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Abstract

This paper discusses the use of decomposition techniques in the design of associative memories via arti"cial neural networks. In
particular, a disjoint decomposition which allows an independent design of lower-dimensional subnetworks and an overlapping
decomposition which allows subnetworks to share common parts, are analyzed. It is shown by a simple example that overlapping
decompositions may help in certain cases where design by disjoint decompositions fails. With this motivation, an algorithm is
provided to synthesize neural networks using the concept of overlapping decompositions. Applications of the proposed design
procedure to a benchmark example from the literature and to a pattern recognition problem indicate that it may improve the
e!ectiveness of the existing methods. ( 2001 Published by Elsevier Science Ltd.
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1. Introduction

Design of neural networks for the purpose of asso-
ciative memories has been one of the major research
topics since Hop"eld proposed his model (Hop"eld,
1982). With a proper choice of the connection weights,
the neural network can store some desired vectors as
asymptotically stable equilibria of the network. This
problem is called the associative memory design prob-
lem, and has been analyzed by various researchers using
both discrete-time and continuous-time neural network
models (Hop"eld, 1982; Personnaz, Guyon, & Dreyfus,
1985; Li, Michel, & Porod, 1989; Michel, Si, & Yen, 1991;
Lillo, Miller, Hui, & Zak, 1994; Perfetti, 1995; Xu &
Kwong, 1998).

The objective of this paper is to investigate the use of
overlapping decompositions in the design of associative
memories. The idea of obtaining a solution to a large
problem by "rst decomposing the problem into a number

of smaller subproblems, and then combining their solu-
tions in a suitable way is well known, and has been
successfully applied to analysis and design of large-scale
systems (see, for example, Himmelblau, 1973; Courtois,
1977; S[ iljak, 1990). The concept of overlapping decompo-
sitions is a generalization of this idea by allowing the
subsystems to share some common parts, and thus pro-
viding greater #exibility in the choice of the subsystems
(Ikeda & S[ iljak, 1980). The theory behind the overlap-
ping decompositions is the Inclusion Principle (Ikeda,
S[ iljak, & White, 1984), which justi"es the embedding of
a "nite-dimensional system into a higher-dimensional
system called an expansion of the original system. An
overlapping decomposition of the original system corres-
ponds to a disjoint decomposition of the expanded sys-
tem. A decentralized solution for the (disjoint) pieces of
the expanded system is then contracted to obtain a solu-
tion for the original system.

The concept of overlapping decompositions has been
successively applied to various large-scale problems in-
cluding decentralized optimal control (Ikeda & S[ iljak,
1980; Ikeda, S[ iljak, & White, 1981), parallel distributed
compensation for fuzzy systems (Akar and OG zguK ner,
1999), and solution of linear equations (Calvet & Titli,
1989). The objective of this paper is to point out that the
same approach can also be used in the design of asso-
ciative memories; a problem concerned with the choice of
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some design parameters to satisfy a set of linear inequali-
ties, which is brie#y stated in Section 2. The use of
decomposition techniques in the context of associative
memory problem is further discussed in Section 3, and
a decomposition algorithm is suggested in Section 4 to
break down the problem into smaller pieces for which
available design methods can be used more e!ectively.
Finally, the proposed design procedure is illustrated with
two examples in Section 5, and concluding remarks are
given in Section 6.

2. Associative memory problem

Consider a discrete-time neural network described by
Hop"eld's model (Hop"eld, 1982) as

S : x(k#1)"F(=x(k)#b), x(0)"x
0
, (1)

where x(k)3Bn, with B"M0,1N, is the binary state vector
at instant k, =3RnCn is the interconnection matrix,
b3Rn is the bias term, and F(x)"[ f (x

1
), f (x

2
),2,

f (x
n
)]T with the activation function f being a step

function de"ned as

f (p)"G
1, p50,

0, p(0.
(2)

A vector y3Bn is an equilibrium of S if x(k, y)"y for all
k50, where x(k,x

0
) denotes the solution of (1) starting

with x(0)"x
0
. The basin of attraction of an equilibrium

y is de"ned to be the set A
y
"Mx

0
3Bn Dx(K,x

0
)"y for

some K50N.
The associative memory problem is to store a desired

set of patterns yl3Bn, l"1, 2,2, m, as equilibria of the
neural network in (1). The problem corresponds to solv-
ing for = and b for the above model such that the
number of spurious states (undesired equilibria) in the
resulting network is minimum, and the basins of attrac-
tion of the desired patterns are as large as possible. Other
requirements include the absence of limit cycles, high
storage and retrieval e$ciency, learning and forgetting
capabilities, and a non-symmetric= to avoid di$culties
in implementation.

At this stage, it is appropriate to point out that the
network S in (1) is equivalent to a network with bipolar
states x(k)3M!1,1Nn and compatible signum-type non-
linearities in that one can establish a one-to-one corre-
spondence between the equilibria of the two models with
an invertible transformation of the weight and bias terms.
In this sense, the model in (1) is also equivalent to the
brain-state-in-a-box neural network model (Lillo et al.,
1994) with x(k)3[!1,1]n and compatible saturation
type non-linearities as far as the vertex equilibria of the
latter are concerned. These observations allow for a fair
comparison of the design procedure proposed in this
paper with the existing approaches.

3. Disjoint and overlapping decompositions

To motivate the concept of overlapping decomposi-
tions we start with an example. Consider a stick of three
pieces which are colored as black (B) or white (W).
Among the 23"8 possible colorings of the stick, let us
choose the desired patterns to be stored as MBBB, BBWN.
Since the desired colorings of the pieces are independent
of each other, we can design a one-neuron neural net-
work for each piece independently of the others, and then
combine these individual solutions. If we add WWW to
be a third pattern to be stored, then, since all three pieces
can assume both colors, a disjoint decomposition as
above is not possible. The best we can do is to consider
the "rst two pieces together, and the third piece separate-
ly, in which case the desired patterns are MBB, WWN for
the "rst subsystem, and MB, WN for the second. Then
a combination of solutions results in four stored patterns
MBBB, BBW, WWB, WWWN, WWB being a spurious
state.

Now, suppose that we duplicate the middle piece, and
view the stick as consisting of four pieces instead of three,
with the restriction that the two middle pieces should be
of the same color. For this expanded stick, the patterns to
be stored are MBBBB, BBBW, WWWWN. A disjoint de-
composition of the expanded stick into two parts consist-
ing of the "rst two and the last two pieces, respectively,
results in two subsystems each with two states. The
desired patterns to be stored are MBB,WWN for the "rst
subsystem, and MBB, BW, WWN for the second subsys-
tem. Among 2]3"6 possible combinations of the solu-
tions, only three satisfy the restriction concerning the
middle pieces, and those are exactly the desired patterns
to be stored.

The actual design can be summarized as follows: Cod-
ing black and white with 1 and 0, the desired memory
matrix is written and expanded as

>"C
1 1 0

1 1 0

1 0 0D, >I "C
1 1 0

1 1 0

2 2 2

1 1 0

1 0 0 D"C
>I

1
>I

2
D.

The memory matrices >I
1

and >I
2

can be realized by two
independent neural networks with

=I
11

"C
0 1

0 1D, bI
1
"C

!0.5

!0.5D,

=I
22

"C
1 0

1 1D, bI
2
"C

!0.5

!1.5D.
A contraction of the expanded network results in the
required original network, whose parameters are
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obtained as

="C
0 1 0

0 1 0

0 1 1D, b"C
!0.5

!0.5

!1.5D.
As illustrated in this example, disjoint decompositions do
not help much other than trivial cases, while we may be
able to solve the problem using overlapping decomposi-
tions. In the following, we will further look into this
concept.

Suppose that the state vector of the neural net-
work S in (1) is partitioned into three components
as x"[xT

1
xT
2

xT
3
]T with x

q
3Bnq , q"1,2,3, and n"

n
1
#n

2
#n

3
. This induces a decomposition of S in

(1) into an interconnection of three subsystems as

S
q
: x

q
(k#1)"F

qA=qq
x
q
(k)#b

q
#

3
+

r/1,rEq

=
qr
x
r
(k)B,

q"1,2,3. (3)

This is a disjoint decomposition of the system, where the
state spaces of the subsystems are linearly independent.
Suppose that the subsystems are decoupled, that is,
=

qr
"0 for rOq. In this case, if yl

q
, q"1,2,3,

l"1,2,2, m
q
, are the equilibria (stored patterns) for the

qth subnetwork, then each of the m"m
1
]m

2
]m

3
pos-

sible combinations of the form yl"[yl1 T
1

yl2 T
2

yl3 T
3

]T is
a stored pattern of the original network. Conversely, if
the desired memory vectors can be expressed as such,
then the overall network can be obtained by synthesizing
the decoupled subsystems in (3) independently of each
other.

Alternatively, we may decompose the state vector into
two parts x8

1
"[xT

1
xT
2
]T and x8

2
"[xT

2
xT
3
]T, which over-

lap on x
2
. Clearly, this is not a disjoint decomposition of

the original state vector x, but of an expanded vector
x8 "[xT

1
xT
2

xT
2

xT
3
]T"<x, where

<"C
I
1

0 0

0 I
2

0

0 I
2

0

0 0 I
3
D,

with I
1
, I

2
, and I

3
being identity matrices of order n

1
, n

2
,

and n
3
, respectively. This transformation de"nes an ex-

panded network SI described by

SI : x8 (k#1)"FI (=I x8 (k)#bI ), x8 (0)"x8
0
, (4)

where x8 (k)3Bn8 , =I 3Rn8 Cn8 , bI 3Rn8 , and FI (x8 )"[ f (x8
1
),

f (x8
2
),2, f (x8

n8
)]T3Rn8 , with n8 5n. It is not di$cult to

show that if

=I <"<=, bI "<b, FI (<x)"<F(x),

hold, then x8 (k,<x
0
)"<x(k,x

0
) for all k50 and

x
0
3Bn. That is, the restriction of SI on the column space

of < is exactly the original network S. We call SI an
expansion of S, and S a restriction of SI .

The overlapping decomposition of x corresponds to
a disjoint decomposition of x8 , which in turn, induces
a disjoint decomposition of the expanded network
SI into two subnetworks described as

SI
1
: x8

1
(k#1)"FI

1
(=I

1
x8
1
(k)#=I

12
x8
2
(k)#bI

1
),

SI
2
: x8

2
(k#1)"FI

2
(=I

2
x8
2
(k)#=I

21
x8
1
(k)#bI

2
),

where x8
1
"[xT

1
xT
2
]T, x8

2
"[xT

2
xT
3
]T,

=I
1
"C
=

11
=

12
=

21
=

22
D, =I

12
"C

0 =
13

0 =
23
D,

bI
1
"C

b
1

b
2
D, (5)

=I
2
"C
=

22
=

23
=

32
=

33
D, =I

21
"C
=

21
0

=
31

0D,

bI
2
"C

b
2

b
3
D, (6)

and

FI
1
(x8

1
)"[ f (x8

11
), f (x8

12
),2, f (x8

1,n1`n2
)]T,

FI
2
(x8

2
)"[ f (x8

21
), f (x8

22
),2, f (x8

2,n2`n3
)]T.

Clearly, if =I
12

"0 and =I
21

"0, then the two subnet-
works are decoupled and therefore can be designed inde-
pendently. This, however, puts some restrictions on the
structures of the=I

1
and=I

2
matrices of the subsystems.

They have to be of the form

=I
1
"C
=

11
=

12
0 =

22
D, =I

2
"C
=

22
0

=
32
=

33
D. (7)

Now if y8 l
q
, q"1,2, l"1,2,2,m8

q
, are the equilibria of

SI
q
, then each of the m8 "m8

1
]m8

2
possible combinations

of the form y8 l"[y8 l1 T
1

y8 l2 T
2

]T is an equilibrium of SI .
However, among these, only the ones that satisfy
y8 l"<yl correspond to the equilibria of S. Moreover,
the basin of attraction of each such yl is exactly the
restriction of the basin of attraction of the corresponding
y8 l to the column space of <. Conversely, if the desired
memory vectors can be decomposed into overlapping
components which can be realized by subnetworks hav-
ing the bias inputs as in (5), (6) and the weight matrices of
the form in (7), then the problem can be solved by
designing smaller-dimensional networks.

4. Design and decomposition algorithms

Design by overlapping decompositions explained in the
previous section is summarized by the following algorithm.
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4.1. Overlap-design algorithm

1. Find a transformation matrix< and expand the mem-
ory vectors as

>I "<>"C
>I
1
>I
2
D. (8)

2. Design subnetworks with=I
q

as in (7) and bI
q

as in (5),
(6) to store the memory matrices >I

q
, q"1,2.

3. Compute = and b by restricting =I and bI on the
column space of <.

Step 3 of the algorithm is trivial as the matrices=I
q

and
bI
q
, q"1,2, contain nothing more than the required

parameters of = and b.
In Step 2 of the algorithm, any design method can be

used provided it takes into account the additional con-
straints on=I

q
and bI

q
, q"1,2. Concerning this step, we

would like to emphasize that the whole idea behind the
overlap-design algorithm is not to suggest a new design
method for the subnetworks, but rather to apply the
existing methods to smaller (overlapping) pieces of the
whole network.

The key step of the algorithm is Step 1. The block
diagonal structure of =I

q
reveals that each subnetwork

SI
q

should be designed in a hierarchical manner, "rst the
part common to both subnetworks (corresponding to x

2
)

and then the remaining parts (corresponding to x
1

for
SI

1
and x

3
for SI

2
). In other words, not only the design of

the overlapped part is independent of the design of the
rest, but also the designs of the remaining parts of the
subnetworks depend only on the overlapped part and are
independent of each other. Therefore, identi"cation of
a common part that allows for such a hierarchical design
is what makes an overlapping decomposition useful. An-
other reason for the decomposition to be the most critical
step of the algorithm is the fact that the advantage of
overlapping decomposition heavily depends on how
large the overlapping block is. Sometimes the decompo-
sition is inherent in the physical problem itself as we will
be demonstrating in the pattern recognition example in
Section 5. Most of the times it is not, in which case we
want to decompose the equilibria set such that the over-
lapping block size is as small as possible. Below we
provide an algorithm to decompose the rows of a mem-
ory matrix into two groups overlapping on a single row
which allows for a hierarchical design.

4.2. Decomposition algorithm

1. Fix one of the rows of > and index the other rows
from 1 to n!1.

2. Let ("0, )"M1,2,3,2, n!1N. ( and ) will con-
tain the indices of the rows forming the two equilibria
sets overlapping on the "xed row.

3. Initialize i"1, and min"2n.
4. while (i(n!1) and (min'm)

4.1. Initialize j"1.
4.2. while ( j(D)D) and (min'm)

4.2.1. r"row of > corresponding to jth element
of ).

4.2.2. A"(XMrN, B"(!MrN.
4.2.3. M"total equilibrium points correspond-

ing to groups A and B.
4.2.4. If M(min, then min"M and index"j.
4.2.5. j"j#1.

4.3. ("(XMindexN, )")!MindexN.
4.4. i"i#1.

Since the decomposition algorithm provided above
checks only for two equilibria sets with only one overlap-
ing row, it fails when such a decomposition does not
exist. In this case, either we take the optimal solution, or
we revise the algorithm for the search of two equilibria
sets with two or more overlapping rows. To modify the
algorithm for two rows overlapping, for instance, we
proceed as follows: We "x a pair of rows (among
n(n!1)/2 possible) to be overlapped, and then search for
two sets ( and ) (("0, )"M1,2,2, n!2N, initially
in Step 2 of the algorithm) so that these sets combined
with the two overlapped rows will form the decoupled
equilibria sets in the expanded space. Decomposing the
equilibria set into two sets with three or more rows
overlapping can be carried out similarly. When one
wants to decouple the equilibria set into more than two
equilibria sets, this can be done by "rst "nding an over-
lapping pair of equilibria sets using the Decomposition
Algorithm, and then employing the algorithm iteratively
within each set independently to come up with three or
more overlapping equilibria sets.

5. Examples

In this section, two examples are presented to illustrate
the e!ectiveness of the overlap-design algorithm. In the
"rst example, neural network parameters are synthesized
using both the existing methods and the overlap-design
algorithm, and the performance of the resulting neural
networks are compared. The second example is a pattern
recognition application for which design with the existing
methods is not possible.

Example 1. This example is taken from Li et al. (1989).
The desired memory vectors are the rows of the matrix

>T"C
0 1 0 1 1 1 0 1 1 1
1 1 0 0 1 0 1 0 1 1
0 1 1 1 0 0 1 0 1 0
1 1 0 1 0 1 0 1 1 1
1 0 0 0 1 1 1 0 0 0 D .
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="C
1 0 0 !2 !1 0 1 2 0 0
0 1 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0

!1 0 !1.33 !0.67 2 0 !1 0.67 0 0
0 !1 !2 1 0 0 0 0 0 0

!1 0 2 !1 1 0 0 !1 0 0
!1 0 !4 3 1 0 !2 !3 0 0

0 1 1 0 0 0 0 0 0 0
0 1 !1 0 0 0 0 0 0 0

D , b"C
!0.5
!0.5
!0.5
!0.5

0.5
0.5
0.5
1.5

!0.5
!0.5

D ,

Applying the decomposition algorithm to >, we "nd
out that there is no equivalent decomposition with only
one row overlapped. However, if we apply the algorithm
with two rows overlapped, we see that various decompo-
sitions exist. Among them, let us take the groups
(1,3,4,5,7,8) and (2,3,4,6,9,10). Then the expansion matrix
becomes

<"[eT
1

eT
3

eT
4

eT
5

eT
7

eT
8

eT
2

eT
3

eT
4

eT
6

eT
9

eT
10

]T,

where e
i
is a 1 by n row vector with 1 in the ith entry and

zeros elsewhere. Transforming the equilibria matrix> by
<, the problem is reduced to solving for two subnetworks
of dimension 6 which have equilibria as the columns of
the matrices

>I
1
"C

0 1 0 1

0 0 1 0

1 0 1 1

1 1 0 0

0 1 1 0

1 0 0 1
D, >I

2
"C

1 1 1 0

0 0 1 0

1 0 1 0

1 0 0 1

1 1 1 0

1 1 0 0
D.

Note that while the number of desired patterns to be
stored by the original network is "ve, each of the subnet-
works are required to store only four patterns. This is due
to the fact that parts of di!erent patterns corresponding
to the subnetworks may be the same.

Straightforward design for >I
1

and >I
2

subject to the
structural constraints on the weight and bias matrices
yields globally stable subnetworks with no spurious
states. Since each subnetwork stores exactly four equilib-
ria, the decoupled neural network will store 4]4"16
equilibria in the expanded state space. However, among
these 16 possible equilibrium points, only "ve of them
correspond to actual equilibria in the original space, and
the remaining eleven degenerate to one of these "ve. Not
surprisingly, these "ve equilibria are exactly the desired
equilibria in the original set, since the decomposition
algorithm has provided an exact overlapping decomposi-
tion. After contraction, the neural network with the
parameters,

results in a globally stable network with no spurious
states.

In Table 1, we summarize the performances of various
neural networks designed using di!erent methods, where
OPM refers to the outer product method of Hop"eld
(1982), PLR to the projection learning rule of Personnaz
et al (1985), and ESM to the eigenstructure method of Li
et al. (1989). In the table, M is the total number of stable
equilibria, and k(y, k) denotes the total number of vectors
converging to the equilibrium y and with Hamming
distance to y being less than or equal to k. Therefore,
+5

l/1
k(yl,1) denotes the total number of vectors within

unit Hamming distance converging to the desired mem-
ory vectors. These parameters are a measure of the basin
of attraction of the desired memory vectors. It is clear
from this table that the design by overlapping decompo-
sitions outperforms the other methods since it leads to
a network with no spurious states. Relatively larger
basins of attraction of equilibria as compared with other
designs is an additional gain, although that is not the
major objective of the overlap-design algorithm.

Example 2. This example is an application of the pro-
posed design method to a pattern recognition problem.
The objective is to realize the character set given in
Fig. 1 as asymptotically stable equilibria of a 25-neuron
neural network. Decomposing the 5]5 grid on which the
characters are de"ned into four 3]3 grids overlapping
on the middle row and column of pixels, the problem is
decomposed to designing four neural networks of nine
neurons each. This numbering and decomposition pro-
cess is shown in Fig. 2. Note that this is a natural
decomposition, and is more general than one that can be
produced by the decomposition algorithm as pixel pairs
M3,8N, M11,12N, M14,15N and M18,23N are each shared by
two subnetworks, and pixel M13N by all four.

Independent designs, after coding the black and white
pixels by 1s and 0s, yield globally stable subnetworks
with 33, 62, 35 and 38 equilibria, respectively. By contrac-
tion, we obtain a neural network with 6769 equilibria.
The number of patterns converging to each desired
prototype is listed in Table 2.

We note that synthesis of a neural network for this
character set by using known methods is not possible.
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Table 1
Results for di!erent methods in Example 1

OPM PLR ESM Lillo et al. Perfetti Overlap-design

M 41 122 20 8 10 5
k(y1,10) 38 24 84 143 112 240
k(y2,10) 41 28 75 62 58 128
k(y3,10) 73 34 113 16 82 512
k(y4,10) 38 24 84 29 133 16
k(y5,10) 68 33 105 56 127 128
+5

l/1
k(yl,1) 33 30 40 9 46 35

Fig. 1. Character set to be recognized by the neural network.

Table 2
Total number of vectors converging to prototype characters

Pattern (p) A B C D E F G H
k(p, 25) 10,240 864 288 6016 120 384 768 122880

Pattern (p) I J P R U V Y K
k(p, 25) 1344 2688 7680 368 5120 56832 39376 768

Pattern (p) L M N O Z 1 2 3
k(p, 25) 1920 79680 651392 6720 128 5376 24 576

Pattern (p) 4 5 6 7 8 9 * *

k(p, 25) 56 432 144 512 216 648 * *

Fig. 2. Original and expanded systems.

The outer product rule will be able to store only three of
the patterns, the projection learning rule, eigenstructure
method and the method of Lillo et al. will store all the
225 patterns. Perfetti's method is not even applicable,
since there are prototype patterns which are at unit
Hamming distance from each other (e.g., 5 & 6, 8 & 9).

6. Conclusion

In this paper, the use of overlapping decompositions in
associative memory design via arti"cial neural networks
has been investigated. The proposed method consists of
decomposing the design problem into subproblems that
interact through the overlapping components, "nding
a solution to each subproblem independently (that is,
synthesizing subnetworks that solve the subproblems),
and combining the subnetworks in a suitable way to
obtain a solution for the overall problem. The increase in
dimensionality of the problem due to duplication of the
overlapped parts, and the additional structural con-
straints on the weight matrices of the subnetworks are
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o!set by the advantage of dealing with smaller subprob-
lems independently of each other. The particular method
used in the design of subnetworks is not important as
long as it can handle the structural constraints on the
weight matrices, although some methods may be more
suitable than others.

Several topics are open to further research: The "rst is to
improve the decomposition algorithm so that it can gen-
erate a decomposition of a given set of desired equilibria
into more than two components overlapping on more
than one row. Although "nding the optimal decomposi-
tion into a "xed number of components seems to be an
NP problem, some heuristics can be used to achieve
a suboptimal decomposition with reasonable e!ort.
A second problem is to "nd ways to relax the require-
ment that the subnetworks be decoupled in the expanded
space. This not only relaxes the constraints on the weight
matrices, but also nonzero o!-diagonal blocks of the
weight matrices can be used to eliminate some of the
spurious states of the expanded network. A "nal topic of
investigation is associative memory design via neural
networks with multilevel threshold functions.
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