
NEUROCOMPUTINC

ELSEVIER Neurocomputing 8 (1995) 171-194

Circuit partitioning using mean field annealing

Tevfik Bultan a, Cevdet Aykanat b**

a Department of Computer Science, University of Maryland, College Park, MD 20742, USA
’ Department of Computer Engineering and Information Science, Bilkent University, 06533 Bilkent,

Ankara, Turkey

Received 6 April 1993; accepted 7 February 1994

Abstract

Mean field annealing (MFA) algorithm, proposed for solving combinatorial optimization
problems, combines the characteristics of neural networks and simulated annealing. Previ-
ous works on MFA resulted with successful mapping of the algorithm to some classic
optimization problems such as traveling salesperson problem, scheduling problem, knapsack
problem and graph partitioning problem. In this paper, MFA is formulated for the circuit
partitioning problem using the so called net-cut model. Hence, the deficiencies of using the
graph representation for electrical circuits are avoided. An efficient implementation scheme,
which decreases the complexity of the proposed algorithm by asymptotical factors is also
developed. Comparative performance analysis of the proposed algorithm with two well-
known heuristics, simulated annealing and Kernighan-Lin, indicates that MFA is a success-
ful alternative heuristic for the circuit partitioning problem.

Keywords: Mean field annealing; Circuit partitioning; Net-cut model

1. Introduction

Partitioning of an electrical circuit, defined by its components and signal nets, is
an extensively studied problem arising in various applications. Partitioning means
to divide the components of a circuit into two or more evenly weighted partitions
in such a way that the cost of the connections among the partitions is minimized.
The cost of the connections can be measured by the set of nets that connect cells
in different partitions, called the cut-set. The aim is to minimize the size of the
cut-set while keeping the size of the partitions balanced. This problem, called the

* Corresponding author. Email: aykanat@bilkent.edu.tr

0925-2312/95/$09.50 0 1995 Elsevier Science B.V. All rights reserved
SSDI 0925-2312(94)00016-L

172 T. B&an / Neurocomputing 8 (I 995) 171-l 94

circuit partitioning problem, arises while dividing a circuit into parts that will be
implemented separately. Also, divide-and-conquer algorithms, used in some VLSI
layout problems as placement and floor-planning, necessitate dividing the circuits
hierarchically into parts with different minimization criteria. Since the circuit
partitioning is extensively used in these algorithms [lo], the problem becomes more
important.

A heuristic for circuit partitioning is given in the seminal paper by Kernighan
and Lin [7]. In this work, the circuits are represented as graphs and the problem is
treated as graph partitioning problem. Later Schweikert and Kernighan [13] showed
the deficiencies of using the graph model for representing electrical circuits, and
proposed a new model called the net-cut model. In the net-cut model circuits are
represented by hypergraphs instead of graphs. The net-cut model represents the
actual interconnection cost of distributing a circuit to different parts, whereas the
graph model gives an approximation to the interconnection cost. This approxima-
tion gets worse as the sizes of the nets increase [13]. Hence, treating circuit
partitioning problem as graph partitioning problem can decrease the performance
of the algorithm used for partitioning. Modification of the Kernighan-Lin algo-
rithm from the graph model to the net-cut model is extensively studied [3,13].

Since the circuit partitioning problem is NP-hard [lo], finding efficient heuris-
tics is an important research issue. In recent years, new neurocomputing ap-
proaches as maximum neural network and mean field annealing are successfully
applied to several NP-hard problems such as bipartite subgraph problem [9,14],
module orientation problem [14], traveling salesperson problem [12,15], scheduling
problem [4], knapsack problem [ll], mapping problem [l], and graph partitioning
problem [5,12,16]. In this work, mean field annealing (MFA) is formulated for
solving circuit partitioning problem using the net-cut model. Yih and Mazumder
used the net-cut model when they applied Hopjield neural network model to the
circuit partitioning problem [17]. MFA combines the collective computation prop-
erty of Hopfield neural network model [6] with the annealing notion of simulated
annealing [S] in order to form a better algorithm [El. In MFA, discrete variables
called spins (or neurons> are used for encoding the combinatorial optimization
problems. An energy function written in terms of spins is used for representing the
cost function of the problem. Then, using the expected values of these discrete
variables, a gradient descent type relaxation scheme is used to find a configuration
of the spins which minimizes the associated energy function. MFA is also a general
strategy as simulated annealing, and can be applied to different problems with
suitable formulations. We show that formulating the MFA algorithm for the
net-cut model is not trivial but achievable, and the resulting algorithm is efficient
both in solution quality and execution time.

The organization of the paper is as follows. Section 2 presents a formal
definition of the circuit partitioning problem. The graph and the net-cut model
representations of circuits and the deficiencies of the graph model are also
discussed in Section 2. Section 3 presents the proposed formulation of the MFA
algorithm for the circuit partitioning problem using the net-cut model. An efficient
implementation scheme is also described in this section. Section 4 presents the

T. Bultan / Neurocomputing 8 (I 995) 171-l 94 173

experimental performance evaluation of the proposed MFA algorithm for the
circuit partitioning problem in comparison with two well-known heuristics: simu-
lated annealing and Kernighan-Lin.

2. Circuit partitioning problem

An instance of the circuit partitioning problem consists of a circuit that is to be
partitioned and an integer K representing the number of partitions. A circuit can
be represented by a set of components called cells, and a list of nets which defines
the connection relationships among the cells. Cells may represent different electri-
cal components as transistors, standard cells or logic gates. Nets represent the
connections among the cells that can be realized using different types of conduc-
tors depending on the application (e.g. wires, metal layers). Cells incident to a net
are called the terminals of that net. Both cells and nets of a circuit have an
attribute called the weight of a cell or a net. Weights of the cells may represent
their areas if the partitioning is used for placement. Nets can be weighted due to
their effect on the total delay of the circuit. An example circuit with 10 cells and 5
nets is given below.

cells (weights):
cl (4), c2 (I), c3 (4), cd (3), cs (4), c6 (2), c7 c3), c8 c2)? ‘9 cl), ‘10 c2)

nets (weights):
n,: c,-$-c,(2) 122: c,-c,-c,j-c,(3) n3: c2-c5-c7-c10(1)

n4: c3 - cs (2) n.j: cl - cs - c4 - c,j - c9 (1)

A circuit 0 can be formally represented by a set of cells C, a set of nets N, a cell
weight function w,,//: C + JV, and a net weight function w,,,~: N +J, where JV
represents the set of natural numbers. Each element in the set N is a subset of set
C, i.e. N c 2’.

Given a circuit as defined above, the problem is to divide the cells of the circuit
into K(K 2 2) evenly weighted partitions while minimizing the cost of the external
connections (i.e. cut-set size) among partitions. The difference between the net-cut
and graph models is in the computation of the cost of external connections.

In the graph representation of a circuit, each cell of the circuit is represented by
a vertex and each net of the circuit is represented by a clique of vertices
corresponding to its terminals. Cell weight function becomes the vertex weight
function of the graph. Weights of the edges are equal to the weights of the nets
that they represent. The graph representation of the circuits can be restricted to
simple graphs. All edges between two vertices are represented by a single edge of
which weight is the summation of the weights of the edges it represents. This
simplification has no effect as far as the partitioning is concerned. If an edge
between two vertices is in the cut set of a partitioning then all other edges between
these two vertices are also in the cut set and vice versa. Therefore, a single edge
with a weight equal to the summation of the weights of these edges can represent

114 T. Bultan / Neurocomputing 8 (1995) 171-194

Fig. 1. (a) Graph and (b) hypergraph representations of the example circuit. Weights of the edges in the
graph representation are shown in parenthesis.

their contribution to the cost. Fig. l(a) illustrates the graph representation of the
example circuit. Formally, a circuit 0(C, N) is represented by a graph GW, El,
where I/= C, and wuertex = w,,,,. The edge set E is formed using the net set N as,
uu E E if and only if there exists an IZ E N such that u E n and u E n. The weight
function wedge is computed as W_&UU) = C,,, E n,n E Nw,,I(~) for all uu E E. In the
graph model, the connection cost is computed by simply adding the weights of the
edges that have their vertices in different partitions.

In the net-cut model, electrical circuits are represented with hypergraphs. A
hypergraph consists of a set of vertices I/ and a set of hyperedges E G 2v.
Hyperedges can be incident to more than two vertices. Note that, hypergraphs can
represent the circuits exactly by representing cells by vertices and nets by hyper-
edges. Cell and net weight functions of the circuit become the vertex and
hyperedge weight functions of the hypergraph. Hence, a circuit 0(C, N) can be
considered as a hypergraph where C is the set of vertices and N is the set of
hyperedges. Fig. l(b) illustrates the hypergraph representation of the example
circuit.

In the net-cut model, the connection cost for K-way partitioning may be
computed as follows. If the vertices incident to an hyperedge are in 1 different
partitions, then that hyperedge contributes (I - l)w, to the connection cost, where
w, is the weight of the hyperedge. There are also some other alternatives for
computing the connection cost. One of them is adding we to the connection cost if
and only if 12 2. Another one is adding (10 - 1)/2)w,. Note that, all choices are
equivalent for bipartitioning.

The problem with the graph model is that it treats a net with s terminals as
S(S - 1)/2 two terminal nets. This strategy exaggerates the importance of the nets
that have more than two terminals and the exaggeration grows with the square of
the size of the net [13], where the size of a net denotes the number of terminals of
a net. For example, the actual cost of a unit weight net of size 4 in the cut-set of a
bipartitioning is 1 since such a net will cause a single connection between the two
partitions. In the graph model, the same situation contributes a cost of 3 or 4
according to the distribution of the terminal cells of the net between the two
partitions. This cost contribution in the graph model is far from the actual cost. In

T. Bultan / Neurocomputing 8 (1995) 171-194 175

general, the actual cost contribution of a unit weight net across a cut of a
bipartitioning is 1, but the cost contribution of a clique, which is evenly split across
a cut, rises quadratically with the size of the clique [lo]. This quadratic growth does
not adequately reflect the costs arising in practice. In fact, heuristics using the
graph model for representing circuits will try to remove all nets with large sizes
from the cut-set and try to put the smaller ones. This situation can cause
performance degradation if the actual cut size is minimized when the nets with
large sizes are in the cut-set. Experimentation shows that this occurs in most of the
cases [13]. For example, using the net-cut model instead of the graph model
increases the performance of the Kernighan-Lin heuristic drastically, reducing the
connection costs by 19 to 50% [13].

Fig. l(a) and (b) illustrate two bipartitionings of the example circuit. The
bipartitioning, P, = (ci, cg, cq, cg, cg) and P2 = {c2, c5, c,, c8, clo} with sizes I P, I
= 14 and I P, I = 12, illustrated in Figure l(a) is the global minimum of the graph
model if the sizes of the two partitions are restricted to be between 12 and 14. The
bipartitioning, P, = {cl, cd, c5, c6, CJ and P2 = (cz, c3, c,, c8, clJ with sizes I P, I
= 14 and 1 P, 1 = 12, illustrated in Fig. l(b) is the global minimum of the net-cut
model with the same restrictions on the partition sizes. Here, size of a partition
denotes the summation of the weights of the cells assigned to that partition. As
explained earlier, actual connection cost is the cost of the cut computed using the
net-cut model. Hence, to compute the actual cost of the cut in Fig. l(a) we
transform it to the net-cut model and observe that the size of the cut is 4, whereas
the size of the cut in Fig. l(b) is 2. Note that, the global minimum solution of the
graph model cuts two nets (n, and n,) with smaller sizes (3 and 2, respectively)
although their weights are high (2 for both of the nets). However, the global
minimum solution of the net-cut model cuts two nets (its and nS) with larger sizes
(4 and 5, respectively) but smaller weights (1 for both of the nets). Although both
cuts give the global minimum according to the model used, min-cut bipartitioning
using the graph model yields a suboptimal solution because of the incorrect
representation of the problem. This demonstrates that even if one computes the
global optimum using the graph model, the computed solution can be a suboptimal
solution of the actual problem. It can be argued that some other representation
scheme can be used to represent circuits with graphs which can give better
approximations to the actual cost, but it can be shown that there is no good way of
mapping a circuit instance into a graph [lo].

3. Applying MFA to the circuit partitioning problem

Mean field annealing (MFA) merges collective computation and annealing
properties of Hopfield neural networks [61 and simulated annealing [81, respec-
tively, to obtain a general algorithm for solving combinatorial optimization prob-
lems. MFA can be used for solving a combinatorial optimization problem by
choosing a representation scheme in which the final states of the spins (neurons)
can be decoded as a solution to the target problem. Then, an energy function is

176 T. Bultan / Neurocomputing 8 (1995) 171-l 94

constructed whose global minimum value corresponds to an optimum solution of
the problem to be solved. MFA is expected to compute the optimum solution to
the target problem, starting from a randomly chosen initial state, by minimizing
this energy function. Steps of applying mean field annealing technique to a
problem can be summarized as follows:
(1)

(2)

(3)

(4)

(51

Choose a representation scheme which encodes the configuration space of the
target optimization problem using spins. In order to get a good performance,
number of possible configurations in the problem domain and the spin domain
must be equal, i.e., there must be a one-to-one mapping between the configu-
rations of spins and the problem.
Formulate the cost function of the problem in terms of spins, i.e., derive the
energy function of the system. Global minimum of the energy function should
correspond to the global minimum of the cost function.
Derive the mean field theory equations using this energy function, i.e., derive
equations for updating averages (expected values) of spins.
Minimize the complexity of update operations in order to get an efficient
algorithm.
Select the energy function and the cooling schedule parameters.

The proposed formulation and implementation of the MFA algorithm for the
circuit partitioning problem following these steps are presented in the following
sections.

3.1. Encoding

The MFA algorithm is derived by analogy to Zsing and Potts models which are
used to estimate the state of a system of particles, called spins, in thermal
equilibrium. In Ising model, spins can be in one of the two states represented by 0
and 1, whereas in Potts model they can be in one of the K states. For the circuit
partitioning problem, Ising model can be used for bipartitioning whereas Potts
model is suitable for K-way partitioning. In this work, we use Potts model which is
more general, but for the case K = 2, it is easy to convert the formulations derived
for Potts model to Ising model.

In the K state Potts model of S spins, the states of spins are represented using
S K-dimensional vectors [12]

Si=[si, ,..., sik ,..., siKlf forllilS.

where ‘t’ denotes the vector transpose operation. The spin vector Si is allowed to
be equal to one of the principal unit vectors e,, . . . ,ek,. . . , ex, and can not take
any other value. Principal unit vector ek is defined to be a vector which has all its
components equal to 0 except its kth component which is equal to 1. Spin Si is
said to be in state k if it is equal to eL. Hence, a K state Potts spin Si is composed
of K two state variables sil, . . . , sik,. . . , siK, where sik E (0, 11, with the following
constraint

K

Csik= 1 for 1 <iIS. (1)
k=l

T. Bultan / Neurocomputing 8 (1995) 171-l 94 117

In our encoding of the circuit partitioning problem, each spin vector corre-
sponds to a cell in the circuit n(C, N). Hence, number of spin vectors is S = 1 C I.
Dimension K of the spin vectors is equal to the number of partitions. If a spin is in
state k we say that the corresponding cell is assigned to partition k. Hence, sik = 1
means that cell i is assigned to partition k. For example, a 4 way partitioning of
the circuit given in Section 2 can be represented by the following spin matrix
s = [S,, . . .) si,. . .) S,,,]’ which consists of 10 spin vectors of dimension 4 repre-
senting the 10 cells in the example circuit.

K Partitions

ICI Cells

1

2

3

4

5

6

7

8

9

JO

i 2 3 4
0 0 1 0

0 1 0 0

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

1 0 0 0

0 0 0 1

1 0 0 0

0 1 0 0

If this spin matrix is decoded as described above, the resulting partitioning is

p, = (cq, c7, $1, p* = kz, c5, CKJ, P3 = (c,, CJ and P4 = {c,, CJ where
P,, Pz, P3, P4 are the sets representing partitions. Sizes of the partitions are
I P, I = 7,) P, I = 7, I P3 I = 6 and I P4 I = 6. The size of partition k is defined to be

IPkl =L,, w where wc denotes the weight of cell c. The interconnection cost c
computed according to the net-cut model is 8. This encoding is similar to the
encodings used for graph partitioning problem [2,5,12,16] and bipartite subgraph
problem [9,14] in the previous works. Although we have proposed a hypergraph
partitioning formulation using this encoding in an earlier work [2], its energy
function formulation was an approximation to the net-cut model as is the case for
graph partitioning formulation. In the next section, we propose an energy function
formulation according to the net-cut model using the encoding described above.

3.2. Energy function formulation

In the MFA algorithm, the aim is to find the spin values minimizing the energy
function of the system. In order to achieve this goal, the average (expected) value

178 T. Bultan / Neurocomputing 8 (1995) 171-l 94

Vi = (Si) of each spin vector Si is computed and iteratively updated until the
system stabilizes at some fixed point. Hence, we define

Vi=(&) forllil ICI

[Vi~~...,~ik, ***>uiK]‘= [(Sil),...,(Sik),...,(SiK)lf for 1 <is ICI

i.e. vik = (sik), for 1 I i I I C 1 and 1 5 k I K. Note that, Sik E IO, 11, i.e. Sik can
take only two values 0 and 1, whereas vik E [O,ll, i.e. C’ik can take any real value
between 0 and 1. When the system is stabilized, Uik values are expected to
converge to 0 or 1. As the system is a Potts glass we have the following constraint
similar to Eq. (1)

&,~~~=l, for llil ICI. (2)
k=l

This constraint guarantees that each Potts spin Si is in one of the K states at a
time, and each cell is assigned to only one partition for our encoding of the circuit
partitioning problem.

In order to construct an energy function it is helpful to associate the following
meaning to the values vik,

vik=9{celliisinpartition k} forl<is ICI, 1sksK

i.e. vik is the probability of finding spin i at state k. If vik = 1 then spin i is in state
k and the corresponding configuration is Si = Vi.

Now, we formulate the interconnection cost of the circuit partitioning problem
for the circuit LI(C, N) as an energy term (E,)

E,(V) = c w,
IlEN i

kc1 9 one or more cells of net n is in partition k) - 1 ((3)

=

.gNwn(k$ - ’
1 9 no cell of net IZ is in partition k)) - 1 (4)

1 - = { 9 cell i is not in partition k} (5)
iEn

where V = [VI,. . . ,V,, . . . , V,c,]’ is the spin average matrix consisting of I C I K-di-
mensional spin vectors. Here, i E n and w, denote a terminal cell and the weight of
net n respectively. In this formulation, cost of each net is computed one by one
and added to the total interconnection cost. According to the net-cut model, as
.discussed in the Section 2, cost contribution of a net n to the total interconnection
cost is (I - l)w, if the net is distributed to 1 different partitions. Eq. (3) follows by
the observation I = C,“= 1 9(one or more cells of net II is in partition k}. The (- 1)
term in Eq. (3) is a constant term and can be eliminated. Another observation is

T. Bultan / Neurocomputing 8 (1995) I71- 194 179

ace11 i is not in partition k} = (1 - oik) which follows from the probability
interpretation of variable uik. Hence, IIiE Jl - uik) denotes the probability that no
cell of net IZ is in partition k and (1 - Il, En (1 - ui,)) denotes the probability that
at least one cell of net n is in partition k. Note that, minimization of E,
corresponds to minimization of the actual interconnection cost of the circuit
partitioning problem.

Another term of the energy function is the term for penalizing imbalanced
partitions. We formulate this term (E,) similar to the formulation of balance term
proposed for the mapping problem [l].

EB(v) = Ii C C C “ikvjkWiWj (7)
i=lj#ik=l

where wi and wj denote the weights of cells i and j. This triple summation term
computes the summation of the inner products of the weights of the cells assigned
to individual partitions. Global minimum of this term occurs when equal amounts
of cell weights are assigned to each partition. If there is an imbalance in the
partitioning, EB term increases with the square of the amount of the imbalance,
penalizing imbalanced partitionings.

The total energy function E can be defined in terms of E, and E, as

E(V) = E,(V) + r x EB(V)

=nFNwn(k$l(l - FI<l - ui/c)) - ‘) + 3 :Z c, $ UikUjkWiWj (8)
iEn l=lJ#zk-1

where parameter r is introduced to maintain a balance between the two optimiza-
tion objectives of the circuit partitioning problem. Hence, minimization of the
energy function E corresponds to evenly distributing cells among K partitions
while minimizing the interconnection cost among the partitions computed accord-
ing to the net-cut model.

3.3. Derivation of the mean field theory equations

Mean field theory equations, needed to minimize the energy function E, can be
derived as [12,16]

aw)
4ik = - avik (9)

ICI

= -nFN~njEz+i(l - ~jk) - rCUjkWiWj for 1 I i I I C I, 1 I k I K
j#i

(10)

where Ni is defined to be the set of nets connected to cell i. The quantity &
represents the kth element of the mean field vector effecting on spin i. Using the
mean field values $ik, average spin values vik can be updated using the following

180 T. B&tan /Neurocomputing 8 (1995) 171-194

equation [12,16]

&k/r

vik= K forl5i5lCI, llk5K (II)

I:emi”T

where T is the temperature parameter which is used the relax the system
iteratively. Eq. (11) enforces the summation of each row of the spin matrix to be
unity, handling the constraint given in Eq. (2). Hence, it is guaranteed that all rows
of the spin matrix will have only one spin with output value 1 when the system is
stabilized.

Mean field 4ik can be interpreted as the decrease in the energy function E(V)
when spin i is assigned to state k. Note that in Eq. (lo), first summation term
represents the increase in the total interconnection cost by assigning cell i to
partition k. Second summation term represents the increase in the imbalance cost
associated with partition k by assigning cell i to partition k. Hence, -& may be
interpreted as the decrease in the overall solution quality by assigning cell i to
partition k. Then, in Eq. (ll), vik is updated such that the probability of assigning
cell i to partition k increases with increasing mean field &.

After the mean field theory equations (Eq. (lo), Eq. (11)) are derived, mean
field annealing algorithm can be summarized as follows. First an initial, high
temperature spin average is assigned to each spin, and an initial temperature is
chosen. In general uik is initialized to l/K plus a disturbance term (note that,
lim T _,&ik = l/K). In each iteration the mean field vector effecting on a randomly
selected spin is computed using Eq. (10). Then, spin average vector is updated
using Eq. (11). This process is repeated for a random sequence of spins until the
system is stabilized for the current temperature. The system is observed after each
spin vector update in order to detect the convergence to an equilibrium state for a
given temperature. If energy function E does not decrease in most of the
successive spin vector updates, this means that the system is stabilized for that
temperature. Then, T is decreased according to the cooling schedule, and iterative
process is re-initiated. Note that, the computation of the energy difference AE
necessitates the computation of E (Eq. (8)) at each iteration. In general, the
computation of the total energy (Eq. (8)) is much more expensive than the
computation of the mean field vector. Hence, the computation of E at each
iteration drastically increases the complexity of a MFA iteration. For example, the
complexity of computing the energy function E is O(I N I s,&+ I C I *K) for the
proposed formulation (Eq. (8)). Here, s,,~ denotes the average number of cells of
a net (i.e. average size of a net). We present an efficient scheme [l] which reduces
the complexity of energy difference computation by asymptotical factors.

The incremental energy change 6E,, due to the incremental change 6vi, in the
value of vik is SE = SE,, = 4ik6vik from Eq. (9). Since E(V) is linear in vik (see
Eq. (8)), this equation is valid for any amount of change AVtk in the value of vik,
that is

A E = A Eik = &kAvik (12)

T. Bultan / Neurocomputing 8 (1995) 171-l 94 181

1. Get the initial temperature To, and set T = To

2. Initialize the spin averages V = [VII,. , vii;, , vlcl~]

3. While temperature T is in the cooling range DO

3.1 While E is decreasing DO

3.1.1 Select a cell i at random.

3.1.2 Compute mean field vect,or corresponding to the i-th spin

9it = -Cn~N, z”, nj,,,j,i(l - Il~li) - ?Ci:\ tJ~ulli%W~
for 1 5 k I Ii

3.1.3 Compute the summation CE, e$tI/T

3.1.4 Compute new spin average Vector Vi aS Ui;“” = e4’k/T/ I:, e+xl/T for 1 5 k 5 Ii

3.1.5 Compute the energy change AE = Cf=‘=, $J,~(v$~~) - u,k)

3.1.6 Update the spin average vector Vi a~ ~,k = ~~~~~~ for 1 5 k 5 I<

3.2 T = (I x T

Fig. 2. The proposed MFA algorithm for the circuit partitioning problem.

At each iteration of the MFA algorithm, K uik values in the same spin average
vector are updated in a synchronous manner, and Eq. (12) is valid for all updates
performed in a particular iteration. Thus, energy difference due to the spin vector
update operation in a particular iteration can be computed as

AE = 5 &Auik (13)
k=l

where Aui, = ui(knew) - ~i(ko’~). Th e complexity of computing Eq. (13) is only O(K)
since mean field (+ik) values are already computed for the spin updates.

The MFA algorithm derived from the proposed formulation of the circuit
partitioning problem is shown in Fig. 2. The complexity analysis of one iteration of
this algorithm (from step 3.1.1 to step 3.1.6 in Fig. 2) is as follows. The complexity
of computing the first summation term in Eq. (10) is O(dGUg~& where davg
denotes the average number of nets incident to a cell (i.e., average degree of a
cell). The second summation in Eq. (10) is a O(I C I) operation. Thus, the
complexity of a single mean field (&) computation is O(daugsaug + I C I). Hence,
the complexity of computing a mean field vector corresponding to a selected spin
(step 3.1.2) is O(daugsaug K + I C I K). Spin update computations (steps 3.1.3, 3.1.4
and 3.1.6) and energy difference computation (step 3.1.5) are both O(K) opera-
tions. Hence, the overall complexity of a single MFA iteration is O(d,,gs,,gK +
ICI K).

182 i? Bultan / Neurocomputing 8 (1995) 171-l 94

3.4. An efficient implementation scheme

As mentioned earlier, the MFA algorithm proposed for the circuit partitioning
problem is an iterative process. The complexity of a single MFA iteration is mainly
due to the mean field vector computation. In this section, we propose an efficient
implementation scheme which reduces the complexity of the mean field computa-
tions, and hence the complexity of the MFA iteration, by asymptotical factors.

Assume that, cell i is selected at random for updating the spin average vector Vi
in a particular iteration. The expression given for & (Eq. (10)) can be rewritten as

C& = - c hlk - r+bik for 1 I k I K (14)
?lEN,

where

A$=w, n (l-ujk) forl<k<K
jGn,j#i

(15)

ICI
+bik = ~vjkwiwj for 1 I k I K. (16)

j#i

For the sake of clarity of the representation, the overall mean field computations
involved in a single iteration can be expressed using vector representation as

@*= - En;-rly,. (17)
?lEN,

Here, AT and !Pi are column vectors with K elements, where

~i=[~il,...,~ik,...,~iK]’ ~iYi[~i~,...,~i’ik,“‘,~iiKl’

Ay=[hl, ,..., A\lk ,..., ATKlf fornEA$.

The complexity of computing the Pi vector can be reduced asymptotically [l] if
the computation of qik in Eq. (16) is re-formulated as

I(lik = CV~~W~W~ = wi
1:: (;r:)

C ~jk~j - ~ik~i = Wi(Yk - ~ik~i) for 1 I k I K (18)

where yk = C\.z\vjkwj. Here, yk represents the current size of partition k prior to
the update of the spin average vector Vi. Computationally Yk represents the
weighted sum of the individual vik values of the k-th column of the spin matrix. At
the beginning of the MFA algorithm, the initial yk value for each column k
(1 I k I K) can be computed using the initial spin values. Then yk values can be
updated at the end of each iteration (i.e. after spin average vector Vi is updated)
using

ypeW) = ypld) - vi(kold)wi + vi(knew)wi = ypid) + wiAvik for 1 I k I K. (19)

T. Bultan / Neurocomputing 8 (1995) I71 -194 183

This formulation proposed for the efficient computation of the hi vector, which is
needed in Eq. (17), can be represented in vector notation as

!Pi = Wi(r (old) _ WiVi(W)
(20)

r’ new) = rW) + w,AV
I I (21)

where r= [rl,. . . , yk,. . . , yK]* and AVi = [Aoil,. . . , Auik,. . . , AzJ~~]~. The computa-
tion of initial yk values can be excluded from the complexity analysis since they are
computed only once at the very beginning of the algorithm. In this scheme, the
computation of an individual $ik using Eq. (18) is a 00) operation. Hence, the
construction of the !Pi vector becomes a O(K) operation (Eq. (20)). The update of
an individual yk value (using Eq. (19)) at the end of each iteration is a O(1)
operation. Thus, the overall complexity of yk updates is O(K) since K weighted
column sums should be updated (Eq. (21)). Hence, the proposed scheme reduces
the complexity of computing the qi vector (needed in Eq. (17)) from @(1 C 1 K) to
O(K).

The complexity of computing
computation of an individual Ayk

Ark=W, n (lmUjk)
jEn,j#i

A: vector can be reduced asymptotically if the
value in Eq. (15) is reformulated as

1 1
=

wnIl(l-Ujk)=
(1 - Oi/J jEn

tl_Uik)~; forllk<K (22)

where rr; = wJlj E ,(l - ujk). Here, 7: represents the probability that no cell of
net n is in partition k multiplied by the weight of the net n. At the beginning of
the MFA algorithm, the initial l-l” = [ry,. . . , T,“, . . . , +I* vector for each net can
be computed using the initial spin averages. Then, ri values can be updated at
the end of each iteration (i.e. after the spin average vector Vi is updated) using

n(new) _ (1 - d#Y))
=k - (’ _ r&&f)) 6@ld) for 1 I k I K and Vn E 4. (23)

This formulation proposed for the efficient computation of an individual A:
vector, which is needed in Eq. (17), can be represented in vector notation as

A; = IJi X nn@ld) for Vn E Ni (24)
l-ln(n@‘) = Ri x l-l@4 for Vn ENi. (25)

Here, Ui=[~il,...,~ik,...,~iK]t and Ri= [T~~,...,T~~,...,T~~]' are column vectors
with K elements where uik = l/(1 - u$‘~~‘) and rik = (1 - z&Jew))/(l - ~i(,o’~‘) for
1 s k I K and the operation ‘X’ represents element-by-element multiplication of
two column vectors. The computation of initial l-I” vectors can be excluded from
the complexity analysis since they are computed only once at the very beginning of
the algorithm. In this scheme, the computation of an individual A$ value for a
particular net n using Eq. (22) is a O(1) operation. Hence, the construction of a A;
vector becomes a O(K) operation (Eq. (24)). The update of an individual rt value

184 T. Bultan / Neurocomputing 8 (1995) 171-l 94

for a particular net 12 at the end of each iteration is a O(1) operation (Eq. (23)).
Thus, the overall complexity of updating a particular l-In vector is a O(K)
operation (Eq. (25)). Hence, the proposed scheme reduces the complexity of
computing an individual A: vector (needed in Eq. (17)) from O&K) to O(K)
where s, denotes the size of the net IZ.

The first summation term in Eq. (17) requires the addition of di A: vectors
where di denotes the degree of cell i. Furthermore, the proposed scheme necessi-
tates the update of di ll” vectors since cell i is connected to di different nets.
Thus, the proposed scheme reduces the complexity of computing the first summa-
tion term in Eq. (17) from O(KC,,,,ls,) = O(Kdis&J to O(KdJ Here, s& =
(C,,,s,)/d, denotes the average size of the nets connected to cell i. The final
addition of vectors Ai = - C, E N, A: and (-r) X Wi is a O(K) operation. Hence,
the proposed scheme reduces the overall complexity of mean field vector computa-
tion in a single MFA iteration from O(d,,gs,,gK+ 1 C I K) to O(d,,,K). Recall
that spin update computations and energy difference computation involved in a
MFA iteration are O(K) operations. Hence, the proposed implementation scheme
reduces the overall complexity of an individual MFA iteration to O(d,,,K).

4. Performance of the MFA algorithm

This section presents the performance evaluation of the proposed Mean Field
Annealing (MFA) algorithm for the circuit partitioning problem. To evaluate the
performance of the proposed algorithm two well-known circuit partitioning heuris-
tics are used: simulated annealing (SA) and Kernighan-Lin (KL). Each algorithm is
tested using randomly generated circuit partitioning problem instances. Hyper-
graphs representing circuits are generated using two different schemes, resulting
with two families of hypergraphs referred here as random hypergraphs and
geometric hypergraphs.

Random hypergraphs are generated using the following parameters: number of
cells (I C I), number of nets (I N I>, maximum cell weight <W,>, maximum net
weight <W,>, and maximum net size (s,,,). Each net is generated by randomly
selecting a net size between 2 and s,,,. Then, that many cells are selected
randomly from the cell set to form the net. If a new generated net contains exactly
same cells as another net generated earlier, then it is discarded and another net is
generated instead of it. Each cell or net is weighted randomly by choosing a
number between 1 and W, or 1 and W,, respectively.

Geometric hypergraphs are generated using an algorithm similar to the one
used for generating geometric graphs. Geometric hypergraphs may represent
electrical circuits better than random hypergraphs as they present clustering and
local connectivity properties. Parameters used for generating geometric hyper-
graphs are number of cells (I C I), number of nets (1 N I), maximum cell weight
(W,), maximum net weight (W,), and average net size (s,,~). A geometric hyper-
graph is generated using these parameters by randomly distributing I C I cells and
I N I nets in a unit square. Then, the nets are formed using the following rule: a cell

T. Bultan / Neurocomputing 8 (I 995) 171-l 94 185

Fig. 3. An example geometric hypergraph.

is incident to a net if it is contained in the bounding box of that net. Bounding box
of a net is a square with the net in its center. Sizes of the bounding boxes are fixed
and computed using the input parameters s,~ andlClasb=,/m,whereb

denotes the length of the sides of the bounding box. Nets of which bounding boxes
contain less than 2 cells are discarded. Also, as in the generation of random
hypergraphs, if two or more nets have the same subset of cells, only one of them is
accepted and all others are discarded. New nets are generated instead of the
discarded ones. Note that, the average size of the nets in the resulting hypergraph
may be slightly different than the input parameter s,,~ as the nets near the
borders of the unit square will have smaller sizes than expected, but also nets
having less than 2 terminals are discarded which may compensate this effect. Each
cell or net is weighted randomly by choosing a number between 1 and WC or 1 and
W,, respectively. Fig. 3 illustrates a geometric hypergraph with 10 cells and 5 nets
which corresponds to the example circuit given in Section 2.

4.1. MFA implementation

The MFA algorithm proposed for the circuit partitioning problem is imple-
mented efficiently as described in Section 3. At the very beginning of the algorithm
spin averages are initialized to l/K plus a random disturbance term, so that the
initial spin averages are uniformly distributed in the range

0 9 x !_ I ,#flitW
K lk

51.1,; forlsil ICI, lsk<K.

The initial temperature T, and the parameter r used in the mean field computa-
tions (Eq. (10)) are estimated using these initial random spin average values.
Recall that, the parameter r is introduced in the energy function formulation (Eq.

186 T. B&tan /Neurocomputing 8 (1995) 171-194

(8)) in order to determine a balance between the two optimization objectives of the
circuit partitioning problem. Hence, in the mean field computations (Eq. (lo)), the
parameter r determines a balance between the terms

ICI
&=- CW n~‘N njJ?Ii(’ - ‘3) and &$ = - ~vjkwiwj

j#i

where & = 4i”, + r X c#J~",. We compute the averages (+i”, > = CC\~\C~==,4i”,>/
(1 C I K) and (4:) = <C\“\C,“=,&)/(I C I K) of these two terms using the initial
vik values and compute r as r = 8(4$)/(4$>. Our experiments show that
computing r using this method is sufficient for obtaining balanced partitions.

Selection of T, is crucial for obtaining good quality solutions. In previous
applications of MFA [12,16], it is experimentally observed that spin averages tend
to converge at a critical temperature. It is suitable to choose T, close to this
critical temperature. Although there are some methods proposed for the estima-
tion of critical temperature [12,16] we prefer an experimental way for computing
T,, which is easy to implement and successful as the results of the experiments
indicate. After the parameter r is fixed, average mean field (&) = <C\~\C,“=,
bik)/(I C I K) is computed using initial Uik values. Then, T, is computed as
T, = c(&)/K. Our experiments indicate that it is suitable to choose the parame-
ter c as 100 for geometric hypergraphs, and as 60 for random hypergraphs. Note
that, To is inversely proportional to the number of partitions (K) which is also
observed for the critical temperature formulations presented in the other imple-
mentations of MFA [12,16].

After the spin averages (uik values) and the parameters T, and r are initialized,
the cooling schedule of the algorithm proceeds as follows. At each temperature a
random sequence is generated for the spins that are not converged yet. Then,
averages of these spins are updated iteratively according to this random sequence.
The number of iterations with energy decrease (--Al?) less than E is counted in
each random sequence, where E is chosen as 0.1 and 0.001 for random and
geometric hypergraphs, respectively. If this count is more than 90% of the number
of unconverged spins, temperature is decreased according to T = a x T where (Y is
the parameter for adjusting the rate of the cooling. Average spin values are tested
for convergence at the end of each random sequence. If one of the vik terms of the
spin average vector Vi is greater than 0.999, it is assumed that spin i is converged
to state k and its average is not updated in the future iterations. Cooling process is
realized in two phases; slow cooling followed by fast cooling. In the slow cooling
phase, temperature is decreased using (Y = 0.95 until T is less than T&5. Then,
in the fast cooling phase, LY is set to 0.7 and cooling is continued until T is less
than T&5.0. At the end of this cooling process, maximum element in each spin
average vector is set to 1 and all other spin average values are set to 0. Then, the
result is decoded as described in Section 3.1, and the resulting partitioning is
found. Note that, all parameters used in this implementation are either constants
or found automatically except the parameters c and E. The parameters c and E are
also constants for each family of hypergraphs but differ for random and geometric
hypergraphs.

T B&an / Neurocomputing 8 (1995) I 71- 194 187

Iteration

Iteration

(b)
Fig. 4. Evolution of interconnection and total energy terms with iterations for partitioning two random
hypergraphs ((a) 1 C (= 200, 1 N I = 200, (b) 1 C (= 400, I N I = 400) into K = 8 partitions.

Fig. 4 illustrates the evolution of intercormection and total energy terms (E,
and E, respectively) with MFA iterations for partitioning two random hypergraphs
((a> I C I = 200, I N I = 200, (b) I C I = 400, I N (= 400) into K = 8 partitions. Fig. 4
is constructed by computing the EC (Eq. (6)) and E (Eq. (8)) terms at each 10
MFA iterations for the given two circuit partitioning problem instances. The
displayed energy values are normalized with respect to the initial energy values.
The vertical solid lines in each curve denote the temperature changes according to
the cooling schedule. As is seen in Fig. 4, interconnection energy (E,) monotoni-
cally decreases as the iterations proceed. The oscillatory decrease of the total
energy term (E) is due to the balance term (E, given in Eq. (7)) oscillations
superimposed on the monotonically decreasing EC term. As is seen in Fig. 4, the
major decrease in the energy terms occur during a single temperature which
corresponds to the critical temperature mentioned earlier. Note that, the number
of iterations performed during the critical temperature is substantially greater than

188 T. Bultan / Neurocomputing 8 (1995) 171-l 94

the numbers of iterations performed during other temperatures. The decrease in
the energy terms during the last two temperatures demonstrate the merits of the
fast cooling phase mentioned earlier. The horizontal dashed lines in the intercon-
nection energy curves denote the normalized actual interconnection costs of the
solutions decoded from the final spin matrices. Note that, interconnection energy
terms (E,) converge to the final actual interconnection costs confirming the
correctness of the proposed formulation (Eq. (6)).

4.2. Simulated annealing implementation

In simulated annealing, starting from a randomly chosen initial configuration,
configuration space is searched for the best solution using a probabilistic hill
climbing algorithm [8]. A configuration of the circuit partitioning problem is a
partitioning of the circuit to K partitions. In order to search the configuration
space, neighborhood of a configuration must be defined. For the implementation
in this work, neighborhood of a configuration consists of all configurations which
result from moving one cell of the circuit from the partition with maximum size to
any other partition. At each iteration of the simulated annealing algorithm, one of
the possible moves is chosen randomly as a candidate move. Then, the resulting
decrease in the total interconnection cost caused by the candidate move is
calculated without changing the configuration. If the candidate move decreases the
interconnection cost, it is realized. If it increases the interconnection cost, then it is
realized with a probability which decreases with the amount of increase in the total
interconnection cost. Acceptance probabilities of the moves that increase the cost
are controlled with a temperature parameter T which is decreased using an
annealing schedule. Hence, as the annealing proceeds acceptance probabilities of
uphill moves decrease. An automatic cooling schedule is used in the implementa-
tion of the SA algorithm [12]. Note that, the SA algorithm implemented in this
work implicitly achieves the balance among the sizes of the partitions by selecting
the neighbor configurations as defined above. This increases computationally
efficiency of the algorithm but decreases its flexibility since the amount of
imbalance among the partitions can not be controlled.

4.3, Kernighan-Lin implementation

Kernighan-Lin (KL) heuristic is implemented efficiently as described by Fiduc-
cia and Mattheyses [3]. In order to apply the KL heuristic to K-way partitioning a
two phase approach is used which consists of recursive bisection and pairwise
min-cut phases. In recursive bisection phase, the circuit is recursively partitioned
into two partitions until K partitions are obtained. Then, in the pairwise min-cut
phase, total interconnection cost is iteratively minimized by executing KL heuristic
between each pair of partitions until no improvement can be achieved. In the KL
heuristic, balance among partitions is maintained implicitly by the algorithm. Cell
moves causing intolerable imbalances are not considered. In the implementation
used in this work a move which increases or decreases the size of a partition more

Table 1

T Bultan / Neurocomputing 8 (1995) 171 -I 94 189

Interconnection cost averages (and standard deviations) normalized with respect to the MFA heuristic

and percent imbalance ratio averages (and standard deviations) of the solutions found by the MFA, KL,

and SA heuristics for random hypergraphs

than 10% of the size of a perfectly balanced partition is considered as causing
intolerable imbalance.

4.4. Experimental results

In this section, performance of the proposed MFA algorithm is experimentally
evaluated in comparison with the Kernighan-Lin (KL) and the simulated annealing
@A) algorithms. These heuristics are experimented with a large number of
randomly generated circuit partitioning problem instances.

Six different types of random hypergraphs and six different types of geometric
hypergraphs are generated with I C I = 200, I C I = 400 and I N / = 1 C I /2, j N I =
I C I and I N I = 2 I C I. For each type of hypergraph 10 different random instances
are generated. That is, a total of 120 different hypergraph instances are generated
randomly. In each hypergraph instance, maximum cell weight <I+‘,> and maximum
net weight (I+(,> are both selected as 4. The maximum net size (s,,,) in random
hypergraph instances and the average net size (s,,~) in geometric hypergraph
instances are selected as 16 and 8, respectively. A total of 3 X 120 = 360 circuit
partitioning problem instances are constructed by using these hypergraph instances
and selecting the number of partitions as K = 4, K = 8, and K = 16.

Tables l-3 and Fig. 5 ihustrate the performance results of the MFA, KL and
SA heuristics for the circuit partitioning problem instances constructed using
random and geometric hypergraphs. In Tables 1-3, 1 C I (number of cells) and I N I

190 T. B&an / Neurocomputing 8 (1995) 171-194

Table 2
Interconnection cost averages (and standard deviations) normalized with respect to the MFA heuristic
and percent imbalance ratio averages (and standard deviations) of the solutions found by the MFA, KL,
and SA heuristics for geometric hypergranhs

1 Problem Size 11 Average Interconnection Cost 11 Average Percent Imbalance Ratio 1

t 400 1 400 4 1.00 iO.15: 0.77 iO.11; 1 0.88 iO.14\ 11 5.4

, - 1

1 IC) 1 IN() Ii 11 MFA 1 KL SA)I MFA- 1 KL I SA

Table 3
Execution time averages (in seconds) of the MFA, KL, and SA heuristics for random and geometric
hypergraphs

I Average Execution Time II
Problem Size 11 Random Hvoernranhs II Geometric Hvuereranhs H -.__ ,, “> “-L-m

KL 1 SA 11 MFA KT. I SA

200 1 100] 8)I 1.65 1 3.24 I 14.16 11 5.44 1 2.44 1 13.93 1
3nn I 3nn I A II 7 7n I

r-

Fig. 5. Interconnection cost (normalized with respect to the MFA heuristic) and execution time (in
seconds) averages of the MFA, KL and SA heuristics for (a) random and (b) geometric hypergraphs for
different number of partitions.

(number of nets) determine the type of the 10 distinct hypergraph instances
experimented for collecting the data in each row. Each algorithm is executed 10
times for each problem instance starting from different, randomly chosen initial
configurations. Each entry in Tables l-3 illustrates the overall average (and
standard deviation) of the results of 10 x 10 = 100 executions of a particular
algorithm for partitioning 10 different hypergraph instances of the same type into
K partitions.

Tables 1 and 2 illustrate the quality of the solutions obtained by the MFA, KL
and SA heuristics for random and geometric hypergraphs, respectively. Total
interconnection cost averages (and standard deviations) of the solutions are
normalized with respect to the results of the MFA heuristic. Percent imbalance
ratio averages (and standard deviations) of the solutions displayed in these tables
are computed using 100 X (I P I max - I P I ,,,I/(2 I P I oug) where I P I max, I P I min

192 T. B&tan /Neurocomputing 8 (1995) 171-194

and I P I aug = <C,“=,] Pk])/ZC denote the maximum, the minimum and the average
partition sizes. Table 3 displays the execution time averages of the MFA, KL and
SA heuristics on a SUN Spare Server 490, measured in seconds. Fig. 5 illustrates
the change in the interconnection cost and execution time averages of the MFA,
KL and SA heuristics with respect to the number of partitions for random and
geometric hypergraphs.

As is mentioned earlier, circuit partitioning has two different optimization
objectives: interconnection cost and imbalance cost. Hence, the quality of a
solution of a particular circuit partitioning problem instance has two components:
interconnection quality and balance quality. For random hypergraphs, as is seen in
Fig. 5(a) and Table 1, interconnection qualities of the solutions found by the MFA
and the SA heuristics are comparable and both better than the interconnection
qualities of the solutions found by the KL heuristic. For geometric hypergraphs, as
is seen in Fig. 5(b) and Table 2, the KL and SA heuristics produce solutions with
slightly better interconnection qualities compared with those of the MFA heuristic
for K = 4. However, for K = 8 and K = 16 interconnection qualities of the solu-
tions obtained by the MFA heuristic are better than those of the KL and SA
heuristics.

As is seen in Tables 1 and 2, the balance qualities of the solutions found by the
MFA algorithm are comparable with those of the KL heuristic. Note that, the
balance qualities of the solutions found by the SA heuristic are superior to those of
the MFA and KL heuristics. This is due to the implementation of the SA heuristic
(explained in Section 4.2) which compels balanced partitionings.

As is seen in Fig. 5 and Table 3, the MFA and KL heuristics are significantly
faster than the SA heuristic. For the case of random hypergraphs, the MFA
heuristic is always faster than the KL heuristic. For geometric hypergraphs,
execution time averages of the MFA and KL heuristics are comparable for K = 4
and K = 16, whereas for K = 8 the KL heuristic is faster than the MFA heuristic.
Note that, as the number of partitions increase, both the solution quality and the
speed advantage of the MFA heuristic increases in comparison with those of the
KL heuristic. The relative increase in the speed of the MFA heuristic is also
observed in the literature [16] for the case of graph partitioning problem.

5. Conclusion

In this paper, a mean field annealing (MFA) algorithm is proposed for the
circuit partitioning problem using the net-cut model. An efficient implementation
scheme is also developed for the proposed algorithm. The proposed implementa-
tion scheme decreases the complexity of a single MFA iteration by asymptotical
factors. The performance of the proposed algorithm is experimentally evaluated in
comparison with two well-known heuristics (simulated annealing (SA) and
Kemighan-Lin (KL)) for a large number of randomly generated circuit partitioning
problem instances. The qualities of the solutions obtained by the MFA heuristic
are comparable with those of the SA heuristic. In general, the MFA heuristic

T Bultan / Neurocomputing 8 (1995) 171-194 193

produces better solutions than the KL heuristic. The proposed MFA algorithm is
significantly faster than the SA algorithm. In general, the MFA algorithm is also
faster than the KL algorithm. It is also observed that, as the number of partitions
increase, the solution quality and the speed advantage of the proposed MFA
heuristic increases in comparison with those of the KL heuristic.

References

[ll T. Bultan and C. Aykanat, A new mapping heuristic based on mean field annealing, J. Parallel
Distributed Comput. 16 (1992) 292-305.

[2] T. Bultan and C. Aykanat, Circuit partitioning using parallel mean field annealing algorithms, in
Proc. 3rd IEEE Symp. on Parallel Processing (1991) 534-541.

[3] C.M. Fiduccia and R.M. Mattheyses, A linear-time heuristic for improving network partitions, in
Proc. Design Automat. Conf (1982) 175-181.

[4] L. Gislen, C. Peterson and B. Soderberg, Complex scheduling with Potts neural networks, Neural
Computat. 4 (1992) 805-831.

151 L. Hera& and J. Niez, Neural networks and graph K-partitioning, Complex Syst. 3 (1989) 531-575.
[6] J.J. Hopfield and D.W. Tank, ‘Neural’ computation of decisions in optimization problems, Biol

Cybem. 52 (1985) 141-152.
[7] B.W. Kernighan and S. Lin, An efficient heuristic procedure for partitioning graphs, Bell Syst.

Tech. J. 49 (1970) 291-307.
[8] S. Kirkpatrick, C.D. Gelatt and M.P. Vecchi, Optimization by simulated annealing, Science 220

(1983) 671-680.
[9] KC. Lee, N. Funabiki and Y. Takefuji, A parallel improvement algorithm for the bipartite

subgraph problem, IEEE Trans. Neural Networks 3 (1) (1992) 139-145.
[lo] T. Lengauer, Combinatorial Algorithms for Integrated Circuit Layout (Wiley, 1990).
[ll] M. Ohlsson, C. Peterson and B. Soderberg, Neural networks for optimization problems with

inequality constraints-the knapsack problem, Neural Computat. 5(2) (1993) 331-339.
[12] C. Peterson and B. Soderberg, A new method for mapping optimization problems onto neural

networks, Int. J. Neural Syst. 1 (3) (1989) 3-22.
[13] D.G. Schweikert and B.W. Kernighan, A proper model for the partitioning of electrical circuits, in

Proc. 9th Design Automat. Workshop (1979) 57-62.
[14] Y. Takefuji, K.C. Lee and H. Aiso, An artificial maximum neural network: a winner-take-all

neuron model forcing the state of the system in a solution domain, Biol. Cybernet. 67 (1992)
243-251.

[15] D.E. Van den Bout and T.K. Miller, Improving the performance of the Hopfield-Tank neural
network through normalization and annealing, Biol. Cybernet. 62 (1989) 129-139.

[16] D.E. Van den Bout and T.K. Miller, Graph partitioning using annealed neural networks, IEEE
Trans. Neural Networks 1 (2) (1990) 192-203.

[17] J.S. Yih and P. Mazumder, A neural network design for circuit partitioning, IEEE Trans.
Computer-Aided Design 9 (1990) 1265-1271.

Tetik Bultan received the B.S. degree in electrical engineering from the
Middle East Technical University, Ankara, Turkey, and the MS. degree in
computer engineering and information scrence from the Bilkent University,
Ankara, Turkey, in 1989 and 1992, respectively. He is currently working toward
the Ph.D. degree in the Department of Computer Science at University of
Maryland, College Park. His research interests are in parallel processing and
non-deterministic optimization techniques.

194 T. Bultan / Neurocomputing 8 (1995) 171-l 94

Cevdet Aykanat received the B.S. and M.S. degrees from the Middle East
Technical University, Ankara, Turkey, and the Ph.D. degree from The Ohio
State University, Columbus, all in electrical engineering. He was a Fulbright
scholar during his Ph.D. studies. He worked at the Intel Supercomputer
Systems Division, Beaverton, as a research associate. Since October 1988 he
has been with the Department of Computer Engineering and Information
Science, Bilkent University, Ankara, Turkey, where he is currently an associate
professor. His research interests include parallel computer architectures, paral-
lel algorithms, applied parallel computing, neural network algorithms, and
fault-tolerant computing.

