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Abstract

We consider a system described by the one-dimensional linear wave equation in a bounded domain with appropriate boundary
conditions. To stabilize this system, we propose a dynamic boundary controller applied at the free end of the system. The transfer
function of the proposed controller is a proper rational function which consists of a strictly positive real function and some poles
on the imaginary axis. We then show that under some conditions the closed-loop system is exponentially stable. ? 2002 Published
by Elsevier Science Ltd.
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1. Introduction

In recent years, boundary control of in8nite-dimensi-
onal systems has become an important research area, see
e.g. Luo, Guo, and Morg%ul (1999) for more informa-
tion and references. In this note, we will consider a sys-
tem described by the one-dimensional wave equation in
a bounded domain. We assume that a dynamic boundary
control is applied to the system for stabilization. We pro-
pose a (rational) controller transfer function, which con-
tains a strictly positive real part and some simple poles on
the imaginary axis. The residues associated with the imag-
inary axis poles are assumed to be positive. Such trans-
fer functions have been proposed to stabilize the wave
equation, see Morg%ul (1994, 1998), where it was shown
that with these controllers, the resulting closed-loop sys-
tem is asymptotically stable under some conditions. In
many cases, exponential stability is desired, due to e.g.
the robustness of the resulting closed-loop system, and
in in8nite-dimensional systems, asymptotic stability may
not imply exponential stability.
Note that exponential stability for this system could

be achieved by static output feedback, see Chen (1979).
However, if we also want to achieve tracking and=or dis-
turbance rejection for certain classes of output signals,
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then we need a dynamic controller containing an internal
model, see H%am%al%ainen and Pohjolainen (2000), Morg%ul
(1998). The dynamic controllers discussed in this paper
would be suitable for reference and disturbance signals
which are the superposition of a constant and a sinusoid
at frequency !1. We show that the resulting closed-loop
system is exponentially stable under some conditions. We
do not discuss the tracking error.

2. Problem statement

In this note, we consider the following system:

utt(x; t) = uxx(x; t); (1)

u(0; t) = 0; ux(1; t) =−f(t); (2)

where, without the loss of generality various coeFcients,
including the length of the spatial domain, are assumed
to have unit values, x∈ (0; 1) denotes the spatial variable,
t¿ 0 denotes time, u(�; 	) denotes the solution of the
wave equation at x=�; t= 	, a subscript as in ut denotes
the partial derivative with respect to the corresponding
variable, and f : R+ → R is the boundary control applied
at the end point x = 1. The systems whose behaviour
may be modelled by (1)–(2) include strings, vibrations of
long cables, longitudinal motion and torsional vibrations
of Gexible beams, etc.
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It is well-known that if we use the following controller:

f(t) = dut(1; t); d¿ 0 (3)

then the resulting closed-loop system is exponentially
stable in an appropriate Hilbert space, see Chen (1979).
The static controllers given by (3) were extended to dy-
namic ones in Morg%ul (1994, 1998), i.e. the controller
is a 8nite-dimensional linear time-invariant (LTI) system
whose input and output are given by ut(1; t) and f(t), re-
spectively. Following Morg%ul (1994, 1998), we propose
the following model for the controller:

ż1 = Az1 + but(1; t); ẋ1 =!1x2;

ẋ2 =−!1x1 + ut(1; t);
(4)

f(t) = cTz1 + dut(1; t) + ku(1; t) + k1x2; (5)

where z1 ∈Rn, for some natural number n, A∈Rn×n is
a constant matrix, b; c∈Rn are constant column vectors,
!1; d; k; k1 ∈R, are various non-negative constants and
the superscript T denotes transpose. If we take the Laplace
transform in (4)–(5), we obtain the following transfer
function h(s) for the controller:

h(s) = h1(s) +
k
s
+

k1s
s2 +!2

1
; (6)

where h1(s) = cT(sI − A)−1b + d, i.e. we have f̂(s) =
h(s)û t(1; s), where a hat denotes the Laplace transform
of the corresponding variable. It was shown in Morg%ul
(1998) that this type of controllers are useful for dis-
turbance rejection. Following Morg%ul (1994, 1998), we
assume that: (i) A is stable, (ii) the triplet (A; b; c) is
minimal, that is (A; b) is controllable and (A; c) is ob-
servable, see e.g. Curtain and Zwart (1995) and (iii) for
some �¿ 0 we have

R{h1( j!)}¿�; !∈R: (7)

We 8rst de8ne the following function spaces:

H= {(u v z1 x1 x2)T|u∈H1
0 ; v∈L2; z1 ∈Rn; x1; x2 ∈R};

(8)

L2 =

{
f : [0; 1] → R

∣∣∣∣∣
∫ 1

0
f2 dx¡∞

}
; (9)

Hk
0 = {f∈L2|f;f′; : : : ; f(k) ∈L2; f(0) = 0}: (10)

Note that in (9) f is measurable, and in (10),
f;f′; ·; f(k−1) are absolutely continuous. Eqs. (1)–(2),
(4)–(5) can be given as follows:

ż = Lz; z(0)∈H; (11)

where z = (u ut z1 x1 x2)T ∈H, the operator L : H → H
and its domain D(L) are de8ned as

L




u
v
z1
x1
x2


=




v
uxx

Az1 + bv(1)
!1x2

−!1x1 + v(1)


 : (12)

D(L) := {(u v z1 x1 x2)T ∈H|u∈H2
0 ; v∈H1

0 ; z1 ∈Rn;

x1; x2 ∈R; ux(1) + cTz1 + dv(1)

+ ku(1) + k1x2 = 0}: (13)

In H, we de8ne the following “energy” norm:

‖z‖2E =
1
2

( ∫ 1

0
(v2 + u2x) dx + ku2(1; t) + zT1Pz1

+ k1(x21 + x22)

)
; (14)

where P is an appropriate symmetric, positive de8nite
matrix, see Morg%ul (1994, 1998). We note that the norm
given above is induced by an appropriate inner-product,
henceH is a Hilbert space. Note that in the following, we
may work in the complexi8ed versions of these Hilbert
spaces, but for convenience we do not change the nota-
tion. Next we summarize the results of Morg%ul (1994,
1998).

Theorem 1. Consider the system given by (11) and let
the assumptions stated above hold.

(i) The operator L generates a C0 semigroup of con-
tractions on H (for the terminology of semigroup
theory; see e.g. Luo; Guo; & Morg$ul; 1999).

(ii) If k1¿ 0 and !1 
=m� for all natural numbers m;
then T (t) is asymptotically stable.

(iii) If k1 =0 and �¿ 0 (see (7)); then T (t) is exponen-
tially stable.

Proof. For (i) and (ii); see Morg%ul (1998); and for (iii);
see Morg%ul (1994).

It was conjectured in Morg%ul (1998) that even if
k1 ¿ 0, we may have exponential stability, provided
that �¿ 0. In the sequel, we will prove this statement.
We will need the following result, which is due to
F.L. Huang, see e.g. Luo, Guo, and Morg%ul (1999).

Theorem 2. Let T (t) be a bounded C0—semigroup gen-
erated by an operator A; in a Hilbert space. Then; T (t)
is exponentially stable if and only if the imaginary axis
belongs to the resolvent set of A; and the following holds:

sup
!∈R

‖(j!I − A)−1‖¡∞: (15)
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3. Exponential stability

Our main result is the following:

Theorem 3. Consider the system given by (11). Let the
assumptions stated above hold; and let �¿ 0; (see (7)).
If !1 
=m� for all natural numbers m; then T (t) is ex-
ponentially stable.

Proof. The case k1 = 0 was proven in Morg%ul (1994);
hence we consider the case k1 ¿ 0. Note that the operator
(!I − L)−1 : H → H is compact for !¿ 0; hence; the
spectrum of L consists entirely of isolated eigenvalues
and moreover !=0 is not an eigenvalue of L; see Morg%ul
(1998).
In the proof, we will use Theorem 2 stated above. First

note that by Theorem 1, ‖T (t)‖ is bounded. Next, we will
show that the imaginary axis belongs to the resolvent set
of L. By contradiction, assume that for some !∈R; j!
does not belong to the resolvent set of L. Since L has com-
pact resolvent, it follows that for some non-zero z ∈D(L),
we must have

(j!I − L)z = 0: (16)

First assume that ! 
=!1. By using (12) in (16) and z=
(u v z1 x1 x2)T ∈D(L), we obtain

u(x) = C sin!x; v(x) = j!C sin!x; (17)

z1 = (j!I − A)−1bv(1); ((j!)2 +!2
1)x2 = j!v(1);

(18)

where C 
=0 is a constant. By using (17)–(18) in (13)
we obtain

C!(cos!+ jh(j!) sin!) = 0; (19)

where h(s) is given by (6). Let us de8ne h(j!)=R(!)+
jI(!) where R(!) and I(!) are real and imaginary parts
of h(j!), respectively. Note that s=0 is not an eigenvalue,
hence ! 
=0. Hence from (19) we obtain

R(!) sin!= 0; cos!− I(!) sin!= 0: (20)

Since R(!)¿�¿ 0, from (20) we obtain sin!= 0 and
cos!=0, which is a contradiction. If !=!1, from (18)
we obtain v(1) = 0 and from (17) we obtain sin!1 = 0,
which implies !1 = m� for some m, contradicting our
assumption. Hence, it follows that the imaginary axis be-
longs to the resolvent set of L.
Finally, to show that (15) holds, note that since

(j!I−L)−1 is a holomorphic function on the resolvent set,
see e.g. Curtain and Zwart (1995), it follows that for
any #¿ 0, the following holds:

sup
|!|6#

‖(j!I − L)−1‖E ¡∞; (21)

where the norm in (21) is the operator norm induced by
(14). Hence, to prove (15), it suFces to consider the
behaviour of the resolvent as ! → ∞.
Let ! be suFciently large. Let y=(p q r r1 r2)T ∈H

be given and let z = (u v z1 x1 x2)T ∈D(L) be such that
the following holds:

(j!I − L)z = y: (22)

By using (12), (22) can be rewritten as follows:

j!u− v= p; j!v− uxx = q;

(j!I − A)z1 − bv(1) = r;
(23)

j!x1 −!1x2 = r1; j!x2 +!1x1 − v(1) = r2: (24)

From the last equation in (23) we obtain

z1 = (j!I − A)−1(bv(1) + r): (25)

By using the 8rst two equations in (23), we obtain a diQer-
ential equation in u, whose solution satisfying u(0) = 0
is given by

u(x)=jC sin!x− 1
!

∫ x

0
[q(�)+j!p(�)] sin!(x−�) d�;

(26)

where C is a constant to be determined by the second line
in (13). By using (23) and (26) in (13) we obtain

j!C(cos!+ jh(j!) sin!) = K; (27)

K =
∫ 1

0
(q(�) + j!p(�))(cos!(1− �) + jh(j!)

sin!(1− �)) d�+
[
h(j!)− k

j!

]
p(1)

− cT(j!I − A)−1r + k1
!1r1 − j!r2
( j!)2 +!2

1
; (28)

where h(s) is given by (6). Using integration by parts we
obtain

!
∫ x

0
p(�) cos!(x − �) d�=

∫ x

0
p′(�) sin!(x − �) d�

(29)

!
∫ x

0
p(�) sin!(x − �) d�

=p(x)−
∫ x

0
p′(�) cos!(x − �) d�: (30)

Moreover, for any p∈H1
0 we have (see Morg%ul, 1994)

|p(x)|26
∫ x

0
|p′(�)|2 d�: (31)
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By using (23), (26), (28)–(31), we obtain∫ 1

0
|u′(�)|2 d�

6 3

(
|!C|2 +

∫ 1

0
|q(�)|2 d�+

∫ 1

0
|p′(�)|2 d�

)
;

(32)∫ 1

0
|v(�)|2 d�

6 3

(
|!C|2 +

∫ 1

0
|q(�)|2 d�+

∫ 1

0
|p′(�)|2 d�

)
;

(33)

By using (23), (26), (30), and (31) in (25) we obtain

‖z1‖26K1‖(j!I − A)−1‖2(
|!C|2 +

∫ 1

0
|q(�)|2 d�

+
∫ 1

0
|p′(�)|2 d�+ ‖r‖2

)
; (34)

where K1 is an appropriate constant. Finally, note that

|D(!)|2 = |cos!+ jh(j!) sin!|2

= |cos!− I(!) sin!+ jR(!) sin!|2

¿ �2 sin2!+ cos2 !− I(!) sin 2!: (35)

Note that I(!) → 0 as ! → ∞, and �2 sin2! +
cos2 !¿min{�2; 1}. Hence, for some K2 ¿ 0 we have
|D(!)|¿K2 for! suFciently large. Since ‖(j!I−A)−1‖
and |h(j!)| are bounded for large !, by using (29)–(31)
in (28) we obtain

|K |26K3‖z‖2E (36)

for some K3 ¿ 0. Hence, from (27), (35) and (36) it
follows that

|!C|26K4‖y‖2E (37)

for someK4 ¿ 0. Since P is a symmetric, positive-de8nite
matrix, by using (32)–(37) in (14) we obtain the follow-
ing for large !:

‖z‖2E6K5‖y‖2E (38)

for some constant K5 ¿ 0. Hence it follows that

sup
|!|¿#

‖(j!I − L)−1‖E ¡∞ (39)

for #¿ 0 suFciently large. Hence, (15) follows from
(21) and (39). Therefore, it follows from Theorem 2
that the semigroup T (t) generated by L is exponentially
stable.

Remark 1. Let us consider the system given by (1)–(2)

utt(x; t) = uxx(x; t); u(0; t) = 0; ux(1; t) = v(t);

y(t) = ut(1; t);
(40)

where v(·) and y(·) are the (boundary control) input and
measured output; respectively. For the analysis of such
systems frequency domain concepts may also be used; see
e.g. H%am%al%ainen and Pohjolainen (2000);Rebarber (1993;
1995); and Weiss and Curtain (1997). In this approach;
the representation given by (40) cannot be directly used;
since it is not in the abstract linear system form. System
(40) can be put into the boundary control system form
de8ned in Salamon (1987). Let us de8ne the following
spaces and operators:

H = {(*  )T |*∈H1
0 ;  ∈L2};

Z = {(*  )T |*∈H2
0 ;  ∈H1

0};
(41)

Sw = ( *′′)T; .w = *′(1); Kw =  (1); (42)

where w = (*  )T ∈Z; and D(S) = Z . For w = (u ut)T;
system (40) may be expressed as

ẇ =Sw; .w = v; y = Kw; (43)

for details; see Salamon (1987). It can be shown that the
system given by (41)–(43) is well-posed (in the sense
of Salamon); see Salamon (1987). If we take the Laplace
transform of (40); after some straightforward algebra we
obtain ŷ(s)=g(s)v̂(s) where g(s)=(sinh s)=(cosh s). Un-
der certain conditions; boundary control systems of form
(43) may be expressed as an abstract linear system in the
following form:

ẇ = Aw + Bv; y = C1w +Dv (44)

see Salamon (1987) for the relation between various
operators and their domains in (43); (44). For a mean-
ingful relation between (43) and (44); D = lims→∞ g(s)
should hold; and in the present case we have D = 1. By
using the well-posedness result stated above; the fact
that |D|¡∞; and by using the results of Weiss (1994)
and Weiss and Curtain (1997); it can be shown that rep-
resentation (44) is well-posed and regular (in the sense
given in Weiss & Curtain; 1997). It is well-known that
for system (43); with the static feedback law v = −2y;
2¿ 0; the resulting closed-loop system is exponen-
tially stable. Either by using this result; or by direct
calculation; it can be shown that representation (44) is
stabilizable and detectable in the sense of Weiss and
Curtain (1997); see Rebarber (1993; 1995) for similar
calculations. By using these results; exponential stability
result presented in this note may be obtained by using
the frequency domain techniques; see e.g. Weiss and
Curtain (1997). More precisely; consider the feedback
law given by v̂(s) = −h(s)ŷ(s); where h(s) is given by
(6). Let us de8ne g(s) = C1(sI − A)−1B+ D; (which is
g(s) = (sinh s)=(cosh s) in our case); and the feedback
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system transfer matrix H (s) = [hij(s)] with h11 = h22 =
(1 + hg)−1; h12 = h(1 + hg)−1; h21 = g(1 + hg)−1; see
Weiss and Curtain (1997). Then the exponential stability
result presented in this note may be obtained by showing
that H (s)∈H∞; i.e. its poles are in the open left-half
of the complex plane; and sup!‖H (j!)‖¡∞; see e.g.
Proposition 4:6 of Weiss and Curtain (1997).

Remark 2. Most of the research in the area of boundary
control of in8nite-dimensional systems is concentrated
on the problem of stabilization of conservative Gexible
structures (e.g. strings and beamswithout damping). Such
systems have in8nitely many poles on the imaginary axis
and can be uniformly stabilized by using simple static
controllers (e.g. the system given by (1)–(3)); see Chen
(1979) and Luo; Guo; and Morg%ul (1999). It was known
that these systems become unstable when arbitrary small
time delays were introduced in the feedback law; see e.g.
Logemann; Rebarber; and Weiss (1996). Although in the
case of conservative systems (i.e. without damping); the
use of dynamic controllers presented in this note will
not change the non-robustness result stated above; when
damped models are used certain improvements may be
obtained by the use of dynamic controllers; see Morg%ul
(1995).

4. Conclusion

In this note, we considered the stabilization of the
wave equation in a bounded domain by means of a dy-
namic boundary control law. The transfer function of the
controller may contain simple poles on the imaginary
axis. This type of controllers were proposed for the stabi-
lization of the wave equation, however only asymptotic
stability results were given. In this note, we proved that
with the proposed controller the closed-loop system is
actually exponentially stable under some conditions.
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