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Abstract 

Linnik distribution with the characteristic function 

~o,(tl = 1/(1 + Itl=), 0 < ~ < 2, 

is shown to possess the following property. 
Let X , , X p  be random variables possessing the Linnik distribution with parameters ~ and 

(0 < ~ < fl ~< 2). Denote by Y~ an independent of X~ non-negative random variable with the density 

,q(s;~,fl) = sin 1 + s 2~ + 2s cos~  

Then 

X, -'- X e Y~p, 

fl respectively 

where - denotes the equality in the sense of distributions. 
Infinite divisibility of mixtures of Linnik distributions with respect to the parameter ~ and scale is obtained as 

a corollary. 
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1. Introduction and statement of  the theorem 

Recently,  the Linnik  d i s t r ibu t ion  - or ig inal ly  in t roduced  by Ju.V. Linnik  in 1953 (Linnik,  1963) - has  
a t t r ac ted  a t t en t ion  of  a n u m b e r  of  researchers  (see e.g. Arnold ,  1973; Devroye ,  1986, 1990; Anderson ,  1992; 
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Anderson et al., 1993; Devroye, 1993). Although the characteristic function of this distribution is of a simple 
form, a general expression of the distribution is not easily attainable. 1 In this connection, any properties of 
the distribution such as a mixture representation which facilitates generation of Linnik random variables 
ought to be of interest. One such property is proved in the present note. 

Recall that the generic definition of a Linnik random variable is given in terms of the characteristic function 

~p~(t)=l /( l+l t l~) ,  0 < ~ < 2 .  

We shall denote the corresponding density by p,(x). This density can be viewed as a generalization of the 
well-known Laplace (double exponential) density p2(x) = c-Ixl/2 for the case c~ = 2 (see, e.g. Johnson and 
Kotz, 1970). The main result of the paper is the following theorem. 

Theorem. For any 0 < ~ < fl <~ 2, the following equality is valid 

~p~(t) = r~  ~ ~p~(t/s)g(s;~,fl)ds, - 0o < t <  oc,, 
~ u  

where 

9 ( s ; ~ , f l ) = ( ~ s i n ~ t ~ )  s~-I  . 
l + s z~ + 2s ~cos 

(1) 

Noting that the equality (1) is equivalent to the following 

p,(x)=ffp~(sx)g(s;~,B)ds, - ~  < x < ~ ,  

and taking into account that g(s; ~, fl) is a genuine density function, we arrive at the representation of the form 

X~ - X~ Yap, 

as stipulated in the abstract. This representation allows us to generate Linnik variables of different 
parameters starting from convenient base, e.g. from the Laplace distribution corresponding to fl = 2. That is, 
our theorem yields immediately the following corollary. 

Corollary 1. For any ~ ~ (0, 2), Linnik distribution with characteristic function q~,(t) is a scale mixture of  
Laplace distributions with characteristic functions ~02(t/s) = s2/(s 2 + t2), 0 < s < ~ .  

By Steutel's theorem (Steutel, 1970), any scale mixture of Laplace distributions is infinitely divisible. 
Therefore, Corollary 1 yields infinite divisibility of Linnik distributions. This fact is not new and was proved 
in Devroye (1990). However, noting that any mixture of scale mixtures of Laplace distributions is again 
a scale mixture of Laplace distributions, we obtain a stronger result: any mixture of Linnik distributions is 
infinitely divisible. More precisely, the following result is valid. 

Corollary 2. Let  P be a probability measure on the half-strip S = {(~,s): 0 < ~ ~< 2, 0 ~< s < ~} .  Then the 
distribution with the characteristic function 

~o(t) = f s  (o~(st)P(d~ ds) 

is infinitely divisible. 

1 See Hayfavi, A., S. Kotz and I.V. Ostrovskii (1994), Analytic and asymptotic properties of Linnik's probability densities, C,R. Acad. 
Sci. Paris, S6rie I, 319, 985 990. 
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2. Proof of the theorem 

Note,  that  the equality (1) is equivalent to the following one: 

1 - ~ t  ° - 1  f ~ s  ~ 7~-~+tpO(s;~,[l)ds, 0 < ~ < f l ~ < 2 ,  t>~O. 

To  prove the latter, we denote  

__ /I; f :  S' . = f :  S/~+°- lds 
O /tO¢ I flsin-~ s-g--~+t ~9(s'ct'fl)ds (s p + t~)(1 + s 2° + 2s cos~-) 

It is sufficient to establish that 

rc 1 
I = - -  

f l s i n~  1 + t ° 

Transforming the integral I by means of the change of variables z = t p s -~, we have 

z(°/tJ)-'dz 
I = ~  (1 + z)(z 2°/p + t E° + 2z°/#t°cos~) 

Utilizing the identity 

we have 

1 { f ~  z( ' / ' )-  t dz I 
2 i f l s in~  (1 + z)(z °/~ + t°e -i~/~) 

Consider  the function 

1 
q(z) = 

(1 + z)(z °/~ + t°ei~/P) ' 

(2) 

I] } - (1 + z)(T °/# + t°e i'°/e) ' (3) 

(4) 

in the complex z-plane cut along the positive ray. Define the branch of z °/~ in (4) by the condit ions 

z ~/~ = r "/p e i~/l~, z = re i~°, 0 < (p < 2re. 

Since 

when 0 < ~o < 2re, we have 

zo/; + t • em/B = ei~/~(rO/~ + t, eiO/p(~- o)) 4= O. 

Therefore the function q(z) is analytic in the cut out  plane. Denote  by GR,~ the simply connected region 

GR,,: = {z: ~ < Izl < R}\{z: s < z < R}, 0 < e < R (  > 1) 

and denote  by t?Gg.~ its boundary  traversed in the direction which leaves GR., from the left (the line interval 
{z: e < z < R } is being traversed twice in the opposite directions). By the Cauchy Residue Theorem, we have 

~,~ 2~i 
a~,q(z)dz = 2~i(Residue of q(z) at z = - 1) - 1 +  t °" 
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Taking the limit of the last integral as R ~ oo, e, ~ 0, we arrive at 

fo  f ;  ~'~/~'-ldz 2rri v(,/p)- 1 dr  ~] _ 
(1 + z)(z "/¢ + t'e ~'/~) - e2ni[(~///) (1 + "c)(z'~/Pe 2ni~//~ -+- t'e i~'/~) 1 + t ~" 

It is evident that this equality can be rewritten in the form 

f ;  r~ ' /~)- ldr  _ f ;  r l ' / ' ) -  1 d~ _ 2~zi 
(1 + z)(v "/a + t'e i~'/e) (1 + z)(z "/p + t 'e  - i~ /~)  1 + t "  

Thus, the difference of the integrals appearing in the braces of (3) has been calculated to be equal to 
2hi/(1 + t'). Substituting this value into (3), we arrive at (2). The theorem is thus proved. 
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