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ABSTRACT 

We investigate a Bohr phenomenon on the spaces of solutions of weighted Laplace-Beltrami operators 
associated with the hyperbolic metric of the unit ball in C N. These solutions do not satisfy the usual 
maximum principle, and the spaces have natural bases none of whose members is a constant function. 
We show that these bases exhibit a Bohr phenomenon, define a Bohr radius for them that extends the 
classical Bohr radius, and compute it exactly. We also compute the classical Bohr radius of the invariant 
harmonic functions on the real hyperbolic space. 

1. INTRODUCTION 

It is truly rare that a mathematical paper generates intensive research activity after 
lying dormant for almost a century following its publication. -Yet this is exactly what 
the short 1914 paper [16] ofH.  Bohr has accomplished in the last decade. 

The only theorem in Bohr's paper involved power series ~-,m am zm mapping 
the unit disc D into itself, and stated that there is a radius K such that the sum 
~'-~m lamzml of  the moduli of  the terms of  the power series does not exceed 1 for 
all Iz[ < K. Bohr originally obtained the value K = 1/6, but the best value of  K 
was soon shown to be 1/3, this independently by Riesz, Schttr, and Wiener. The 
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paper [16], compiled by Hardy from correspondence, contains both Bohr's and 
Wiener's proofs; see also [28]. It is quite fitting that the best value 1/3 is called 
the Bohr radius of  2 ,  considering that Harald Bohr was the younger brother of  
Niels Bohr, the physicist after whom another radius was named in the theory of 
the hydrogen atom. For further historical information on H. Bohr and his work on 
Dirichlet series that led to his power series theorem, we refer the reader to [12] 
and [20]. Let us also mention that the Riesz brother cited above was Marcel 
Riesz, and that Wiener was Friedrich Wilhelm Wiener, whose main contributions to 
mathematics appear to consist of  simpler proofs of some known theorems; see [ 15]. 

At least two other proofs of  Bohr's theorem were published later (see [34] 
and [37]), but apart from that, the theorem did not attract much attention for 
decades. Much later, as a byproduct of a connection between the existence of 
absolute bases and nuclearity in infinite-dimensional holomorphy, a generalization 
of  the Bohr radius to polydiscs in C N was discovered in [21, Theorem 3.2], But 
it was the paper [14] that carried Bohr's power series theorem to prominence. Its 
authors gave upper and lower bounds for the Bohr radius of  the unit polydisc D w for 
all N, and in Remark 3, they explained why the result of [21 ] is only asymptotically 
true. 

A series of  papers by several authors followed [14], extending the concept of  Bohr 
radius in several different directions. Two kinds of  Bohr radius were defined in [3] 
for any bounded convergence domain G for power series (a complete Reinhardt 
domain) in C N. The classical Bohr radius KN (G) is the largest r such that if a 
multiple power series y~× a×z × is bounded by 1 in G, then ~ ×  la×zZ[ < 1 for z in 
the scaled domain rG. The second Bohr radius BN(G), which is somewhat easier 
to work with, is the largest r such that if Y~× azz× is bounded by 1 in G, then 
~ z  SUprG laz z×I ~< 1. Estimates for either kind of  Bohr radius for a large variety of 
domains can be fotmd in [4], [13] and [19], among others. Let us note, however, 
that D is the only domain in one or several variables for which the exact value of  
the Bohr radius of  either kind is known exactly. 

A domain and its Bohr radius are often realized by replacing the usual norm 
Pzl = Izh by a new norm Izl' and considering the Bohr radius of  the unit ball of  the 
underlying space C N with respect to I • I'. This idea was treated from an abstract 
point of  view in [18] and [17] using local Banach space theory, and improved 
estimates were obtained for the classical Bohr radii KN of  the unit balls of  rather 
large classes of finite-dimensional Banach spaces in terms of  unconditional basis 
constants and Banach-Mazur distances between (C N, ] - I t) and (C N, I " Ip). The 
methods in these works as well as those of [13] were probabilistic. 

Power series bounded by 1 are members of  the trait ball of  the function space H ~ 
with respect to the norm II • Iloo. Bohr properties of  the unit balls of  other function 
spaces can be analyzed by supplanting II " I1~ by other norms II • I1'. This course was 
pursued in [11] on D with equivalent Hardy norms and yielded a characterization 
of  norms II " I1' that display a Bohr property, which in turn was applied to a direct 
proof of  the higher order and multivariable Schwarz-Pick estimates of  [29]. The 
Hardy space made another appearance in [32], which also has Bohr-type results 
for Laurent series on annuli. One can study different function spaces even with 
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II • II~; this was done in [8] for power series with initial terms missing, and in [26] 
for polynomials of a fixed degree. Stressing partial sums of power series instead, a 
Rogosinski radius was defined and computed in [7]. 

An interesting application of the Bohr radius to finding a Banach algebra 
satisfying the nonunital von Neumann inequality and not isomorphic to an operator 
algebra appeared earlier in [22]. This line of investigation was continued in [30], 
where operator-theoretic methods led to Bohr-type inequalities for the multiplier 
algebras of weighted Hardy spaces in several variables, in which II f I1~ is replaced 
by the multiplier norm of f .  More importantly, in this paper and in [33], versions of 
multivariable Bohr-type inequalities were obtained for several classes of holomor- 
phic and harmonic functions in noncommutative variables of N-tuples of bounded 
operators. A Bohr phenomenon exists for uniform algebras too; see [31 ]. The Bohr 
radius 1/3 is encountered repeatedly in various contexts in these references. 

For the purposes of this paper, the most interesting approach, as initiated in [5] 
and [6], is the one that views a Bohr phenomenon as a property of a basis for the 
space of functions under consideration. For holomorphic functions on a complex 
manifold, a basis having a certain Bohr property must contain a constant function; 
see [6, Proposition 3.1, Theorem 4.5]. It is easy to construct a basis with no constant 
element for holomorphic functions on the unit disc without a related Bohr property; 
see [5, Example 3]. Then it should come as no surprise that in all other literature it 
is implicit that the bases in question always contain the constant function. 

The basis approach proved useful in [27] in obtaining a Bohr radius for certain 
elliptic domains in the plane, using a basis consisting of Faber polynomials. Similar 
ideas were applied in [9] to solutions of second-order elliptic partial differential 
equations that have constants as solutions, and Bohr radii were computed for various 
classes of harmonic functions. 

However, there are second-order elliptic partial differential operators of interest 
that do not admit constants as solutions. One important class is the weighted 
Laptace-Beltrami operators associated with the Bergman metric on the unit ball 
of cN; see [25] and [1]. The unweighted operator is the invariant Laplacian, and 
except for this special case, no other operator in this class annihilates constants. 
The solution spaces of  the remaining operators, called the otot-harmonic functions, 
have natural bases none of whose members is a constant function. 

Elliptic partial differential operators without constant solutions do not satisfy 
the usual maximum principle, but some weaker forms of it; see [23, Section 6.4]. 
However, as remarked in [9, Section 1], the crucial property for a Bohr phenomenon 
is the Harnack inequality, and it is satisfied by the solutions of all second-order 
elliptic equations; see [23, Section 6.4.3]. 

In this work, we show that the solution spaces of the weighted Laplace-Beltrami 
operators exhibit a Bohr phenomenon. We define and compute the exact value of a 
Bohr radius for each space of uo~-harmonic functions. The computations depend on 
the spherical harmonic expansion of the invariant Poisson kernel obtained in [24], 
and yield a similar expansion for the more general class of so-called oEfl-Poisson 
kernels in Theorem 3.1. The following combination of Equation (16), Theorem 4.8, 
and Corollary 4.9 is our main result. 
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Theorem.  For N + 2or > O, the Bohr radius ~ a  for  otot-harmonic functions on the 
unit ball o f  C N is the unique root o f  the equation 

(1 + r) N+2~ = 2F(-o t ,  -or; N; r 2) 
( 1  - -  r) N 

in the interval (0, 1), where F is the hypergeometric function 2171. In particular, the 
Bohr radius for  invariant harmonic functions on the unit ball o f  C N is 

21/N - 1 

7-~0 -- 21/N + 1" 

Almost all known proofs of  Bohr theorems rest on the domination of  the 
coefficients of  a series expansion by the coefficient of  the zeroth term. We obtain 
such an inequality early in the proof  of  Theorem 4.8, using properties of  some 
generalized spherical harmonics following [9]; but see also Lemma 4.3. Another 
key idea in [5] and [9] was to pass to functions with positive real part and 
obtain a related inequality. Our version for bases without a constant member is 
Theorem 4.6. There are similarities with the Carathrodory inequality here. In fact, 
Carath6odory-type inequalities for Laurent series and multiple power series were 
essential ingredients in establishing Bohr phenomena in [27] and [4]. It is also 
interesting that we draw results from such diverse areas as harmonic function theory, 
special functions, and M6bius transformations to achieve our goals. 

After a short Section 2 on notation, we set out in Section 3 to develop the 
basic properties of  the general ot/3-harmonic functions on the unit ball of  C N that 
provide background material for the rest of  the paper. We define and compute the 
Bohr radius for oto~-harmonic functions in Section 4. It seems that with the present 
methods the Bohr radius is computable only for real-valued functions, and this is 
the reason for having/3 = ot there. The invariant harmonic functions on the unit ball 
of  C N are those that correspond to ot = /3  = 0. We next obtain a Bohr radius for 
invariant harmonic functions on the unit ball o f R  n in Section 5. In the final Section 
6, we compare various Bohr radii and check their asymptotic behavior with respect 
to N and or. 

Added in proof. A recent research announcement [10] brings the work o fH.  Bohr 
around a full circle by discovering a Bohr abscissa for Dirichlet series, Bohr's forte. 

2. N O T A T I O N  

The usual inner product in C N is (z, w) --- Z l ~ l  -{- ' ' '  J -  ZN~N, and in R n it is 

(X, y) = XlYl -+"" q-XnYn. In either case the norm is lal = ( a ~ ( ~ ,  a~. We let B denote 
the unit ball o f C  N or ~n, $ the sphere bounding B, and cr the Lebesgue measure on 
$ normalized so that cr (~) = 1. Of  course N ~> 1 and n ~> 2. We generally use ( ,  O, 

for points in S; z, x for points in B; and often write z = r ( ,  x = r~ with 0 ~< r ~< 1. 
The set o f  all M6bius transformations (automorphisms) of  B is denoted AA. 

A sum without an initial term is indicated by ~ ' .  The ordinary Laplacian is 
denoted A, the Kronecker delta ~ij, and the gamma function F. The Pochhammer 
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symbol  is defined as (a)b = F(a  + b ) / F ( a )  when a and a + b are of f  the pole set 
- N  o f  the g a m m a  function. For a > 0, Stirling's formula gives 

(1) ( a ) b ~ a  b (a--~oo)  and F ( a + b )  ~ a b -  c ( a - + o o ) ,  
F(a  -b c) 

where x ~ y means that ]x/yl is bounded above and below by positive constants. 
For c ¢ - N ,  the hypergeometricfunction F = 2Fl is 

F(a ,b;  c; t) : f i  (a)m(b)m t m 
(C)m m! 

m : 0  

(Itl < 1). 

Trivially F(a,  b; c; t) = F(b, a; c; t), F(a,  b; c; 0) = 1, and 

(2) F(O, b; c; t) = F(a,  0; c; t) --= 1. 

I f  further Re(c - a - b) > 0, then 

(3) F(a,  b; c; 1) = 
I ' ( c )F (c  - a - b) 

I ' (c  - a ) F ( c  - b) 

I f  a,  b, c > 0, then F is a positive increasing function o f  t for 0 ~< t ~< 1. The 
hypergeometric  function also has the following properties: 

(4) 
F (a, b; c; t) = (1 - t )c-a-b F(c  -- a, c -- b; c; t), 
d ab 
td - 7 F ( a ' b ;  c; t) = --F(ac + 1 , b +  1; c +  1; t). 

3. aft-HARMONIC FUNCTIONS 

We begin with a general family o f  differential operators to set the stage. Let 
Dj = O/OZj and let R = ~ j  zjOj be the radial derivative. The linear differential 
operators 

~x~/3 = - 4 ( 1  - Izl 2) (~ij --ZiZj)OiOj + ~ R + f l R - a f l  , 
i_i,j=l 

called the ~fl-Laplacians, were introduced in [25]• Functions annihilated by A,~ 

are called aft-harmonic. 
The operator A00 = ~x is called the invariant Laplacian and is the Lap lace -  

Beltrami operator associated with the Bergman (hyperbolic) metric o f  ~.  The 
functions annihilated by it are called M-harmon ic  or invariant harmonic, because 
A ( f  o ~p) = ( A f )  o ~p for any ~p E A/[. 

The otfl-Laplacians are encountered when the Laplace-Bel t rami  operator is 
computed on forms; see [25]. They also appear  when certain radial derivatives 
o f  M - h a r m o n i c  functions are evaluated; see [2]. Further, A , ,  is the weighted 
Laplace-Bel t rami  operator associated with the Bergrnan metric o f  B with weight 
( 1  - Izl2) - ~ ,  and this is the case where our interest mainly lies. 
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The integral kernel associated with A ~ ,  the otfl-Poisson kernel ,  is 

(1 -Izl2) N÷~+f 
=Cafi(100 _ ( z , ~ ) )  N+a ( ' l  _ (( ,z))  N+fl (zE~,  ( 

where 

F(N + tx)F(N + fi) 1 
(5) 75.  (o, Cc~t ~oo = F (N)F (N + a + fi) t/) 

F(-o~, - f l ;  N; 1) 

In particular, the kernel 75o0 = 75 is the P o i s s o n - S z e g 6  kernel .  It is positive and has 
0 0 _  Coo - 1. All of this makes sense when 

(6) R e ( N + o t + f l ) > 0 ,  N + c ~ - N ,  N + f i ~ - N .  

If  (6) holds and f is a bounded aft-harmonic function on ]~, then there exists a 
function, again denoted f ,  defined on ~ and in L ~ ( a )  such that f is the otfl-Poisson 
integral of f ,  that is, 

(7) f ( z )  = f ( ) f ( ( ) d a ( ( ) .  

S 

This is proved by considering L~(S) and changing "weakly" to "weak-." in the 
proof of [1, Proposition 2.4]. For the special case of the invariant Laplacian, see [35, 
Theorem 5.8]. 

For p, q = 0, 1, 2 . . . . .  ~ (p ,  q) denotes the space of harmonic polynomials 
f ( z ,  ~) that are homogeneous of degree p in z and of degree q in ~. Functions 
in ~ ( p ,  q) are uniquely determined by their restrictions to $, and we freely 
identify ~ ( p ,  q)  with its restriction to S. Let dpq be the dimension of 7-/(p, q) 
and { f f q ,  f P q  Pq 2 . . . . .  f~pq } a basis for ~ ( p ,  q)  orthonormal with respect to the inner 

product of L 2 (a). Put 

(8) 
dpq 

HPq (( ,  ~l) = Z f f q  ((  ) f f q  o]). 
j = l  

The reproducing kernels H pq of 7-/(p, q) can be expressed in terms of Jacobi 
polynomials, and thus have the properties H pq ( ( ,  ~l ) = H Pq ( r], ( ) = H qp ( ( ,  rl ) and 

(9) 

dpq 
Z l f f  q (()]2 ---- Hp q ((, ()  = dpq <~ k(p + q ) 4 N - 3  

j = l  

for some constant k. The space 7-l(0, 0) consists of constants with orthonormal basis 
{fo0} = {1}; hence H°°((, 7) -- 1. These results can be found in [24]. 

Let again (6) hold. By [1, Theorem 2.2], if g ~ 7-/(p, q), then the unique solution 
to the Dirichlet problem A,~t~ f = 0 on ~ with boundary data f i s  = g has the form 
f ( r (  ) = r p+q ~pq ~ ~t~ ( r ) g ( (  ), where 

pq pq 
S~f (r) = Cc~ ~ F ( p  - fl, q - or; N + p + q ;  r 2) 
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and 

1 
C°'JPq = F(p  - f , q  -ot;  N + p + q; 1) 

F(N + p + a ) F ( N  + q  + f )  

F(N + p + q ) F ( N  + a  + f )  

Theorem 3.1. I f  a, f satisfy (6), then the af-Poisson kernel has the spherical- 
harmonic expansion 

OG 

75af(r(' ~) E rP+q pq Pq = S~f (r)H (~, ~). 
p,q=O 

The series converges absolutely, and uniformly for  r ~ on a compact subset o f  B. 

Proof. We simply combine [1, Theorem 2.2, Proposition 2.4] with the proof of [24, 
Theorem]. [] 

The results for a = f = 0 were first obtained in [24]. For comparison with 
ordinary harmonicity, let us note that the members of 7-L(p, q) and in particular 
the functions fPq . . . . .  fPq are the counterparts of spherical harmonics, and the 

• q 
functions H pq correspon~to zonal harmonics. 

If  (6) holds and f is a bounded aft-harmonic function, (7) evaluated at z = 0 
along with (5) yields the weighted mean value equality 

(10) f(O) = C°~ f 
S 

at 0. If  f is not bounded, we can integrate on a smaller sphere; see [25, Theorem 
1.1]. Obvious estimates of (7) lead to weighted maximum properties for aft- 
harmonic functions. Equality (10) is a true mean value property for M-harmonic 
functions, which in fact satisfy the stronger invariant mean value property, namely 

f(a)=ff(~o~(rO)da(O (a E ~ ,  O~<r < 1), 

S 

where ~0 a c .A/[ is an involution exchanging 0 and a. Consequently, M-harmonic 
functions have the true maximum and minimum principles. 

Suppose again (6) and that f is a bounded otf-harmonic function. Then by (7), 
Theorem 3.1, and (8), we have 

(11) 
OG 

f ( z )  = f rP+qsPg(r)HPq(~, ~l)f(~)dcr(~) 
S p,q=O 

cx~ dpq 

= E Zcfq:7(:), 
p,q=O j = l  
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where 

Pq = f f ( r l ) f ;  q (rl) dcr (17). (12) cj 

5 

In particular, by (10), 

(13) c O O  f (0 )  
c o~ " 

Thus the set of  functions 

Pq p+q Pq Pq . l~c~# = {hj (z) = r S ~  ( r ) f j  (if). j = 1 . . . . .  dpq, p, q = O, 1, 2 . . . .  } 

forms a basis for the space of  bounded a/~-harmonic functions on B in C N, where 
or, fi satisfy (6). Because r p+q~pqt'r~ ~a# v l  = 1 when r = 1, B~# is an orthonormal basis 

with respect to the inner product of  L2(cr). 

4. BOHR RADIUS FOR L A P L A C E - B E L T R A M I  OPERATORS 

As mentioned in the Introduction, when it comes to a Bohr radius, we consider 
only real-valued functions. A real bounded oq3-harmonic function has real boundary 
values on 5. Thus in order to satisfy (7), 75~# must be real-valued too. This requires 
ot = fi c R. So from now on we consider only the weighted Laplace-Beltrami 
operator Zx~, and conditions (6) reduce to our standing assumptions 

(14) o t r R  and N + 2 o t > 0 .  

Note that (14) implies N + ot > 0. Rewriting Zxaa in terms of  real coordinates, it can 
be checked that it is elliptic with c(x) = ~2 >1 O, where c(x) is the coefficient of  an 
elliptic operator as used in [23, Chapter 6]. It is because of  this term that a general 
]xa~ has no constant solutions and does not satisfy the usual maximum principle. 
Also, since A ~  has real-analytic coefficients, its solutions are also real-analytic. 

Remark  4.1. With ot satisfying (14), 75~a is not only real, but is in fact positive. 
Then (7) yields that if f > 0 on ~, then f > 0 on B as well. This is a weak minimum 
principle for aot-harmonic functions. 

Let us have a closer look at the functions of  the bas i s /3~  in the light of  (14). 
Note that h ~  0o = S~,¢. First SPq(0) = C~ pq > 0 and S~(1)  = 1 by (3) for any p , q .  
Next by (4), 

d (p - ot)(q - or) 2r 
(15) -~r S p J ( r ) = C ~  N + p + q  

x F( I  + p - a ,  1 + q  -or ;  N +  1 + p + q ;  r 2) 

( p  - -  0 t ) ( q  - -  0 t )~  / .  r 2 ) N - l + 2 o t  =cg   rt,- 

x F ( N  + q  +ot, N + p + e t ; N  + l + p + q ; r 2 ) .  
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The derivative of  each S pq (r) has a constant sign that depends on p, q for 0 <~ r ~< 1 
by the properties of  F. Hence S pq (r) is either a decreasing or an increasing function 
for 0 ~< r ~< 1. This implies that either C pq ~< S~ eq (r) ~< 1 or 1 ~< S pq (r) ~< C pq 

by (3). By (1), the constants C~ pq are bounded above and below by positive constants 
independent of  or, p, q. 

The function 

oo oo S~u(r) N; r 2) = Cc~F(-ot  , -~ ;  

deserves separate mention. By (15) and (2), its derivative vanishes identically and 
thus S °° = C ~  = 1 if  and only if o~ = 0. This is expected, because constants are 
otol-harmonic if  and only if a = 0. Otherwise, C OO < 1 and s °° fr~ is increasing 
with a local minimum of  C ~  at 0 by (15). Hence the mean value property and the 
usual minimum principle fail spectacularly for ow~-harmonic functions if or ~ 0, but 
this does not contradict the weaker maximum principles in [23, Section 6.4]. Let 
us mention in passing that if  o~ is a positive integer, then S °° is a polynomial of 
degree 2o~. 

Although the initial element h °° = S °° o f / 3 ~  is not constant, all its other 
elements vanish at 0. By the properties of  S °° developed above and (9), we have 
Ih~.q(z)] <<, krP+qdx/~p q <~ kaP+qr p+q for some fixed constants k and a. Thus the 

natural bas i s /3~  satisfies property (2) of  bases given on [9, p. 388] with x ° = 0, 
but does not satisfy property (1) there. Instead,/3~ satisfies 

(1') O < C ~ < h ~ < l < ~ .  

Yet the work below shows that/3a~ exhibits a Bohr phenomenon. 

Notation 4.2. If  f is a bounded oto~-harmonic function on B, we let it have the 
expansion (11) with (12) in mind, that is, we let f ( z )  = ~ cPqh pq (z). Then we set 

J d 

dpq 
~Pq LPq A f ( z ) =  Z I e j  aj (z)] = E rP+qsffq(r))--~lcPq[ Iffq(ff)[ • 

p,q=O j= l  

Lemma 4.3. Assume (14). I f  f is a bounded otot-harmonic function on •, f <<. B 
on ~, and f = Z cPqh pq then c oo j - . j  , ~ B and 

cOO) ((p, q) 5~ (0, 0)). f (O) ~ = sup hP.ql( B [ePq I ~ supIVq ] B-- ~ 
C~ a /I $ I j 

Proof. The statement about c oo follows from (10) and (13). For the other statement, 
we follow the proof of  [9, Lemma 2.1] by considering B5 °° - f as in Section 2, 
which is equal to B - f on S. We are done by (10) and (13). [] 
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Now we show that there are bases without a constant element that exhibit a Bohr 

phenomenon. The next result can be called a specialized Harnack inequality. It is 

true also on the general domains described in [9, Section 2]. 

T h e o r e m  4.4. Let ~ satisfying (14) be given. There is a positive R < 1 such that 

i f  f is a bounded ota-harmonic function satisfying If[  < 1 on ~, then we have 
A f ( z )  < h°°(z) O0 = S ~ ( r )  ~< l for  [z[ = r  < g. 

P r o o L  Assuming, without loss o f  generality, f ( 0 )  ~> 0, we obtain 0 ~< c oo < 1 by 

Lemma 4.3. Then again by Lemma 4.3, 

AZ(Z) < c 1°° S~(r)°° + (1 - c °°) E ' [ h f q ( z ) l s u p l h ~ q l  
s 

_ 0o o0 (1 cOIO)T(z). - -  c 1 S~a  ( r )  + - 

In the p roof  o f  [9, Theorem 2.2], which covers the case a = 0, it is shown that T 

can be made as small as one wishes by taking r small enough. We choose R so that 
T(z) < c oo <~ oo S ~ ( r )  f o r r  < R. [] 

R e m a r k  4.5. Theorem 4.4 is in fact stronger than the usual Bohr property. Indeed, 

Af(z) is not only less than 1, but also less than 5°°(r)  < 1 for Izl = r < R. The 
oo hypothesis I f l  < 1 on S is satisfied, in particular, i f  If(z)1 < S ~ ( z )  or If(z) l  < 1 

for all z E B. 

Theorem 4.4 coupled with Remark 4.5 yields a method for computing a Bohr 

radius for uot-harmonic functions. 

T h e o r e m  4.6. Let ot satisfy (14). Given a neighborhood U C B o f  O, the fol lowing 
are equivalent for  a bounded ot~-harmonic function f . 

,', OOoO0 O0 O0 (i) I f  f > 0 on ~, then A f < zc 1 ~&~ = 2 f (O)S~e~/ C ~  in U. 
(ii) I f l f l  < 5 °° on B, then AZ < S °° in U. 

Condition (i) implies that Af < 2 f ( 0 )  in U, and further condition (ii) implies 
that Af < 1 on g, but the latter two conditions are not equivalent. 

Proof.  Suppose (i) holds. Let f be o~a-harmonic with expansion as in Notation 4.2 

and satisfying If l  < S °°  on B. Then If(0)l  = Ic 1°°1S~(0)°° < C~,°° implying that 
Ic°° I < 1. Without loss o f  generality, f (0 )  ~> 0. Then 0 ~ c oo < 1. Put g = S °°  - f ;  
then 0 < g < 2S °° and is bounded. By (i), 

Ag (1 00xoo0 ' Pq Pq 2(1 00xo0o 
- -  - q  + E Icj hj I< -c,  

on U. Then 
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_oo,.oo (~_'l pq Pq (1 00Xo00~ (1 00x~00 af c 1 0 a c  ~ +  cj hj ] + -c  1 ) ~ )  
_oo,~oo + 2(1 oox,,oo _ (1 o0,~oo oo 

< 6"1 ')~tot - -  C 1 ) J ~  - -  C 1 ) , ~  = S ~  

on U. 
Now suppose (ii) holds. Let f be a bounded positive o~c~-harmonic function with 

expansion as in Notat ion 4.2. Choose a constant k > 0 so that 0 < k f  < 2S °° on B. 
Put g = S °° - k f ;  then Igl < S °°.  By  (ii), 

. 0 0 1 ~ 0 0 - - . ~ - ~ t l  pqhpql O0 
A g = ] l - t c c  1 I~c~ -x2 . .~ lC j  j I <S~ot  

on U. Then 

I F ,  o0oo0 ( kV~ t t  Pq.Pq 11- -ke  1 ]S~a ) 1 1 - k e  1 ]Sad ] A f  = -~[KC 1 Jaot -]- 2--, ICj nj ] q- O0 O0 _ O0 O0 

1 [ .  o0,~o0 O0 (1 -- kc °O oo ] ~ oo~oo < L c, + - = 

on U. [] 

Defini t ion 4.7. Consider an ot satisfying (14). The Bohr radius T¢~ for otot- 
harmonic functions on the unit ball o f  C N is the largest o f  the positive numbers 

00 R ~< 1 such that i f  f is dot-harmonic and [f l  < S ~  on B, then A f ( Z )  < S~c~(Z) for 
all z with Izl = r < R. 

Now for an ~ satisfying (14), consider the equation 

(16) 
(1 + r)  N+2a 

(1 - r )  N 
-- 2 F ( - o t ,  - a ;  N; r2). 

At r = 0, its left-hand side is 1 and its right-hand side is 2 > 1; as r -+ 1, its left-hand 
side tends to oo while its right-hand side tends to 2 / C  °° < oo. Thus (16) has at least 
one root p~ in the interval (0, 1). Comput ing the first and second derivatives of  the 
two sides o f  (16) shows that both are increasing functions o f  r with no change in 
concavity on the interval (0, 1). Thus p~ is unique. When  ot = 0, (16) takes the 
simple form (1 + r) N ---- 2(1 - r) N by (2). 

T h e o r e m  4.8. For ~ satisfying (14), the Bohr radius ~ equals p,~. 

Proof .  Let f be a positive bounded ota-harmonic function on B. By (12), H61der's 

inequality, (9), (10), and (13), we have 

dpq d~.~l[ do2 ( [ f d o . ) ( [ d p q  \ 
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( f  )2  f (0)2 
-~ dpq f da  = dpq (CO 0) 2 - -  _ dpq(ClO0) 2. 

Then by H61der's inequality, (9), and Theorem 3.1, we obtain 

Y~IfPq(¢)[2 Af(r()  ~ ~ rP+qSPJ(r) [cPql 2 
p,q=O j=l 

S~a~(r) dv~Pq cl dv/-~pq=Cl°° Z rP+qSPJ(r)HPq(('() Z rP+q pq O0 

p,q=O p,q=O 

= c0075(r(, () = 00~00 (1 -- r2) N+2a cOOCOO + r)  N+2c~ = (1(1 - 

O0 O0 O0 O0 Thus Af(r~) < 2c 1 Sad(r)= 2c 1 CaaF(-ot,-or; N; r 2) i f r  < pa. It follows that 
T¢~ ~> pa by Theorem 4.6. 

The expansion in Theorem 3.1 o f  the o~ot-Poisson kernel provides the required 
reverse inequality. We fix 17 = ( 1 / 4 ' N  . . . . .  1 /~/N)  E ~, let 0 < u < 1, and consider 
the functions 

o~ oo dpq 
f u ( z ) =  ~ uP+qrP+qsPq(r)HPq(( , t l )= Z r P + q s P q ( r ) Z c P q V q ( ( ) '  

p,q=O p,q=O j=l 

Pq = U p+q f ; q  (r/) and hence Cl °° = 1. As in the p roof  o f  the Theorem o f  [24], where c j 
the series defining fu is uniformly convergent for z = r (  E S U B; hence fu is 
bounded on B. Each term o f  the series is aot-harmonic by (8) and the solution 
to the Dirichlet problem; thus fu is c~u-harmonic in ~.  Recalling that dpq = dqp and 
comparing H pq with H qp, we see that fu is real-valued. Setting r = 1, we have 

(1 - u2) u+2~ (1 -- U2) N+2u 
fu(¢)  = 75~(ug,  ~) = C ~  I1 - u(g, ~)l 2N+2a • c00 2 2N+2u > 0 

for ¢ C S. Then by Remark  4.1, fu (z) > 0 for all z E 11L For each u, there is a radius 

0 < Ru < 1 such that 

00 00 00 = 2C~F(-ot ,  -c~; r 2) af,(rrl) >~ 2c 1 S~a(r) N; 

if  r / >  R~. The radii Ru decrease to a limit p~ as u --+ 1. Then letting u --+ 1 and 

using (9) and Theorem 3.1, we see that 

dpq 

l imaf,(r~) Z Z P+q pq( pq 2 = r S~ r)]fj (O)l = ~ r P + q s P q ( r ) H P q ( r l ' r l )  
u--~ l p,q=O j=l p,q=O 

(1 + r) N+2c~ 00 
= 7 5 ~ ( r r / , 1 7 ) = C c ~  ( l _ r ) U  > / 2 C ~ F ( - a ' - ° t ; u ; r 2 )  
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i f  r ~ p ' .  Therefore 7-Ca ~< p' c, = P~ by Theorem 4.6. [] 

Corollary 4.9. The Bohr radius for Ad-harmonic functions on ~ c C N is 

21/N - 1 
T¢.o = 21/N -k 1" 

5. B O H R  R A D I U S  FOR A/ I -HARMONIC F U N C T I O N S  ON B C R N 

We compute one more Bohr radius, both to show the wide applicability of  the 
methods and for comparison purposes. The theory of  M-harmonic functions 
on 1~ c IR n was developed in [36], and we start by summarizing the essential 
information. 

The invariant Laplacian 7x is the Laplace-Beltrami operator associated with the 
hyperbolic metric of 11~ c R" and is defined by 

(~x f ) (a )  = A ( f  o q)a)(0) = 4(1 -- ]al2)2(Af)(a) 

+8(n  -- 2)(1 --[al2)(a, (Vf)(a)}, 

where V is the ordinary gradient, and q)a c .m/[ is an involution that exchanges 0 
and a e I~. It satisfies A ( f  o ~p) = (7~f) o 7t for any 7t c 3,'/. A function that is 
annihilated by/~ is called M-harmonic or invariant harmonic. Such a function has 
the invariant mean value property and satisfies the maximum principle. 

The integral kernel associated with/~ is called the invariant Poisson kernel and 
is the function 

( 1 -  Ix]2~ n-1 

which is the ordinary eoisson kernel only for n = 2. This kernel has the expansion 

o o  

(17) f)(r~, rl) = Z rmSm(r)Zm(~' ~)' 
m = 0  

where 

Sin(r) = CmF(m, - n / 2  -1- 1; n/2 q- m; r2), 

1 P ( n / 2 ) F ( n -  1 +m)  
Cm 

F(m, - n / 2  + 1; n/2 + rn; 1) -- F(n/2  + m)P(n - 1)' 

and the Zm(~, ~) are the zonal harmonics of  degree m = 0, 1, 2 . . . .  ; see [36, 
Theorems 5.7, 5.10]. The series (17) converges absolutely, and uniformly for r~ 
on a compact subset of  B. The expansion of  the ordinary Poisson kernel does not 
have the extra factor Sm (r). The zonal harmonics have the further expansion 

d,, 
(18) Zm(~,rl) = Z fjm (~) rim (r/), 

j = l  
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where {f~,  f ~  . . . . .  f ~  } is an orthonormal basis (with respect to the inner product 

of  L2(a)) for the space of  harmonic polynomials that are homogeneous of  degree 
m.  

If  f is a bounded 3d-harmonic function on B, then there exists a function, again 
denoted f ,  defined on S and in L°°(a), such that f is the invariant Poisson integral 
of  f ,  that is, 

f (x)  = f ~)f(~) da(~). 
g 

Then by (17) and (18), we have 

(19) 
oc dm 

f (x) = ~-~ r"S.,(r) ~ cT f'~(~). 
m=O j = l  

Thus the set of  functions 

(20) {rmSm(r)f'f(~): j = l  . . . . .  dm, m = 0 , 1 , 2  . . . .  ] 

forms a basis (orthonormal with respect to the inner product of  L2(o')) for the space 
of bounded M-harmonic functions on 1B in IR n. The difference between (20) and 
the well-known basis of  the ordinary harmonic functions on 1B is the presence of  
the factors Sm(r). The initial element of  (20) is r°So(r)f°(~) -- 1, and all its other 
elements vanish at 0. Then (20) satisfies the properties (1) and (2) of  bases given 
on [9, p. 388] with x ° = 0. Therefore, by [9, Theorem 2.2], (20) exhibits a Bohr 
phenomenon, and we make the following definition. 

Definition 5.1. The Bohr radius RR for M-harmonic functions on the unit ball of 
R n is the largest of the positive numbers R <~ 1 such that if f is 34-harmonic with 
expansion (19) and if] < 1, then 

dm 

Af(x) = E rmSm(r)  [c711F( )I < 1 
m=O j = l  

for all x = r~ E 1~ with r < R. 

Moreover, [9, Lemma 3.1] applies to the basis (20). So equivalently, R• is the 
largest of  the positive numbers R ~< t such that if  f is a positive bounded Ad- 
harmonic function with expansion (19), then 

Af(x) < 2f(0)  

for all x = r~ E ~ with r < R. 

420 



Theorem 5.2. The Bohr radius for  Ad-harmonic functions on ~ C R ~ is 

21/(n-l) - 1 
RR--  

21/(n-l) + 1" 

Proof. This is no different from the case oe = 0 of  the proof of  Theorem 4.8 and is 
therefore omitted. [] 

6. A S Y M P T O T I C S  

We take n = 2N and compare ~0  and RI~ to two other Bohr radii computed in [9], 
the Bohr radius RHar for ordinary harmonic functions on the unit ball oflR n and the 
Bohr radius RSHar for separately harmonic functions on the unit polydisc in C N. 
The radius RHar is the root of  the equation 1 + r = 2(1 - r) n-1 lying in (0, 1). 
Incidentally, ~ o  -- RsHar although they are for different kinds of  functions on 
different domains. These four Bohr radii are equal to 1/3 when N = 1, since these 
four types of  harmonicity coincide on the unit disc in C. The value 1/3 is also the 
Bohr radius for analytic functions on the unit disc. 

Asymptotically, on C N = R 2N, 

whereas 

log2 ( 1 )  
RHar ~ RSHar ~ T~0 = ~ -  + O ~ (N --> cxz), 

( ) - -  O 1 
R~ = 4N + ~ (N --+ oo). 

On the other hand, for a given oe satisfying (14), the right-hand side of  (16) evaluated 
at r = 1 is bounded independently of  N because of  (1). Hence it is bounded for all 
r ~ [0, 1], say, by a constant k~, since it is increasing. Then similarly to the above, 
we obtain 

log(2k~) ( 1 ) 
7Z~ -- 2(N + oe~ + O ~-~ (N --+ oc). 

We also check how 7 ~  behaves as c~ > - N / 2  varies. As oe --+ - ( N / 2 )  +, (16) 
takes the form (1 - r) -N = 2F(N/2 ,  N/2;  N; r2), and as this happens, its right- 
hand side increases and its left-hand side decreases. Then the solution ~r~U to this 
equation is the terminal value that the Bohr radii 7 ~  increase to as oe --> - ( N / 2 )  +. 
This equation can be solved with computer algebra software for each value of N. 
The first few solutions are 7Z 1 = 0.54052 . . . .  .]~2 = 0.31043 . . . .  7~ 3 = 0.21565 . . . .  

To see what happens at the other extreme, let us first write (16) in the form 

1 2F(-c~, -c~; N; r 2) 
(21) - -  - -  

( 1  - -  r) N ( 1  -t- r) N+2~ 

The left-hand side behaves as the left-hand side of  (16). For any given r in (0, 1), it 
is easy to see by (3) and (1) that the ratio F(-c~, - ~ ;  N; 1)/(1 + r) N+2~ tends to 0 
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as ~ ~ oo. Then since F(-ot, -or; N; r 2) is increasing in r on (0, 1), the same limit 
is attained for the fight-hand side of  (21). Thus 7 ~  tends to 0 as ct --+ co. 
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