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Abstract 

Mean field annealing (MFA) algorithm, proposed for solving combinatorial optimization 
problems, combines the characteristics of neural networks and simulated annealing. Previ- 
ous works on MFA resulted with successful mapping of the algorithm to some classic 
optimization problems such as traveling salesperson problem, scheduling problem, knapsack 
problem and graph partitioning problem. In this paper, MFA is formulated for the circuit 
partitioning problem using the so called net-cut model. Hence, the deficiencies of using the 
graph representation for electrical circuits are avoided. An efficient implementation scheme, 
which decreases the complexity of the proposed algorithm by asymptotical factors is also 
developed. Comparative performance analysis of the proposed algorithm with two well- 
known heuristics, simulated annealing and Kernighan-Lin, indicates that MFA is a success- 
ful alternative heuristic for the circuit partitioning problem. 

Keywords: Mean field annealing; Circuit partitioning; Net-cut model 

1. Introduction 

Partitioning of an electrical circuit, defined by its components and signal nets, is 
an extensively studied problem arising in various applications. Partitioning means 
to divide the components of a circuit into two or more evenly weighted partitions 
in such a way that the cost of the connections among the partitions is minimized. 
The cost of the connections can be measured by the set of nets that connect cells 
in different partitions, called the cut-set. The aim is to minimize the size of the 
cut-set while keeping the size of the partitions balanced. This problem, called the 
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circuit partitioning problem, arises while dividing a circuit into parts that will be 
implemented separately. Also, divide-and-conquer algorithms, used in some VLSI 
layout problems as placement and floor-planning, necessitate dividing the circuits 
hierarchically into parts with different minimization criteria. Since the circuit 
partitioning is extensively used in these algorithms [lo], the problem becomes more 
important. 

A heuristic for circuit partitioning is given in the seminal paper by Kernighan 
and Lin [7]. In this work, the circuits are represented as graphs and the problem is 
treated as graph partitioning problem. Later Schweikert and Kernighan [13] showed 
the deficiencies of using the graph model for representing electrical circuits, and 
proposed a new model called the net-cut model. In the net-cut model circuits are 
represented by hypergraphs instead of graphs. The net-cut model represents the 
actual interconnection cost of distributing a circuit to different parts, whereas the 
graph model gives an approximation to the interconnection cost. This approxima- 
tion gets worse as the sizes of the nets increase [13]. Hence, treating circuit 
partitioning problem as graph partitioning problem can decrease the performance 
of the algorithm used for partitioning. Modification of the Kernighan-Lin algo- 
rithm from the graph model to the net-cut model is extensively studied [3,13]. 

Since the circuit partitioning problem is NP-hard [lo], finding efficient heuris- 
tics is an important research issue. In recent years, new neurocomputing ap- 
proaches as maximum neural network and mean field annealing are successfully 
applied to several NP-hard problems such as bipartite subgraph problem [9,14], 
module orientation problem [14], traveling salesperson problem [12,15], scheduling 
problem [4], knapsack problem [ll], mapping problem [l], and graph partitioning 
problem [5,12,16]. In this work, mean field annealing (MFA) is formulated for 
solving circuit partitioning problem using the net-cut model. Yih and Mazumder 
used the net-cut model when they applied Hopjield neural network model to the 
circuit partitioning problem [17]. MFA combines the collective computation prop- 
erty of Hopfield neural network model [6] with the annealing notion of simulated 
annealing [S] in order to form a better algorithm [El. In MFA, discrete variables 
called spins (or neurons> are used for encoding the combinatorial optimization 
problems. An energy function written in terms of spins is used for representing the 
cost function of the problem. Then, using the expected values of these discrete 
variables, a gradient descent type relaxation scheme is used to find a configuration 
of the spins which minimizes the associated energy function. MFA is also a general 
strategy as simulated annealing, and can be applied to different problems with 
suitable formulations. We show that formulating the MFA algorithm for the 
net-cut model is not trivial but achievable, and the resulting algorithm is efficient 
both in solution quality and execution time. 

The organization of the paper is as follows. Section 2 presents a formal 
definition of the circuit partitioning problem. The graph and the net-cut model 
representations of circuits and the deficiencies of the graph model are also 
discussed in Section 2. Section 3 presents the proposed formulation of the MFA 
algorithm for the circuit partitioning problem using the net-cut model. An efficient 
implementation scheme is also described in this section. Section 4 presents the 
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experimental performance evaluation of the proposed MFA algorithm for the 
circuit partitioning problem in comparison with two well-known heuristics: simu- 
lated annealing and Kernighan-Lin. 

2. Circuit partitioning problem 

An instance of the circuit partitioning problem consists of a circuit that is to be 
partitioned and an integer K representing the number of partitions. A circuit can 
be represented by a set of components called cells, and a list of nets which defines 
the connection relationships among the cells. Cells may represent different electri- 
cal components as transistors, standard cells or logic gates. Nets represent the 
connections among the cells that can be realized using different types of conduc- 
tors depending on the application (e.g. wires, metal layers). Cells incident to a net 
are called the terminals of that net. Both cells and nets of a circuit have an 
attribute called the weight of a cell or a net. Weights of the cells may represent 
their areas if the partitioning is used for placement. Nets can be weighted due to 
their effect on the total delay of the circuit. An example circuit with 10 cells and 5 
nets is given below. 

cells (weights): 
cl (4), c2 (I), c3 (4), cd (3), cs (4), c6 (2), c7 c3), c8 c2)? ‘9 cl), ‘10 c2) 

nets (weights): 
n,: c,-$-c,(2) 122: c,-c,-c,j-c,(3) n3: c2-c5-c7-c10(1) 

n4: c3 - cs (2) n.j: cl - cs - c4 - c,j - c9 (1) 

A circuit 0 can be formally represented by a set of cells C, a set of nets N, a cell 
weight function w,,//: C + JV, and a net weight function w,,,~: N +J, where JV 
represents the set of natural numbers. Each element in the set N is a subset of set 
C, i.e. N c 2’. 

Given a circuit as defined above, the problem is to divide the cells of the circuit 
into K(K 2 2) evenly weighted partitions while minimizing the cost of the external 
connections (i.e. cut-set size) among partitions. The difference between the net-cut 
and graph models is in the computation of the cost of external connections. 

In the graph representation of a circuit, each cell of the circuit is represented by 
a vertex and each net of the circuit is represented by a clique of vertices 
corresponding to its terminals. Cell weight function becomes the vertex weight 
function of the graph. Weights of the edges are equal to the weights of the nets 
that they represent. The graph representation of the circuits can be restricted to 
simple graphs. All edges between two vertices are represented by a single edge of 
which weight is the summation of the weights of the edges it represents. This 
simplification has no effect as far as the partitioning is concerned. If an edge 
between two vertices is in the cut set of a partitioning then all other edges between 
these two vertices are also in the cut set and vice versa. Therefore, a single edge 
with a weight equal to the summation of the weights of these edges can represent 
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Fig. 1. (a) Graph and (b) hypergraph representations of the example circuit. Weights of the edges in the 
graph representation are shown in parenthesis. 

their contribution to the cost. Fig. l(a) illustrates the graph representation of the 
example circuit. Formally, a circuit 0(C, N) is represented by a graph GW, El, 
where I/= C, and wuertex = w,,,,. The edge set E is formed using the net set N as, 
uu E E if and only if there exists an IZ E N such that u E n and u E n. The weight 
function wedge is computed as W_&UU) = C,,, E n,n E Nw,,I(~) for all uu E E. In the 
graph model, the connection cost is computed by simply adding the weights of the 
edges that have their vertices in different partitions. 

In the net-cut model, electrical circuits are represented with hypergraphs. A 
hypergraph consists of a set of vertices I/ and a set of hyperedges E G 2v. 
Hyperedges can be incident to more than two vertices. Note that, hypergraphs can 
represent the circuits exactly by representing cells by vertices and nets by hyper- 
edges. Cell and net weight functions of the circuit become the vertex and 
hyperedge weight functions of the hypergraph. Hence, a circuit 0(C, N) can be 
considered as a hypergraph where C is the set of vertices and N is the set of 
hyperedges. Fig. l(b) illustrates the hypergraph representation of the example 
circuit. 

In the net-cut model, the connection cost for K-way partitioning may be 
computed as follows. If the vertices incident to an hyperedge are in 1 different 
partitions, then that hyperedge contributes (I - l)w, to the connection cost, where 
w, is the weight of the hyperedge. There are also some other alternatives for 
computing the connection cost. One of them is adding we to the connection cost if 
and only if 12 2. Another one is adding (10 - 1)/2)w,. Note that, all choices are 
equivalent for bipartitioning. 

The problem with the graph model is that it treats a net with s terminals as 
S(S - 1)/2 two terminal nets. This strategy exaggerates the importance of the nets 
that have more than two terminals and the exaggeration grows with the square of 
the size of the net [13], where the size of a net denotes the number of terminals of 
a net. For example, the actual cost of a unit weight net of size 4 in the cut-set of a 
bipartitioning is 1 since such a net will cause a single connection between the two 
partitions. In the graph model, the same situation contributes a cost of 3 or 4 
according to the distribution of the terminal cells of the net between the two 
partitions. This cost contribution in the graph model is far from the actual cost. In 
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general, the actual cost contribution of a unit weight net across a cut of a 
bipartitioning is 1, but the cost contribution of a clique, which is evenly split across 
a cut, rises quadratically with the size of the clique [lo]. This quadratic growth does 
not adequately reflect the costs arising in practice. In fact, heuristics using the 
graph model for representing circuits will try to remove all nets with large sizes 
from the cut-set and try to put the smaller ones. This situation can cause 
performance degradation if the actual cut size is minimized when the nets with 
large sizes are in the cut-set. Experimentation shows that this occurs in most of the 
cases [13]. For example, using the net-cut model instead of the graph model 
increases the performance of the Kernighan-Lin heuristic drastically, reducing the 
connection costs by 19 to 50% [13]. 

Fig. l(a) and (b) illustrate two bipartitionings of the example circuit. The 
bipartitioning, P, = (ci, cg, cq, cg, cg) and P2 = {c2, c5, c,, c8, clo} with sizes I P, I 
= 14 and I P, I = 12, illustrated in Figure l(a) is the global minimum of the graph 
model if the sizes of the two partitions are restricted to be between 12 and 14. The 
bipartitioning, P, = {cl, cd, c5, c6, CJ and P2 = (cz, c3, c,, c8, clJ with sizes I P, I 
= 14 and 1 P, 1 = 12, illustrated in Fig. l(b) is the global minimum of the net-cut 
model with the same restrictions on the partition sizes. Here, size of a partition 
denotes the summation of the weights of the cells assigned to that partition. As 
explained earlier, actual connection cost is the cost of the cut computed using the 
net-cut model. Hence, to compute the actual cost of the cut in Fig. l(a) we 
transform it to the net-cut model and observe that the size of the cut is 4, whereas 
the size of the cut in Fig. l(b) is 2. Note that, the global minimum solution of the 
graph model cuts two nets (n, and n,) with smaller sizes (3 and 2, respectively) 
although their weights are high (2 for both of the nets). However, the global 
minimum solution of the net-cut model cuts two nets (its and nS) with larger sizes 
(4 and 5, respectively) but smaller weights (1 for both of the nets). Although both 
cuts give the global minimum according to the model used, min-cut bipartitioning 
using the graph model yields a suboptimal solution because of the incorrect 
representation of the problem. This demonstrates that even if one computes the 
global optimum using the graph model, the computed solution can be a suboptimal 
solution of the actual problem. It can be argued that some other representation 
scheme can be used to represent circuits with graphs which can give better 
approximations to the actual cost, but it can be shown that there is no good way of 
mapping a circuit instance into a graph [lo]. 

3. Applying MFA to the circuit partitioning problem 

Mean field annealing (MFA) merges collective computation and annealing 
properties of Hopfield neural networks [61 and simulated annealing [81, respec- 
tively, to obtain a general algorithm for solving combinatorial optimization prob- 
lems. MFA can be used for solving a combinatorial optimization problem by 
choosing a representation scheme in which the final states of the spins (neurons) 
can be decoded as a solution to the target problem. Then, an energy function is 
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constructed whose global minimum value corresponds to an optimum solution of 
the problem to be solved. MFA is expected to compute the optimum solution to 
the target problem, starting from a randomly chosen initial state, by minimizing 
this energy function. Steps of applying mean field annealing technique to a 
problem can be summarized as follows: 
(1) 

(2) 

(3) 

(4) 

(51 

Choose a representation scheme which encodes the configuration space of the 
target optimization problem using spins. In order to get a good performance, 
number of possible configurations in the problem domain and the spin domain 
must be equal, i.e., there must be a one-to-one mapping between the configu- 
rations of spins and the problem. 
Formulate the cost function of the problem in terms of spins, i.e., derive the 
energy function of the system. Global minimum of the energy function should 
correspond to the global minimum of the cost function. 
Derive the mean field theory equations using this energy function, i.e., derive 
equations for updating averages (expected values) of spins. 
Minimize the complexity of update operations in order to get an efficient 
algorithm. 
Select the energy function and the cooling schedule parameters. 

The proposed formulation and implementation of the MFA algorithm for the 
circuit partitioning problem following these steps are presented in the following 
sections. 

3.1. Encoding 

The MFA algorithm is derived by analogy to Zsing and Potts models which are 
used to estimate the state of a system of particles, called spins, in thermal 
equilibrium. In Ising model, spins can be in one of the two states represented by 0 
and 1, whereas in Potts model they can be in one of the K states. For the circuit 
partitioning problem, Ising model can be used for bipartitioning whereas Potts 
model is suitable for K-way partitioning. In this work, we use Potts model which is 
more general, but for the case K = 2, it is easy to convert the formulations derived 
for Potts model to Ising model. 

In the K state Potts model of S spins, the states of spins are represented using 
S K-dimensional vectors [12] 

Si=[si, ,..., sik ,..., siKlf forllilS. 

where ‘t’ denotes the vector transpose operation. The spin vector Si is allowed to 
be equal to one of the principal unit vectors e,, . . . ,ek,. . . , ex, and can not take 
any other value. Principal unit vector ek is defined to be a vector which has all its 
components equal to 0 except its kth component which is equal to 1. Spin Si is 
said to be in state k if it is equal to eL. Hence, a K state Potts spin Si is composed 
of K two state variables sil, . . . , sik,. . . , siK, where sik E (0, 11, with the following 
constraint 

K 

Csik= 1 for 1 <iIS. (1) 
k=l 
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In our encoding of the circuit partitioning problem, each spin vector corre- 
sponds to a cell in the circuit n(C, N). Hence, number of spin vectors is S = 1 C I. 
Dimension K of the spin vectors is equal to the number of partitions. If a spin is in 
state k we say that the corresponding cell is assigned to partition k. Hence, sik = 1 
means that cell i is assigned to partition k. For example, a 4 way partitioning of 
the circuit given in Section 2 can be represented by the following spin matrix 
s = [S,, . . . ) si,. . . ) S,,,]’ which consists of 10 spin vectors of dimension 4 repre- 
senting the 10 cells in the example circuit. 

K Partitions 

ICI Cells 

1 

2 

3 

4 

5 

6 

7 

8 

9 

JO 

i 2 3 4 
0 0 1 0 

0 1 0 0 

0 0 0 1 

1 0 0 0 

0 1 0 0 

0 0 1 0 

1 0 0 0 

0 0 0 1 

1 0 0 0 

0 1 0 0 

If this spin matrix is decoded as described above, the resulting partitioning is 

p, = (cq, c7, $1, p* = kz, c5, CKJ, P3 = (c,, CJ and P4 = {c,, CJ where 
P,, Pz, P3, P4 are the sets representing partitions. Sizes of the partitions are 
I P, I = 7, ) P, I = 7, I P3 I = 6 and I P4 I = 6. The size of partition k is defined to be 

IPkl =L,, w where wc denotes the weight of cell c. The interconnection cost c 
computed according to the net-cut model is 8. This encoding is similar to the 
encodings used for graph partitioning problem [2,5,12,16] and bipartite subgraph 
problem [9,14] in the previous works. Although we have proposed a hypergraph 
partitioning formulation using this encoding in an earlier work [2], its energy 
function formulation was an approximation to the net-cut model as is the case for 
graph partitioning formulation. In the next section, we propose an energy function 
formulation according to the net-cut model using the encoding described above. 

3.2. Energy function formulation 

In the MFA algorithm, the aim is to find the spin values minimizing the energy 
function of the system. In order to achieve this goal, the average (expected) value 
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Vi = (Si) of each spin vector Si is computed and iteratively updated until the 
system stabilizes at some fixed point. Hence, we define 

Vi=(&) forllil ICI 

[Vi~~...,~ik, ***>uiK]‘= [(Sil),...,(Sik),...,(SiK)lf for 1 <is ICI 

i.e. vik = ( sik), for 1 I i I I C 1 and 1 5 k I K. Note that, Sik E IO, 11, i.e. Sik can 
take only two values 0 and 1, whereas vik E [O,ll, i.e. C’ik can take any real value 
between 0 and 1. When the system is stabilized, Uik values are expected to 
converge to 0 or 1. As the system is a Potts glass we have the following constraint 
similar to Eq. (1) 

&,~~~=l, for llil ICI. (2) 
k=l 

This constraint guarantees that each Potts spin Si is in one of the K states at a 
time, and each cell is assigned to only one partition for our encoding of the circuit 
partitioning problem. 

In order to construct an energy function it is helpful to associate the following 
meaning to the values vik, 

vik=9{celliisinpartition k} forl<is ICI, 1sksK 

i.e. vik is the probability of finding spin i at state k. If vik = 1 then spin i is in state 
k and the corresponding configuration is Si = Vi. 

Now, we formulate the interconnection cost of the circuit partitioning problem 
for the circuit LI(C, N) as an energy term (E,) 

E,(V) = c w, 
IlEN i 

kc1 9 one or more cells of net n is in partition k) - 1 ( (3) 

= 

.gNwn( k$ - ’ 
1 9 no cell of net IZ is in partition k)) - 1 (4) 

1 - = { 9 cell i is not in partition k} (5) 
iEn 

where V = [VI,. . . ,V,, . . . , V,c,]’ is the spin average matrix consisting of I C I K-di- 
mensional spin vectors. Here, i E n and w, denote a terminal cell and the weight of 
net n respectively. In this formulation, cost of each net is computed one by one 
and added to the total interconnection cost. According to the net-cut model, as 
.discussed in the Section 2, cost contribution of a net n to the total interconnection 
cost is (I - l)w, if the net is distributed to 1 different partitions. Eq. (3) follows by 
the observation I = C,“= 1 9(one or more cells of net II is in partition k}. The (- 1) 
term in Eq. (3) is a constant term and can be eliminated. Another observation is 
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ace11 i is not in partition k} = (1 - oik) which follows from the probability 
interpretation of variable uik. Hence, IIiE Jl - uik) denotes the probability that no 
cell of net IZ is in partition k and (1 - Il, En (1 - ui,)) denotes the probability that 
at least one cell of net n is in partition k. Note that, minimization of E, 
corresponds to minimization of the actual interconnection cost of the circuit 
partitioning problem. 

Another term of the energy function is the term for penalizing imbalanced 
partitions. We formulate this term (E,) similar to the formulation of balance term 
proposed for the mapping problem [l]. 

EB(v) = Ii C C C “ikvjkWiWj (7) 
i=lj#ik=l 

where wi and wj denote the weights of cells i and j. This triple summation term 
computes the summation of the inner products of the weights of the cells assigned 
to individual partitions. Global minimum of this term occurs when equal amounts 
of cell weights are assigned to each partition. If there is an imbalance in the 
partitioning, EB term increases with the square of the amount of the imbalance, 
penalizing imbalanced partitionings. 

The total energy function E can be defined in terms of E, and E, as 

E(V) = E,(V) + r x EB(V) 

=nFNwn( k$l( l - FI<l - ui/c)) - ‘) + 3 :Z c, $ UikUjkWiWj (8) 
iEn l=lJ#zk-1 

where parameter r is introduced to maintain a balance between the two optimiza- 
tion objectives of the circuit partitioning problem. Hence, minimization of the 
energy function E corresponds to evenly distributing cells among K partitions 
while minimizing the interconnection cost among the partitions computed accord- 
ing to the net-cut model. 

3.3. Derivation of the mean field theory equations 

Mean field theory equations, needed to minimize the energy function E, can be 
derived as [12,16] 

aw) 
4ik = - avik (9) 

ICI 

= -nFN~njEz+i(l - ~jk) - rCUjkWiWj for 1 I i I I C I, 1 I k I K 
j#i 

(10) 

where Ni is defined to be the set of nets connected to cell i. The quantity & 
represents the kth element of the mean field vector effecting on spin i. Using the 
mean field values $ik, average spin values vik can be updated using the following 
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equation [12,16] 

&k/r 

vik= K forl5i5lCI, llk5K (II) 

I:emi”T 

where T is the temperature parameter which is used the relax the system 
iteratively. Eq. (11) enforces the summation of each row of the spin matrix to be 
unity, handling the constraint given in Eq. (2). Hence, it is guaranteed that all rows 
of the spin matrix will have only one spin with output value 1 when the system is 
stabilized. 

Mean field 4ik can be interpreted as the decrease in the energy function E(V) 
when spin i is assigned to state k. Note that in Eq. (lo), first summation term 
represents the increase in the total interconnection cost by assigning cell i to 
partition k. Second summation term represents the increase in the imbalance cost 
associated with partition k by assigning cell i to partition k. Hence, -& may be 
interpreted as the decrease in the overall solution quality by assigning cell i to 
partition k. Then, in Eq. (ll), vik is updated such that the probability of assigning 
cell i to partition k increases with increasing mean field &. 

After the mean field theory equations (Eq. (lo), Eq. (11)) are derived, mean 
field annealing algorithm can be summarized as follows. First an initial, high 
temperature spin average is assigned to each spin, and an initial temperature is 
chosen. In general uik is initialized to l/K plus a disturbance term (note that, 
lim T _,&ik = l/K). In each iteration the mean field vector effecting on a randomly 
selected spin is computed using Eq. (10). Then, spin average vector is updated 
using Eq. (11). This process is repeated for a random sequence of spins until the 
system is stabilized for the current temperature. The system is observed after each 
spin vector update in order to detect the convergence to an equilibrium state for a 
given temperature. If energy function E does not decrease in most of the 
successive spin vector updates, this means that the system is stabilized for that 
temperature. Then, T is decreased according to the cooling schedule, and iterative 
process is re-initiated. Note that, the computation of the energy difference AE 
necessitates the computation of E (Eq. (8)) at each iteration. In general, the 
computation of the total energy (Eq. (8)) is much more expensive than the 
computation of the mean field vector. Hence, the computation of E at each 
iteration drastically increases the complexity of a MFA iteration. For example, the 
complexity of computing the energy function E is O( I N I s,&+ I C I *K) for the 
proposed formulation (Eq. (8)). Here, s,,~ denotes the average number of cells of 
a net (i.e. average size of a net). We present an efficient scheme [l] which reduces 
the complexity of energy difference computation by asymptotical factors. 

The incremental energy change 6E,, due to the incremental change 6vi, in the 
value of vik is SE = SE,, = 4ik6vik from Eq. (9). Since E(V) is linear in vik (see 
Eq. (8)), this equation is valid for any amount of change AVtk in the value of vik, 
that is 

A E = A Eik = &kAvik (12) 
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1. Get the initial temperature To, and set T = To 

2. Initialize the spin averages V = [VII,. , vii;, , vlcl~] 

3. While temperature T is in the cooling range DO 

3.1 While E is decreasing DO 

3.1.1 Select a cell i at random. 

3.1.2 Compute mean field vect,or corresponding to the i-th spin 

9it = -Cn~N, z”, nj,,,j,i(l - Il~li) - ?Ci:\ tJ~ulli%W~ 
for 1 5 k I Ii 

3.1.3 Compute the summation CE, e$tI/T 

3.1.4 Compute new spin average Vector Vi aS Ui;“” = e4’k/T/ I:, e+xl/T for 1 5 k 5 Ii 

3.1.5 Compute the energy change AE = Cf=‘=, $J,~(v$~~) - u,k) 

3.1.6 Update the spin average vector Vi a~ ~,k = ~~~~~~ for 1 5 k 5 I< 

3.2 T = (I x T 

Fig. 2. The proposed MFA algorithm for the circuit partitioning problem. 

At each iteration of the MFA algorithm, K uik values in the same spin average 
vector are updated in a synchronous manner, and Eq. (12) is valid for all updates 
performed in a particular iteration. Thus, energy difference due to the spin vector 
update operation in a particular iteration can be computed as 

AE = 5 &Auik (13) 
k=l 

where Aui, = ui(knew) - ~i(ko’~). Th e complexity of computing Eq. (13) is only O(K) 
since mean field (+ik) values are already computed for the spin updates. 

The MFA algorithm derived from the proposed formulation of the circuit 
partitioning problem is shown in Fig. 2. The complexity analysis of one iteration of 
this algorithm (from step 3.1.1 to step 3.1.6 in Fig. 2) is as follows. The complexity 
of computing the first summation term in Eq. (10) is O(dGUg~& where davg 
denotes the average number of nets incident to a cell (i.e., average degree of a 
cell). The second summation in Eq. (10) is a O( I C I) operation. Thus, the 
complexity of a single mean field (&) computation is O(daugsaug + I C I). Hence, 
the complexity of computing a mean field vector corresponding to a selected spin 
(step 3.1.2) is O(daugsaug K + I C I K). Spin update computations (steps 3.1.3, 3.1.4 
and 3.1.6) and energy difference computation (step 3.1.5) are both O(K) opera- 
tions. Hence, the overall complexity of a single MFA iteration is O(d,,gs,,gK + 
ICI K). 
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3.4. An efficient implementation scheme 

As mentioned earlier, the MFA algorithm proposed for the circuit partitioning 
problem is an iterative process. The complexity of a single MFA iteration is mainly 
due to the mean field vector computation. In this section, we propose an efficient 
implementation scheme which reduces the complexity of the mean field computa- 
tions, and hence the complexity of the MFA iteration, by asymptotical factors. 

Assume that, cell i is selected at random for updating the spin average vector Vi 
in a particular iteration. The expression given for & (Eq. (10)) can be rewritten as 

C& = - c hlk - r+bik for 1 I k I K (14) 
?lEN, 

where 

A$=w, n (l-ujk) forl<k<K 
jGn,j#i 

(15) 

ICI 
+bik = ~vjkwiwj for 1 I k I K. (16) 

j#i 

For the sake of clarity of the representation, the overall mean field computations 
involved in a single iteration can be expressed using vector representation as 

@*= - En;-rly,. (17) 
?lEN, 

Here, AT and !Pi are column vectors with K elements, where 

~i=[~il,...,~ik,...,~iK]’ ~iYi[~i~,...,~i’ik,“‘,~iiKl’ 

Ay=[hl, ,..., A\lk ,..., ATKlf fornEA$. 

The complexity of computing the Pi vector can be reduced asymptotically [l] if 
the computation of qik in Eq. (16) is re-formulated as 

I(lik = CV~~W~W~ = wi 
1:: (;r: ) 

C ~jk~j - ~ik~i = Wi( Yk - ~ik~i) for 1 I k I K (18) 

where yk = C\.z\vjkwj. Here, yk represents the current size of partition k prior to 
the update of the spin average vector Vi. Computationally Yk represents the 
weighted sum of the individual vik values of the k-th column of the spin matrix. At 
the beginning of the MFA algorithm, the initial yk value for each column k 
(1 I k I K) can be computed using the initial spin values. Then yk values can be 
updated at the end of each iteration (i.e. after spin average vector Vi is updated) 
using 

ypeW) = ypld) - vi(kold)wi + vi(knew)wi = ypid) + wiAvik for 1 I k I K. (19) 
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This formulation proposed for the efficient computation of the hi vector, which is 
needed in Eq. (17), can be represented in vector notation as 

!Pi = Wi( r (old) _ WiVi(W) 
(20) 

r’ new) = rW) + w,AV 
I I (21) 

where r= [rl,. . . , yk,. . . , yK]* and AVi = [Aoil,. . . , Auik,. . . , AzJ~~]~. The computa- 
tion of initial yk values can be excluded from the complexity analysis since they are 
computed only once at the very beginning of the algorithm. In this scheme, the 
computation of an individual $ik using Eq. (18) is a 00) operation. Hence, the 
construction of the !Pi vector becomes a O(K) operation (Eq. (20)). The update of 
an individual yk value (using Eq. (19)) at the end of each iteration is a O(1) 
operation. Thus, the overall complexity of yk updates is O(K) since K weighted 
column sums should be updated (Eq. (21)). Hence, the proposed scheme reduces 
the complexity of computing the qi vector (needed in Eq. (17)) from @( 1 C 1 K) to 
O(K). 

The complexity of computing 
computation of an individual Ayk 

Ark=W, n (lmUjk) 
jEn,j#i 

A: vector can be reduced asymptotically if the 
value in Eq. (15) is reformulated as 

1 1 
= 

wnIl(l-Ujk)= 
(1 - Oi/J jEn 

tl_Uik)~; forllk<K (22) 

where rr; = wJlj E ,(l - ujk). Here, 7: represents the probability that no cell of 
net n is in partition k multiplied by the weight of the net n. At the beginning of 
the MFA algorithm, the initial l-l” = [ry,. . . , T,“, . . . , +I* vector for each net can 
be computed using the initial spin averages. Then, ri values can be updated at 
the end of each iteration (i.e. after the spin average vector Vi is updated) using 

n(new) _ (1 - d#Y)) 
=k - (’ _ r&&f)) 6@ld) for 1 I k I K and Vn E 4. (23) 

This formulation proposed for the efficient computation of an individual A: 
vector, which is needed in Eq. (17), can be represented in vector notation as 

A; = IJi X nn@ld) for Vn E Ni (24) 
l-ln(n@‘) = Ri x l-l@4 for Vn ENi. (25) 

Here, Ui=[~il,...,~ik,...,~iK]t and Ri= [T~~,...,T~~,...,T~~]' are column vectors 
with K elements where uik = l/(1 - u$‘~~‘) and rik = (1 - z&Jew))/(l - ~i(,o’~‘) for 
1 s k I K and the operation ‘X’ represents element-by-element multiplication of 
two column vectors. The computation of initial l-I” vectors can be excluded from 
the complexity analysis since they are computed only once at the very beginning of 
the algorithm. In this scheme, the computation of an individual A$ value for a 
particular net n using Eq. (22) is a O(1) operation. Hence, the construction of a A; 
vector becomes a O(K) operation (Eq. (24)). The update of an individual rt value 
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for a particular net 12 at the end of each iteration is a O(1) operation (Eq. (23)). 
Thus, the overall complexity of updating a particular l-In vector is a O(K) 
operation (Eq. (25)). Hence, the proposed scheme reduces the complexity of 
computing an individual A: vector (needed in Eq. (17)) from O&K) to O(K) 
where s, denotes the size of the net IZ. 

The first summation term in Eq. (17) requires the addition of di A: vectors 
where di denotes the degree of cell i. Furthermore, the proposed scheme necessi- 
tates the update of di ll” vectors since cell i is connected to di different nets. 
Thus, the proposed scheme reduces the complexity of computing the first summa- 
tion term in Eq. (17) from O(KC,,,,ls,) = O(Kdis&J to O(KdJ Here, s& = 
(C,,,s,)/d, denotes the average size of the nets connected to cell i. The final 
addition of vectors Ai = - C, E N, A: and (-r) X Wi is a O(K) operation. Hence, 
the proposed scheme reduces the overall complexity of mean field vector computa- 
tion in a single MFA iteration from O(d,,gs,,gK+ 1 C I K) to O(d,,,K). Recall 
that spin update computations and energy difference computation involved in a 
MFA iteration are O(K) operations. Hence, the proposed implementation scheme 
reduces the overall complexity of an individual MFA iteration to O(d,,,K). 

4. Performance of the MFA algorithm 

This section presents the performance evaluation of the proposed Mean Field 
Annealing (MFA) algorithm for the circuit partitioning problem. To evaluate the 
performance of the proposed algorithm two well-known circuit partitioning heuris- 
tics are used: simulated annealing (SA) and Kernighan-Lin (KL). Each algorithm is 
tested using randomly generated circuit partitioning problem instances. Hyper- 
graphs representing circuits are generated using two different schemes, resulting 
with two families of hypergraphs referred here as random hypergraphs and 
geometric hypergraphs. 

Random hypergraphs are generated using the following parameters: number of 
cells ( I C I ), number of nets ( I N I>, maximum cell weight <W,>, maximum net 
weight <W,>, and maximum net size (s,,, ). Each net is generated by randomly 
selecting a net size between 2 and s,,,. Then, that many cells are selected 
randomly from the cell set to form the net. If a new generated net contains exactly 
same cells as another net generated earlier, then it is discarded and another net is 
generated instead of it. Each cell or net is weighted randomly by choosing a 
number between 1 and W, or 1 and W,, respectively. 

Geometric hypergraphs are generated using an algorithm similar to the one 
used for generating geometric graphs. Geometric hypergraphs may represent 
electrical circuits better than random hypergraphs as they present clustering and 
local connectivity properties. Parameters used for generating geometric hyper- 
graphs are number of cells ( I C I), number of nets ( 1 N I ), maximum cell weight 
(W,), maximum net weight (W,), and average net size (s,,~). A geometric hyper- 
graph is generated using these parameters by randomly distributing I C I cells and 
I N I nets in a unit square. Then, the nets are formed using the following rule: a cell 
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Fig. 3. An example geometric hypergraph. 

is incident to a net if it is contained in the bounding box of that net. Bounding box 
of a net is a square with the net in its center. Sizes of the bounding boxes are fixed 
and computed using the input parameters s,~ andlClasb=,/m,whereb 

denotes the length of the sides of the bounding box. Nets of which bounding boxes 
contain less than 2 cells are discarded. Also, as in the generation of random 
hypergraphs, if two or more nets have the same subset of cells, only one of them is 
accepted and all others are discarded. New nets are generated instead of the 
discarded ones. Note that, the average size of the nets in the resulting hypergraph 
may be slightly different than the input parameter s,,~ as the nets near the 
borders of the unit square will have smaller sizes than expected, but also nets 
having less than 2 terminals are discarded which may compensate this effect. Each 
cell or net is weighted randomly by choosing a number between 1 and WC or 1 and 
W,, respectively. Fig. 3 illustrates a geometric hypergraph with 10 cells and 5 nets 
which corresponds to the example circuit given in Section 2. 

4.1. MFA implementation 

The MFA algorithm proposed for the circuit partitioning problem is imple- 
mented efficiently as described in Section 3. At the very beginning of the algorithm 
spin averages are initialized to l/K plus a random disturbance term, so that the 
initial spin averages are uniformly distributed in the range 

0 9 x !_ I ,#flitW 
K lk 

51.1,; forlsil ICI, lsk<K. 

The initial temperature T, and the parameter r used in the mean field computa- 
tions (Eq. (10)) are estimated using these initial random spin average values. 
Recall that, the parameter r is introduced in the energy function formulation (Eq. 
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(8)) in order to determine a balance between the two optimization objectives of the 
circuit partitioning problem. Hence, in the mean field computations (Eq. (lo)), the 
parameter r determines a balance between the terms 

ICI 
&=- CW n~‘N njJ?Ii(’ - ‘3) and &$ = - ~vjkwiwj 

j#i 

where & = 4i”, + r X c#J~",. We compute the averages (+i”, > = CC\~\C~==,4i”,>/ 
( 1 C I K) and (4:) = <C\“\C,“=,&)/( I C I K) of these two terms using the initial 
vik values and compute r as r = 8(4$)/(4$>. Our experiments show that 
computing r using this method is sufficient for obtaining balanced partitions. 

Selection of T, is crucial for obtaining good quality solutions. In previous 
applications of MFA [12,16], it is experimentally observed that spin averages tend 
to converge at a critical temperature. It is suitable to choose T, close to this 
critical temperature. Although there are some methods proposed for the estima- 
tion of critical temperature [12,16] we prefer an experimental way for computing 
T,, which is easy to implement and successful as the results of the experiments 
indicate. After the parameter r is fixed, average mean field (&) = <C\~\C,“=, 
bik)/( I C I K) is computed using initial Uik values. Then, T, is computed as 
T, = c(&)/K. Our experiments indicate that it is suitable to choose the parame- 
ter c as 100 for geometric hypergraphs, and as 60 for random hypergraphs. Note 
that, To is inversely proportional to the number of partitions (K) which is also 
observed for the critical temperature formulations presented in the other imple- 
mentations of MFA [12,16]. 

After the spin averages (uik values) and the parameters T, and r are initialized, 
the cooling schedule of the algorithm proceeds as follows. At each temperature a 
random sequence is generated for the spins that are not converged yet. Then, 
averages of these spins are updated iteratively according to this random sequence. 
The number of iterations with energy decrease (--Al?) less than E is counted in 
each random sequence, where E is chosen as 0.1 and 0.001 for random and 
geometric hypergraphs, respectively. If this count is more than 90% of the number 
of unconverged spins, temperature is decreased according to T = a x T where (Y is 
the parameter for adjusting the rate of the cooling. Average spin values are tested 
for convergence at the end of each random sequence. If one of the vik terms of the 
spin average vector Vi is greater than 0.999, it is assumed that spin i is converged 
to state k and its average is not updated in the future iterations. Cooling process is 
realized in two phases; slow cooling followed by fast cooling. In the slow cooling 
phase, temperature is decreased using (Y = 0.95 until T is less than T&5. Then, 
in the fast cooling phase, LY is set to 0.7 and cooling is continued until T is less 
than T&5.0. At the end of this cooling process, maximum element in each spin 
average vector is set to 1 and all other spin average values are set to 0. Then, the 
result is decoded as described in Section 3.1, and the resulting partitioning is 
found. Note that, all parameters used in this implementation are either constants 
or found automatically except the parameters c and E. The parameters c and E are 
also constants for each family of hypergraphs but differ for random and geometric 
hypergraphs. 
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Iteration 

Iteration 

(b) 
Fig. 4. Evolution of interconnection and total energy terms with iterations for partitioning two random 
hypergraphs ((a) 1 C ( = 200, 1 N I = 200, (b) 1 C ( = 400, I N I = 400) into K = 8 partitions. 

Fig. 4 illustrates the evolution of intercormection and total energy terms (E, 
and E, respectively) with MFA iterations for partitioning two random hypergraphs 
((a> I C I = 200, I N I = 200, (b) I C I = 400, I N ( = 400) into K = 8 partitions. Fig. 4 
is constructed by computing the EC (Eq. (6)) and E (Eq. (8)) terms at each 10 
MFA iterations for the given two circuit partitioning problem instances. The 
displayed energy values are normalized with respect to the initial energy values. 
The vertical solid lines in each curve denote the temperature changes according to 
the cooling schedule. As is seen in Fig. 4, interconnection energy (E,) monotoni- 
cally decreases as the iterations proceed. The oscillatory decrease of the total 
energy term (E) is due to the balance term (E, given in Eq. (7)) oscillations 
superimposed on the monotonically decreasing EC term. As is seen in Fig. 4, the 
major decrease in the energy terms occur during a single temperature which 
corresponds to the critical temperature mentioned earlier. Note that, the number 
of iterations performed during the critical temperature is substantially greater than 
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the numbers of iterations performed during other temperatures. The decrease in 
the energy terms during the last two temperatures demonstrate the merits of the 
fast cooling phase mentioned earlier. The horizontal dashed lines in the intercon- 
nection energy curves denote the normalized actual interconnection costs of the 
solutions decoded from the final spin matrices. Note that, interconnection energy 
terms (E,) converge to the final actual interconnection costs confirming the 
correctness of the proposed formulation (Eq. (6)). 

4.2. Simulated annealing implementation 

In simulated annealing, starting from a randomly chosen initial configuration, 
configuration space is searched for the best solution using a probabilistic hill 
climbing algorithm [8]. A configuration of the circuit partitioning problem is a 
partitioning of the circuit to K partitions. In order to search the configuration 
space, neighborhood of a configuration must be defined. For the implementation 
in this work, neighborhood of a configuration consists of all configurations which 
result from moving one cell of the circuit from the partition with maximum size to 
any other partition. At each iteration of the simulated annealing algorithm, one of 
the possible moves is chosen randomly as a candidate move. Then, the resulting 
decrease in the total interconnection cost caused by the candidate move is 
calculated without changing the configuration. If the candidate move decreases the 
interconnection cost, it is realized. If it increases the interconnection cost, then it is 
realized with a probability which decreases with the amount of increase in the total 
interconnection cost. Acceptance probabilities of the moves that increase the cost 
are controlled with a temperature parameter T which is decreased using an 
annealing schedule. Hence, as the annealing proceeds acceptance probabilities of 
uphill moves decrease. An automatic cooling schedule is used in the implementa- 
tion of the SA algorithm [12]. Note that, the SA algorithm implemented in this 
work implicitly achieves the balance among the sizes of the partitions by selecting 
the neighbor configurations as defined above. This increases computationally 
efficiency of the algorithm but decreases its flexibility since the amount of 
imbalance among the partitions can not be controlled. 

4.3, Kernighan-Lin implementation 

Kernighan-Lin (KL) heuristic is implemented efficiently as described by Fiduc- 
cia and Mattheyses [3]. In order to apply the KL heuristic to K-way partitioning a 
two phase approach is used which consists of recursive bisection and pairwise 
min-cut phases. In recursive bisection phase, the circuit is recursively partitioned 
into two partitions until K partitions are obtained. Then, in the pairwise min-cut 
phase, total interconnection cost is iteratively minimized by executing KL heuristic 
between each pair of partitions until no improvement can be achieved. In the KL 
heuristic, balance among partitions is maintained implicitly by the algorithm. Cell 
moves causing intolerable imbalances are not considered. In the implementation 
used in this work a move which increases or decreases the size of a partition more 
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Interconnection cost averages (and standard deviations) normalized with respect to the MFA heuristic 

and percent imbalance ratio averages (and standard deviations) of the solutions found by the MFA, KL, 

and SA heuristics for random hypergraphs 

than 10% of the size of a perfectly balanced partition is considered as causing 
intolerable imbalance. 

4.4. Experimental results 

In this section, performance of the proposed MFA algorithm is experimentally 
evaluated in comparison with the Kernighan-Lin (KL) and the simulated annealing 
@A) algorithms. These heuristics are experimented with a large number of 
randomly generated circuit partitioning problem instances. 

Six different types of random hypergraphs and six different types of geometric 
hypergraphs are generated with I C I = 200, I C I = 400 and I N / = 1 C I /2, j N I = 
I C I and I N I = 2 I C I. For each type of hypergraph 10 different random instances 
are generated. That is, a total of 120 different hypergraph instances are generated 
randomly. In each hypergraph instance, maximum cell weight <I+‘,> and maximum 
net weight (I+(,> are both selected as 4. The maximum net size (s,,,) in random 
hypergraph instances and the average net size (s,,~) in geometric hypergraph 
instances are selected as 16 and 8, respectively. A total of 3 X 120 = 360 circuit 
partitioning problem instances are constructed by using these hypergraph instances 
and selecting the number of partitions as K = 4, K = 8, and K = 16. 

Tables l-3 and Fig. 5 ihustrate the performance results of the MFA, KL and 
SA heuristics for the circuit partitioning problem instances constructed using 
random and geometric hypergraphs. In Tables 1-3, 1 C I (number of cells) and I N I 
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Table 2 
Interconnection cost averages (and standard deviations) normalized with respect to the MFA heuristic 
and percent imbalance ratio averages (and standard deviations) of the solutions found by the MFA, KL, 
and SA heuristics for geometric hypergranhs 

1 Problem Size 11 Average Interconnection Cost 11 Average Percent Imbalance Ratio 1 

t 400 1 400 4 1.00 iO.15: 0.77 iO.11; 1 0.88 iO.14\ 11 5.4 

, - 1 

1 IC) 1 IN( ) Ii 11 MFA 1 KL SA )I MFA- 1 KL I SA 

Table 3 
Execution time averages (in seconds) of the MFA, KL, and SA heuristics for random and geometric 
hypergraphs 

I Average Execution Time II 
Problem Size 11 Random Hvoernranhs II Geometric Hvuereranhs H -.__ ,, “> “-L-m 

KL 1 SA 11 MFA KT. I SA 

200 1 100 ] 8 )I 1.65 1 3.24 I 14.16 11 5.44 1 2.44 1 13.93 1 
3nn I 3nn I A II 7 7n I 



r- 

Fig. 5. Interconnection cost (normalized with respect to the MFA heuristic) and execution time (in 
seconds) averages of the MFA, KL and SA heuristics for (a) random and (b) geometric hypergraphs for 
different number of partitions. 

(number of nets) determine the type of the 10 distinct hypergraph instances 
experimented for collecting the data in each row. Each algorithm is executed 10 
times for each problem instance starting from different, randomly chosen initial 
configurations. Each entry in Tables l-3 illustrates the overall average (and 
standard deviation) of the results of 10 x 10 = 100 executions of a particular 
algorithm for partitioning 10 different hypergraph instances of the same type into 
K partitions. 

Tables 1 and 2 illustrate the quality of the solutions obtained by the MFA, KL 
and SA heuristics for random and geometric hypergraphs, respectively. Total 
interconnection cost averages (and standard deviations) of the solutions are 
normalized with respect to the results of the MFA heuristic. Percent imbalance 
ratio averages (and standard deviations) of the solutions displayed in these tables 
are computed using 100 X ( I P I max - I P I ,,,I/(2 I P I oug) where I P I max, I P I min 
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and I P I aug = <C,“=, ] Pk ])/ZC denote the maximum, the minimum and the average 
partition sizes. Table 3 displays the execution time averages of the MFA, KL and 
SA heuristics on a SUN Spare Server 490, measured in seconds. Fig. 5 illustrates 
the change in the interconnection cost and execution time averages of the MFA, 
KL and SA heuristics with respect to the number of partitions for random and 
geometric hypergraphs. 

As is mentioned earlier, circuit partitioning has two different optimization 
objectives: interconnection cost and imbalance cost. Hence, the quality of a 
solution of a particular circuit partitioning problem instance has two components: 
interconnection quality and balance quality. For random hypergraphs, as is seen in 
Fig. 5(a) and Table 1, interconnection qualities of the solutions found by the MFA 
and the SA heuristics are comparable and both better than the interconnection 
qualities of the solutions found by the KL heuristic. For geometric hypergraphs, as 
is seen in Fig. 5(b) and Table 2, the KL and SA heuristics produce solutions with 
slightly better interconnection qualities compared with those of the MFA heuristic 
for K = 4. However, for K = 8 and K = 16 interconnection qualities of the solu- 
tions obtained by the MFA heuristic are better than those of the KL and SA 
heuristics. 

As is seen in Tables 1 and 2, the balance qualities of the solutions found by the 
MFA algorithm are comparable with those of the KL heuristic. Note that, the 
balance qualities of the solutions found by the SA heuristic are superior to those of 
the MFA and KL heuristics. This is due to the implementation of the SA heuristic 
(explained in Section 4.2) which compels balanced partitionings. 

As is seen in Fig. 5 and Table 3, the MFA and KL heuristics are significantly 
faster than the SA heuristic. For the case of random hypergraphs, the MFA 
heuristic is always faster than the KL heuristic. For geometric hypergraphs, 
execution time averages of the MFA and KL heuristics are comparable for K = 4 
and K = 16, whereas for K = 8 the KL heuristic is faster than the MFA heuristic. 
Note that, as the number of partitions increase, both the solution quality and the 
speed advantage of the MFA heuristic increases in comparison with those of the 
KL heuristic. The relative increase in the speed of the MFA heuristic is also 
observed in the literature [16] for the case of graph partitioning problem. 

5. Conclusion 

In this paper, a mean field annealing (MFA) algorithm is proposed for the 
circuit partitioning problem using the net-cut model. An efficient implementation 
scheme is also developed for the proposed algorithm. The proposed implementa- 
tion scheme decreases the complexity of a single MFA iteration by asymptotical 
factors. The performance of the proposed algorithm is experimentally evaluated in 
comparison with two well-known heuristics (simulated annealing (SA) and 
Kemighan-Lin (KL)) for a large number of randomly generated circuit partitioning 
problem instances. The qualities of the solutions obtained by the MFA heuristic 
are comparable with those of the SA heuristic. In general, the MFA heuristic 
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produces better solutions than the KL heuristic. The proposed MFA algorithm is 
significantly faster than the SA algorithm. In general, the MFA algorithm is also 
faster than the KL algorithm. It is also observed that, as the number of partitions 
increase, the solution quality and the speed advantage of the proposed MFA 
heuristic increases in comparison with those of the KL heuristic. 
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