of the empirical d.f. for i.i.d. data. The 
in-probability part for i.i.d. data is due to Ghosh (1971). Note that for randomly censored data the 
Bahadur representation has been derived by Cheng (1984), Aly, Csijrgii and Horvath (1985) and Lo and 
Singh (1986). Ghosh’s representation has been extended to the censored case by Gastwirth and Wang 
(1988) and Gijbels and Veraverbeke (1988). For truncated data no results are available in the literature 
so far. 

The representation (1.2) also holds uniform!y for p in any interval [p,,, p,] contained in (0, 1). Weak 
convergence of the quantile process n1’2[Fn-1(p> -F-‘(p)], p,, <p <pl, and confidence intervals 
respectively bands for quantiles are illustrated in Section 4 as applications of the weak and strong 
representation. 

2. Preliminaries and assumptions 

In this section we present some preliminary results which are needed in the next section. 
Recall the definition of a F, b,, a, and b,. Woodroofe (1985) pointed out that F can be estimated on 

[a,, bF] only if a, < aF and b, 6 6,. Assuming that this holds Stute (1993) implies that for continuous 
F, uniformly in a, < a <x < b < b,, A,, admits the representation 

A,(x) -A,(a) -A(x) +A(a) 

=Sn(a, x) +RA(u, x), 

where for any 6 > 2, 

sup IRA(u, x)l=o(n-‘(In n)“) w.p. 1. 
a<x<b 

(2.1) 
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Furthermore, if a, < uF, one can choose a, < a < aF in which case 

A,(X) -A(x) =S,(O, x) +R;(O, x). (2.2) 

Finally, if uF = aG, then (2.2) still remains true with the same bound on RI, provided that jdF/G2 < CQ. 
Informally speaking, the last integrability condition is needed to control the effect of truncation in a 
neighborhood of the critical point uF = a,. Observe that S,(a, X) is an average of i.i.d. random variables 
with expectation zero to which both the SLLN and the CLT apply. As to F,, one has almost surely 

&(x) -F(x) = (I -F(x))&@, x) +R,(O, x), 

with 

sup I R,(O, x) I = 0(ln3n/n) w.p. 1. 
a,<x<b 

(2.3) 

The following theorem is similar to Theorem 2.3.1. of Serfling (1980, p. 75). Therefore the proof is 
omitted. 

Theorem 1. Assume that F is continuous; also suppose that a, G aF, b, G b,. If /dF/G2 < ~0 and F-‘(p) 
is the unique solution of F(x) = p, then 

&‘(p) *F-‘(p) a.s. 0 

3. Weak and strong representations of p-quantiles 

In this section we shall derive the representation (1.2). A series of lemmasAwhich are of independent 
interest will now be derived. Lemma 3.1 shows that F,, composed with F;’ yields the identity on 
[p,,, pl], tp to an error O(n-l). Lemmas 3.2 and 3.3 provide global and local bounds for the deviation 
between F;’ and F-‘. For the classical empirical process, a similar analysis may be found, e.g., in Stute 
(1982, p. 99). By iteration he also derived higher-order representations of (uniform) quantiles. The 
notation of Sections 1 and 2 as well as the assumptions a, < aF, b, <b, and jdF/G* < w will be 
adopted throughout. 

Lemma 3.1. For continuous F, for each 0 <p. <pl < 1, 

sup Ifi&’ -pi = O(n-‘) a.s. 
POQPGPI 

Proof. First observe that s;,“(p) = Xi for some 1 < i < n. Thus 

I@“-yp) -pJ=fi”&-‘(p) -p=&(xi) -fQxi-). 

Hence it follows from (1.1) that a.s., 

SUP p&‘(P) -PI 
POGPGPI 

< sup [&x) -&x-)1 = sup [l-~nn(X-)]bwr 
~n-‘(P,kxd”-‘(P,) ~n-‘-‘(P,)<x<~“-YPl) 

< sup [nC,(x)]-‘G 
F”-‘i;L(p(J<x&‘(P,) 
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where the last inequality holds for all small enough E > 0 and all large n, according to Theorem 1. The 
lemma now follows from the uniform convergence of C, to C and 

inf C(x)>O. 0 
F-‘(P”)-E~X9F~‘(P,)+E 

Lemma 3.2. Suppose that = f continuous and away from zero on [F-‘(P,,) - 6, F-‘(P,) + 61, 
for some 6 > 0. Then 

sup Ii;‘(p) -F-‘(p)l=O((ln n/n)“‘) a.s. 
P(lGPQP, 

= O,( ne1j2). 

Proof. We shall only deal with the a.s. part. From (2.3) and the LIL for empirical d.f.‘s we have 

sup Ign’,<x) -F(x)l=O((ln n/n)1’2). 
a<x<b 

Together with Theorem 1 this implies 

&&‘(P) =F&‘(P) +R,(P) =FF-‘(P) + [k’,-‘(p) -F-‘(d]f(5,(d) +R,(P)> 

for some t,(p) between F-‘(p) and PEP’(p), and where almost surely 

R,(p) = O((1n n/n)1’2) uniformly in p0 <p Qp,. 

Hence 

k’(p) -F-‘(P) = [6k’(~) -FF-‘(p)]/f(5,(d) -Ud/f(S,W). 

Thus the lemma is an immediate consequence of Lemma 3.1. 0 

The next lemma provides a special version of the oscillation behavior of &. 

Lemma 3.3. Let A, = const(ln n/n)“*, and a, < a < b < b,. If F is Lipschitz continuous on [a, b], then 

sup I@Js) -F(s) -FE(t) +F(t)I=O((ln n/n)“‘“) a.s. 

IS-t1 <A” 
a,cs,t<b 

Proof. We first show the statement for A, - A rather than F,, - F. According to (2.1) it remains to show 
that uniformly in I s - t ( G A, both 

/ (s, tlCel(z)[F,*(dz) -F*(dz)] and / 
G(z) -C(z) 

( s, 11 c2w 
F*(dz) 

are of the stated order. From the LIL for empirical d.f.‘s and the Lipschitz continuity of F, the second 
integral is even bounded by 0(&n n In In n /n) = O(ln n/n). 

As to the first integral, put 6, = K&n n/n1314. Introduce the grid 

x .=a+j6,, 
n,J 

j=O, l,..., k,= [(b-a)/6,], x,~ =b. . n+l 
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For each x choose x,,~ such that x, j GX GX, j+I. Since C is nonnegative and F is Lipschitz continuous, 

jl$,llC-l(z)[~Z(dz) -F*Wl G/ “‘.“‘C-‘(z)[F,*(dz) -F*(dz)] +0(&J 
Sfl,J 

=?-/nj+O(Sn). (3.1) 

Each vnj is an average of i.i.d. random variables with expectation zero, being bounded by some common 
constant M. Furthermore, 

II Var( qnj) G jfn,‘+’ C-2(z)F*(dz) =0(&J. 
‘fl,i 

Bennett’s inequality (cf. Shorack and Wellner, 1986, p. 851) yields 

(3.2) 

where K, = K,(K,) increases with K,. In particular, this can be made O(nm3) if we choose the constant 
large enough. Since there are at most 0(n3/*) qnj’s, (3.2) together with Borel-Cantelli implies that with 
probability one, 

max qnj < 6, eventually. 

Recall (3.1) to obtain the desired upper bound for the oscillation modulus of A, - A. The lower bound is 
derived similarly. The corresponding result for #,, - F follows by taking logarithms of 1 - $n and 1 - F, 
then using a Taylor expansion of the logarithm and finally applying the Lipschitz continuity of F. 0 

We are now ready to state the main results on the quantile representation for E?,. 

Theorem 2. Assume < aF b, Q and that is Lipschitz Let <p < and suppose 
F is F-‘(p) with = f(F-l(p)) 0. Consider representa- 

tion 

-F-‘(p) = 
P-$,,F-‘(P) 1-P 

P)) 
t-R,,(P) - 

F’(F-l( 
S&A F-‘(P)) +&2(p), 

where S, is defined in (2.1). Then, if jdF/G* < CQ, 

Rni( p) = o((ln n/n)1’2) a.s. and R,J P) = o,(n-"'), i= 1,2. 

Zf, in addition, F is twice continuously differentiable at F-‘(p), 

R,J p) = O((ln n/n)3’4) a.s., i = 1, 2. (3.3) 

Finally, if F is continuously resp. twice continuously differentiable on 1 FP1( p,J - 6, F- '(P,) + 61 for some 
6 > 0, such that f = F’ is bounded away from zero there, the error bounds hold uniformly in p. < P <pt. 

Proof. Lemmas 3.2 and 3.3 imply that with probability one, 

8,&1(p) -&F-‘(p) 

= F&‘(p) - FF-‘( p) + O((ln n/n)3’4) 

=f(F-‘(p))[&‘(p) -F-‘(P)] +o(#;‘(p) -F-‘(p)) +O((ln n/n)3’4). (3.4) 
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The assertion now follows from Lemma 3.1. As to the representation in terms of S,(O, x), apply (2.3). If 
F is twice differentiable at F-l(p), one can further expand (3.4) one more term to get 

O(c--‘(P) -F-‘(P))* instead of o(@~-‘( p) -F-‘(p)). 

The remainder is therefore O((ln n/n>3/4). Finally, since the bounds leading to (3.4) already are uniform 
in pa <p <pl, we only have to note that also in the Taylor expansion the error bounds hold uniformly 
under the stated regularity assumptions on F. 0 

4. Applications 

implications of the quantile representations 

consequence of Theorem 2 is the following: 

Theorem 3 (Asymptotic normality and LIL). Under the assumptions of Theorem 2 guaranteeing 

K2( P) = op(n-1/2) 

we have 

(a) n’/‘[&‘(p) -F-‘(p)] +M(O, p’), 

where 

p2=~2(F-1(p))[f(F-1(p))]-2 

and 

a’(t) =a[l-F(t)]2~‘G-1(z)[l-F(z)]~2F(dz) = [l-F(t)]2h’Fc::d:)). 

Furthermore, if F is twice continuously differentiable at F-‘(p), 

(b) lim supdvs[@nP1(p) -F-‘(p)] = G2p’ a.s. 0 
?l+m 

Remark 4.1. Also, a multivariate version of Theorem 3 is available upon applying the standard 
Cramer-Wold device. Tightness of the mean process n l/Zf(F-l(p))S,(O, F-‘(p)) = Z,(p) on 0 <pO GP 

<p, < 1, can be shown by verifying the moment condition in Billingsley (1968, p. 128). The weak 
convergence of the quantile process 

Q,(P) =n ‘/“f(F-‘(p))[?;‘(p> -F-‘(P)], P~<P<P,, 

to a Gaussian process thus follows. 

Theorem 4. Under the assumptions of Theorem 2, 

Q, + Z in distribution 
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in the space D[ p,,, p1] of left-continuous functions with right-hand limits, where Z is a zero mean Gaussian 
process with continuous sample paths and covariance function 

COV[.qP,), =a(1 -P1)(1 -P2)jl 
F-‘(p,)A~-‘(p,)C;-l(U)[l -F(u)]-2F(d+ 0 

Let 0 <p < 1. An approximate confidence interval for F-‘(p) can be established immediately from 
Theorem 3. Under the conditions of Theorem 3, for 0 < y < 1, let Z, = @-‘(l - y) denote the 1 - y 
quantile of the standard normal distribution. Then 

Fn-‘( P) * Z~,*n-1’2~n/f@n-1( P)) (4.1) 

is an approximate level 1 - y interval for F-‘(p). Here ft is some nonparametric estimate of f and 6,’ 
is some consistent estimate of a*(F-l(p)). Although estimation of f is feasible it can be avoided. The 
next method which constructs a confidence interval based on the order statistics of the X’s eliminates 
this drawback. This interval is of the form 

[ &‘(_p,,? @?%,,)] > (4.2) 

where p -f,, and F,, -p are approximately of the order n -l/* Note that the upper and lower bounds of . 
this interval correspond to order statistics of X. More precisely, write y = y1 + y2 and let 

_P~ =p -Z Yl n-1/2c? nt 2, = p + Zvzn - ‘I26 ?I’ (4.3) 

Observe that here we did not require y1 = y2 = +y as in (4.1), since such a requirement does not 
necessarily yield an interval of minimal length. However, the asymptotic length of the interval (4.2) is 
shortest for yi = y2 = iy, since by the uniform version of (3.3) and Lemma 3.3, 

n’/‘[&‘(?,) -fiil(pn)] --f (Zy, +Z,&(F-‘(p))/f(F-l(p)) a.s. - 

If one chooses y1 = y2 = iy in (4.3) then the asymptotic length is the same as that of (4.11, namely 

2Z,,,a(F-‘(p))/f(F-l(p)). 
Confidence intervals of the form (4.1) and (4.2) have been studied for randomly censored data 

independently by Gijbels and Veraverbeke (1988) and Wang and Hettmansperger (1990). 

Remark 4.2. Several choices of consistent estimators for a*(F-l(p)> are available. Let 

I/np= C [nC,“(Xj)]-‘. 
X,&‘(p) 

Two choices of 6,’ are given below: 

6,: = (1 -p)*V,,, &,‘*= [I -Qn-1(P)]2vnp. 

Using Theorem 1 and standard empirical arguments, it can be shown that both estimators are consistent. 
We now address the possibility of constructing confidence bands for F-‘(p), p,, <p <pl. For this, let 

(d,), be a sequence of nonnegative real numbers to be specified later, with limit d, 2 0. Put, for 

PO fP GPl, 

Z,(p) = [fi;‘(p- (1 -p)d,n-l’*), FnP1(p + (1 -p)d,n-1/2)], 

where for the sake of definiteness fn-l(u> is the least upper respectively largest lower bound for the 
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support of Fn if u > 1 respectively u < 0. Utilize representation (2.3) and a continuity argument to show 
that 

p(F-‘(p) EJLP) for P~G<PGP~)~P ( sup I&(0, WP))l e) 
PUGPQPI 

-[ID sup I W(d(F-‘( p))) I Gdoa-‘/2 as n + m. 
PodP QP, 

Here the function d(t) is defined by 

d(c) = L’G-‘(u)[l -F(u)] -*F(du) 

and W denotes a standard Wiener process. Clearly, the above probability equals 

P sup I W(s) I <doa-1’2 
d(F-‘(P”))~scd(F-‘(P,)) 

Note that 

(4.4) 

,F*(dz) 
ad(t) = /, qdz) =e(c> 

so that (4.4) reduces to 

P 
( 

sup I W(s) I <d, . 
e(F-‘(P”))~s~.e(F-‘(P,)) 

1 

Chung (1987) provided a computer package which computes the probabilities 

Ij SUP IW(s)I do). 
s,,<s<s, 

(4.5) 

If we choose do such that for si = e(F-‘(pi)), i = 0, 1, the last probability equals y, this would lead to a 
confidence band with (asymptotic) coverage level y. Since in practice so and s, are unknown they need 
to be replaced by 

s, = p,-‘(p,)Fn*(d4 
rn / 0 

c,“(z) 7 i=o, 1. 

Finally, choose d, such that given son and sin, 

P sup 
SOn<SCS,, 

IW(s)I G d,) =Y. 

Remark 4.3. For the random censorship model confidence bands for F-’ which are similar in spirit were 
proposed by Aly et al. (1985). 
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