
Applications

NOgl'll - I-I~J.A~

Des ign and Evaluat ion of a New Transact ion Execut ion Model
for Mul t idatabase Systems

TiMU{~iN DEViRMi~

and

C)ZGfJR ULUSOY*

Department of Computer Engineering and Information Science, Bilkent University, Bilkent,
Ankara 06533, Turkey

Communicated by Ahmed Elmagarmid

ABSTRACT

In this paper, we present a new transaction execution model that captures the
formalism and semantics of various extended transaction models and adopts them to a
multidatabase system (MDBS) environment. The proposed model covers nested transac-
tions, various dependency types among transactions, and commit independent transac-
tions. The formulation of complex MDBS transaction types can be accomplished easily
with the extended semantics captured in the model. A detailed performance model of
an MDBS is employed in investigating the performance implications of the proposed
transaction model. © Elsevier Science Inc. 1997

1. I N T R O D U C T I O N

A multidatabase system (MDBS) is an integrated database system that
provides a global view and uniform access to different local components
without requiring the users to know the individual characteristics of the

*Corresponding author who can be contacted via oulusoy@bilkent.edu.tr.

INFORMATION SCIENCES 102, 203-238 (1997)
© Elsevier Science Inc. 1997 0020-0255/97/$17.00
655 Avenue of the Americas, New York, NY 10010 PII S0020-0255(97)00015-7

204 T. DEViRMi~ AND O. ULUSOY

participant databases. Each local database system (LDBS) can have a
different data model, and different transaction management and concur-
rency control mechanisms. Integration of heterogeneous components
should not violate the autonomy of LDBSs, which is the most important
feature of MDBSs that distinguishes them from conventional distributed
database systems [5, 11, 14, 18].

Heterogeneity of the components in an MDBS leads to a requirement
for flexible and powerful ways of accessing the data. The need for the
coordination of the activities that belong to independent data sources
makes it difficult to adopt traditional transaction control methods in an
MDBS environment. Traditional transaction models generally assume a
competition among transactions, but in an MDBS, sometimes cooperation
besides the competition also is required for efficient processing of transac-
tions. Defining and observing dependencies among the transactions exe-
cuted over different sites can significantly affect the system performance.
The variance among the execution times of transactions over different
local DBMSs also forces the existing models to be reorganized accordingly.
Also, the properties like atomicity and isolation introduced by the tradi-
tional transaction model are sometimes inapplicable in an MDBS environ-
ment. Under all of those considerations, we can safely argue that it is
necessary to modify and extend existing distributed transaction models for
MDBS environments.

In this paper, we present a new transaction model for MDBSs. This
model captures the formalism and semantics of various extended transac-
tion models, and adopts them to an MDBS environment. The extended
models constituting our transaction model are the nested transactions [13],
the flexible transaction model that provides various dependency relations
among transactions [19], and the model that involves a relaxed version of
transaction atomicity, namely the semantic atomicity, to increase the level
of concurrency [6, 12]. While including the semantics of all those transac-
tion models, the global serializability in our execution model was ensured
through the use of the ticketing method [9].

In the nested transaction model [13], flat transactions are enhanced by a
hierarchical control structure. Each nested transaction consists of either
primitive transactions or some nested transactions that are called subtrans-
actions of the containing transaction. The whole transaction structure can
be represented by a tree. The root of the tree is called the top-level
transaction. A transaction that contains subtransactions is a parent trans-
action, and the subtransactions are the children of that transaction. In the
nested transaction model, a child starts after its parent, and terminates
before the parent terminates. The parent is not allowed to terminate

TRANSACTION EXECUTION MODEL FOR MDBS 205

before all of its child transactions are terminated. However, if a child is
aborted, the parent does not need to be aborted.

If a distributed transaction is executed over multiple sites in the form of
subtransactions, we cannot ignore the dependencies that can occur among
the subtransactions [19]. A possible dependency among subtransactions is
the execution order dependency in which a subtransaction cannot be
executed before some others complete their executions. That kind of
dependency relation is often referred to as a precedence relation among
subtransactions. Another kind of dependency can be specified if some
subtransactions are alternatives of some others. In an alternative depen-
dency, one of the functionally equivalent subtransactions needs to be
executed. If the user assigns priority to alternative subtransactions, a
preference relation exists among those subtransactions.

In [12], the following types are defined for the subtransactions of a
distributed transaction. A compensatable subtransaction can commit be-
fore its containing transaction commits, and if that transaction aborts, the
effects of the subtransaction on the database can be undone by executing
the associated compensating subtransaction. The retriable transactions are
subtransactions that eventually succeed if they are retried a sufficient
number of times. A retriable subtransaction can be allowed to commit
later than its containing transaction. The compensatable and retriable
transactions, which are also called commit-independent transactions, re-
duce the blocking effects of the commitment protocols.

In the second part of the paper, we investigate the impact of various
dependency relations among transactions, and commit-independent trans-
actions on the performance of an MDBS. A detailed simulation model of
an MDBS is employed in evaluating the performance of both global and
local transactions. The simulation model, which captures the basic charac-
teristics of an MDBS, is also used in studying the comparative perfor-
mance implications of two different ticketing-based concurrency control
protocols. To the best of our knowledge, no performance evaluation work
has appeared in the literature exploring ticketing methods or extended
transaction semantics in MDBSs.

The remainder of the paper is organized in the following manner. The
next section presents how the extended transaction semantics described
briefly above can be combined in a transaction model for MDBSs. Section
3 provides the details of an execution architecture for the transactions of
the proposed model. Section 4 describes the simulation model of an
MDBS. Section 5 provides the results of the performance experiments.
The last section summarizes the conclusions of our work.

206 T. DEVIRMi~ AND O. ULUSOY

2. A MULTIDATABASE TRANSACTION M O D E L

Two types of transactions can coexist in an MDBS: local transactions
and global transactions. A transaction that is generated and executed at the
same site is called a local transaction. A global transaction, on the other
hand, can submit operations to multiple sites, and at each of those sites, a
subtransaction is executed on behalf of the global transaction.

In a multidatabase environment, some subtransactions can be commit-
ted independently of their parent transaction. If a subtransaction's effects
on the database can be semantically undone by executing a compensating
transaction, the subtransaction can be allowed to commit earlier. A sub-
transaction that reserves a seat in an airline reservation system is compen-
satable by a transaction that cancels the reservation. Another kind of
commit-independent subtransactions is the retriable subtransactions which
eventually commit if they are retried a number of times. A retriable
subtransaction can be committed later than its parent transaction. Credit-
ing a bank account is an example of retriable subtransactions. We will
consider three transaction types (T-F) in our model:

• Compensatable (C),
• Retriabte (R), or
• Ordinary (O) (neither compensatable nor retriable).

In the following, we provide a formal definition for subtransactions
processed in our MDBS and the dependency relation types among transac-
tions.

DEFINITION 1. A subtransaction S is a 2-tuple S = (TT , CT)where :

• 77" is the transaction type of S,
• CT is the set of compensating transactions of S, if TT is compensat-

able (an empty set otherwise).

DEFINITION 2. Let T~ and Tj be two transactions. 1 We define four types
of dependency relations between T i and Tj.

• Precedence relation (<) : T/< Tj means that Tj cannot begin execu-
tion until T~ successfully finishes its execution.

• Alternative relation (@): T/@ T/ means that ~ and T/ are alternatives
of each other, and any of them can be executed. It is also possible to
execute them together, but only one of them should be committed.

1Each of T, and Tj can be either a subtransaction or a global transaction.

TRANSACTION E X E C U T I O N M O D E L FO R MDBS 207

• Preference relation (t>): T~ t> Tj means that among two alternative
transactions T/ and Tj, T~ is preferred to Tj. If they are executed
together, Tj can be committed only if T/ fails. If they are not allowed
to execute together, T~ should execute first, and if it fails, Tj can be
executed.

• No-dependency relation (D): T/[] ~ means that T/ and Tj can exe-
cute independently.

A global transaction in our model is syntactically a nested transaction
with extended semantics. A global transaction consists of a set of child
transactions, each of which is either a subtransaction or again a global
transaction. This transaction model can be represented as a tree where the
internal nodes are global transactions and the leaf nodes are subtransac-
tions. The height of a transaction tree can vary depending on the complex-
ity of the transaction.

DEFINITION 3. A global transaction G is a 3-tuple G = (S T , DT, TO)

where:

• ST is the set of global transactions a n d / o r subtransactions that are
the children of G,

• D T is the dependency type among the transactions in ST,

• TO is the total order on ST according to the dependency specified in
DT.

EXAMPLE 1. 2 Consider a travel agent information system. In this system,
a transaction may consist of the agent's negotiation with airlines for the
flight ticket, the negotiation with car rental companies for a car reserva-
tion, and the negotiation with hotels to reserve a room. Assume for a given
trip that the only airlines available are Northwest and United, the only car
rental company is Hertz, and the only hotels in the destination city are
Hilton, Sheraton, and Ramada. The agent can order a ticket from either
Northwest or United, but Northwest is preferred; a car is mandatory for
the trip; and any of the three hotels is suitable for the customer needs.
Further, only the reservation of the hotel room can be canceled. The
following subtransactions can be defined for a global transaction that
should be executed for this application:

• S~: Order a ticket at Northwest Airlines.
• S:: Order a ticket at United Airlines.
• $3: Rent a car at Hertz.

2Adapted from an example in [6].

208 T. D E V i R M i ~ A N D O. U L U S O Y

• $4: R e s e r v e a r o o m a t H i l t o n .

• Ss: R e s e r v e a r o o m at S h e r a t o n .

• $6: R e s e r v e a r o o m a t R a m a d a .

• $7: C a n c e l a r o o m r e s e r v a t i o n at H i l t o n .

• $8: C a n c e l a r o o m r e s e r v a t i o n at S h e r a t o n .

• $9: C a n c e l a r o o m r e s e r v a t i o n at R a m a d a .

T h e g loba l t r a n s a c t i o n Gtrip can be spec i f i ed as fo l lows (see F i g u r e 1):

Gtrip(ST = {Gair,n~s(ST = { SI(T T = O, C T = {})},

s 2 (T w = o , c ~ = {}),

D T = P r e f e r e n c e ,

T O = S 1 t> $2),

S3CrT = O, C T = {}),

Ghotel(ST = { S4(TT = C, C T = {$7}),

S s (T T = C, C T = {Ss}),

S6(TT = C, C T = {$9})},

D T = A l t e r n a t i v e ,

TO = S 4 ~ S 5 ~ S 6)},

D T = N o - d e p e n d e n c y ,

TO = Gairlines [] S 3 [] Ghote I).

(

r-

,) A A~mlivc~la~

A ~ Rehmm

A N o ~ . ~ .

)

Fig. 1. A transaction tree representation of Example 1.

T R A N S A C T I O N E X E C U T I O N M O D E L F O R MDBS 209

3. AN E X E C U T I O N A R C H I T E C T U R E F O R T H E P R O P O S E D
T R A N S A C T I O N M O D E L

Figure 2 illustrates the architecture of the transaction execution model
for our MDBS. Local transactions are directly submitted to the LDBSs,
while global transactions use a common MDBS interface. A global transac-
tion, submitted to the global transaction manager (GTM), is divided into a
number of subtransactions, and each subtransaction is sent to the relevant
site where the required data pages reside. A set of application programs
called agents is built on top of the LDBSs to act as an interface between
G T M and each local site in controlling the execution of subtransactions.

The objectives of G T M are to avoid inconsistent retrieval of data, and
to preserve global consistency and atomicity. These objectives are difficult
to achieve because [9]:

• LDBSs are not aware of each other and the MDBS,
• both local transactions and subtransactions can run concurrently at

each site,
• LDBSs do not export any concurrency control information to GTM,
• from the LDBSs' point of view, a subtransaction is not different from

a local transaction.

Global mmsacuon

Local transactio~

J
I

Fig. 2. The transact ion execution architecture of the MDBS.

210 T. DEVIRMi~ AND O. ULUSOY

LDBS at each site ensures the local consistency and isolation properties
by generating serializable schedules. Global serializability can be provided
by obtaining the information of relative serialization order of subtransac-
tions at each local site, and guaranteeing the same relative order at all of
those sites [15]. Achievement of global serializability is difficult in an
MDBS due to the reasons listed above.

The ticketing method proposed in [9] provides that the serialization
order of subtransactions at a local site can be determined at the global
level without violating the autonomy of that site. The ticketing method
uses a regular data object, called a ticket, to determine the serialization
order of subtransactions. A ticket in a database can be considered as a
logical timestamp. One ticket value is maintained at each local site. GTM
forces each subtransaction to read, increment, and update the ticket value
at the site it executes. Ticket values obtained at a site reflect the relative
serialization order of subtransactions at that site.

Accomplishing the atomicity of global transactions is another problem
in MDBS transaction management. In traditional distributed database
systems, atomicity can be achieved by using the two-phase commit (2PC)
protocol. In an MDBS, due to the heterogeneity of local components, we
cannot expect every participant site to support 2PC. One possible solution
to this problem is to use a simulated 2PC protocol. The techniques that
can be used to achieve the simulated 2PC are described in [9].

In our transaction execution model, we assume that each global transac-
tion has at most one subtransaction at each local site. We also assume that
a local transaction or a subtransaction consists of four basic operations:
r(x), w(x), c, and a. r(x) and w(x) are read and write operations on data
page x, and c and a are commit and abort operations. A transaction is
assumed to be in the ready-to-commit state after it completes all of its
read and write operations. It stays in this state until a commit or an abort
operation is issued.

In the following sections, we discuss how global atomicity and global
serializability are achieved in our execution model.

3.1. ENSURING GLOBAL ATOMIC1TY

In an MDBS environment, a relaxed version of atomicity, namely the
semantic atomicity, is discussed in [12] and [19]. In traditional distributed
database systems, a global transaction can be atomic if either all or none
of its subtransactions complete their execution successfully. A global
transaction can commit if all of its subtransactions commit; otherwise, the
effects of committed subtransactions are undone, and global transaction is

T R A N S A C T I O N E X E C U T I O N M O D E L F O R MDBS 211

aborted. In semantic atomicity, on the other hand, subtransactions can
commit at different times [8]. We need to extend the traditional atomicity
to capture the semantics of dependency relations among subtransactions.
The execution of a global transaction G preserves the semantic atomicity
if the following conditions are satisfied:

• When a precedence or a no-dependency relation exists among its
children, G can commit if all of its child transactions have committed.
If one of its child transactions is aborted, G is aborted, and the other
child transactions are either aborted or the effects of committed ones
are undone.

• If an alternative or a preference relation exists, G can commit if one
of its child transactions commits. 3 When a child transaction commits,
other child transactions that are executing are aborted.

The execution of a global transaction containing only ordinary children 4
proceeds as follows.

• G T M spawns the children of the global transaction according to the
specified dependency type:

- - If either a no-dependency, or an alternative, or a preference
dependency exists, all of the child transactions are created.

- - Otherwise (if a precedence relation is specified), the children are
created on the basis of the given total order.

• If G T M reaches a leaf node in the nested transaction tree and creates
a subtransaction, it submits the subtransaction to the corresponding
site through the agents.

• When a subtransaction finishes its database operations, the agent of
that site sends a ready-to-commit message to GTM.

• After receiving a ready-to-commit message for a subtransaction, G T M
checks the dependency type associated with the parent of the sub-
transaction to find out what to do next.

- - If a precedence relation exists among its children, the next child
transaction in the given order is created by GTM. If all of the
child transactions enter the ready-to-commit state, the parent also
enters the ready-to-commit state.

3Remember that, with the preference relation, if S i t> Sj, Sj can be committed only if
S i fails.

4The execution of a global transaction that can have commit-independent (com-
pensatable/retriable) transactions is described in Section 3.3.

212 T. DEVIRMi~ AND O. ULUSOY

- - If an alternative relation exists, the parent enters the ready-to-
commit state, and GTM sends messages to the relevant agents to
abort the other child transactions.

- - If a preference relation exists, the parent enters the ready-to-com-
mit state if the completed subtransaction is the most preferred
one. When the parent becomes ready to commit, GTM broadcasts
the abort message for the other child transactions.

- - If a no-dependency relation exists, the execution state of the
parent becomes ready-to-commit after all of its children enter the
ready-to-commit state.

• If the root transaction enters the ready-to-commit state, GTM decides
to commit or abort the transaction according to the concurrency
control algorithm executed.

• After a commit or abort is issued for the root transaction, GTM
broadcasts a message to child transactions down to the leaves of the
transaction tree to commit or abort the subtransactions at local sites.

3.2. ENSURING GLOBAL SER1ALIZAB1LITY

The global serializability is ensured in our execution model by employ-
ing ticketing-based concurrency control for global transactions. The ticket
values obtained by subtransactions are transferred to their parents up to
the root transaction. GTM ensures the same relative serialization order at
all sites of the global root transaction using the ticket values obtained. Two
possible methods that can be used to control concurrent execution of
global transactions are the optimistic ticketing method and the conserva-
tive ticketing method [9]. The following two subsections will describe the
implementation details of these two methods in our execution model
considering only ordinary subtransactions. The execution strategies for
commit-independent subtransactions will be detailed in Section 3.3.

3.2.1. Employing the Optimistic Ticketing Method (OTM)

OTM allows subtransactions of global transactions to be executed as
soon as they are submitted to the local sites. A global transaction is
committed when all of the ticket values obtained by its subtransactions
have the same relative order at all participant LDBSs.

TRANSACTION E X E C U T I O N M O D E L FOR MDBS 213

If OTM is adopted to our execution model, a global transaction G is
processed as follows:

• First, a time-out period 5 is set for G.
• The GTM spawns the child transactions of G, according to the rules

given in the preceding section, up to the subtransactions executed at
local sites.

• Subtransactions are allowed to execute under the control of agents
until they become ready-to-commit.

• When G enters the ready-to-commit state, it is validated by GTM.
• If the validation of G is successful, it is committed; otherwise, it is

aborted and then restarted.
• If the time-out of G expires before its validation test starts, it is

aborted and then restarted.

GTM uses a global serialization graph (GSG) to validate the commit-
ment of transaction G. GSG is a directed graph whose nodes correspond
to the recently committed global transactions. For any pair of recently
committed global transactions G i and Gj, there is a directed edge G i ~ Gj
if Gi has obtained a smaller ticket value than Gj at a site where they were
executed together.

A global transaction G in the ready-to-commit state is validated as
follows.

• First, a node is created for G in GSG.
• If G has obtained a smaller (larger) ticket value than a recently

committed global transaction G,. at a site, an edge G ~ Gc (G, ~ G) is
inserted.

• If all such edges can be added to GSG without creating a cycle, G is
validated.

• Otherwise, the node for G and all related edges are removed from
the graph, and G is aborted.

A validation can be performed on GSG either:

• when a global child transaction becomes ready-to-commit (i.e., early
validation), or

• when a global root transaction becomes ready-to-commit (i.e., late
validation).

5For the detection of a potential deadlock.

214 T. DEVIRMi~ AND O. ULUSOY

The aim of early validation is to detect the conflicts among global
transactions as early as possible and to minimize the global transaction
restarts. If a global child transaction fails in GSG test, GTM can abort that
transaction. If a preference or an alternative dependency relation exists
among the transactions that belong to the same parent, GTM can execute
an alternative transaction for the failed child transaction. If a no-depend-
ency relation or a precedence relation exists, GTM restarts the aborted
global child transaction.

If the violation test for a global root transaction is successful, a commit
message is transmitted to its children. Otherwise, an abort message is sent
to its children, and the entire global transaction is restarted.

To remove a node for a committed global transaction G from GSG, the
following properties should be satisfied [9]:

• The node has no incoming edges.
• The transactions that were active when G was committed have all

been terminated.

3.2.2. Employing the Conservative Ticketing Method (CTM)

CTM was introduced to eliminate the global restarts experienced by
OTM due to the ticketing conflicts. CTM controls the order in which the
subtransactions take their ticket values. In order to apply CTM, we need
an additional ready-to-take-a-ticket state of transactions. A subtransaction
enters the ready-to-take-a-ticket state after it completes all of the database
operations before obtaining its ticket value. The agents over the local sites
are responsible to detect ready-to-take-a-ticket states of subtransactions
and send related messages to GTM.

If CTM is employed in our system, a global transaction is processed as
follows:

• Initially, a time-out period is set for each global transaction.
• A subtransaction is allowed to execute under the control of LDBSs

until it enters the ready-to-take-a-ticket state.
• When a subtransaction enters the ready-to-take-a-ticket state, the

agent of that site sends a ready-to-take-a-ticket message to GTM.
• After receiving this message for a subtransaction, GTM checks the

dependency type associated with the global parent of the subtransac-
tion to determine whether the parent should also enter the ready-to-
take-a-ticket state. This determination is based on the execution rules
specified for the ready-to-commit message in Section 3.1.

TRANSACTION EXECUTION MODEL FOR MDBS 215

• Global transactions, which are determined to enter the ready-to-take-
a-ticket state, are allowed to take their ticket values according to the
order in which they enter this state. If a global transaction GI
becomes ready to take a ticket before another transaction G2, a 1 is
assigned a smaller ticket value than that of G z.

• A global transaction that enters the ready-to-commit state is commit-
ted by GTM. If the time-out of a global transaction expires before it
is committed, the transaction is aborted and then restarted.

3.3. COMMIT-INDEPENDENT SUBTRANSACTIONS

The preceding section has provided the implementation details of the
execution model for ordinary subtransactions. In this section, we consider
commit-independent (i.e., compensatable and retriable) subtransactions.
The execution strategies detailed in both sections can be used together for
a mixture of ordinary and commit-independent subtransactions. For clarity
of presentation, we preferred to discuss the two types of subtransactions in
two separate sections. Before the description of the execution model for
commit-independent subtransactions, let us first specify the necessary
assumptions and restrictions for the underlying MDBS environment:

• There should be no value dependencies among the commit-indepen-
dent subtransactions.

• If a compensating transaction is initiated, it completes successfully.

The aim of commit independent subtransactions is to reduce the block-
ing effect of the 2PC global atomic commitment protocol. If a subtransac-
tion commits before its parent, it is called an early committed subtransac-
tion. Similarly, if a subtransaction commits after its parent, it is a late
committed subtransaction. Compensatable subtransactions can be early
committed, and retriable subtransactions can be late committed. To achieve
semantic atomicity with commit-independent subtransactions, the follow-
ing conditions should hold for a global transaction G [12]:

• If G is aborted, the effects of early committed subtransactions of G
on the database are not seen by other transactions.

• If G is committed, the effects of its late committed subtransactions
are seen by the transactions serialized after G.

Consequently, for a compensatable subtransaction S with its compen-
sating transaction CS, if the parent of S is aborted, commitment of S is
required to be undone by executing CS. The effects of committed sub-
transactions are not seen if no other subtransaction is serialized between

216 T. D E V i R M I ~ A N D 0 . U L U S O Y

the S and CS. Therefore, if G T M ensures that no other subtransaction
takes its ticket value before the commitment of CS, consistency of the
MDBS is preserved.

The compensating transaction execution is handled by agents. If a
global transaction G has a compensatable subtransaction S with its
associated compensating transaction CS, the execution of S proceeds as
follows when O T M is employed:

• CS is sent to the relevant agent with the submission of S.
• When S enters the ready-to-commit state,

- - The agent sends a ready-to-commit message to GTM.
- - T h e ticket value obtained by S is recorded, and S is early

committed by the agent.

• If the agent receives an abort message for S after it has been early
committed, it submits CS to LDBS. The agent sends an abort mes-
sage for the subtransactions that has obtained a ticket value greater
than that of S before CS is committed.

If CTM is being used for global concurrency control:

• CS is sent to the relevant agent with the submission of S.
• When S enters a ready-to-take-a-ticket state, the agent sends a

ready-to-take-a-ticket message to GTM.
• The agent does not permit other subtransactions to enter their

ready-to-take-a-ticket states until S takes its ticket.
• If S successfully takes its ticket and completes all of its operations,

the agent early commits S and sends a ready-to-commit message to
GTM.

• The agent does not allow other subtransactions to take their ticket
values until S is committed or aborted.

• If an abort is issued for the early-committed S, the agent submits CS
to the LDBSs, and does not submit any other subtransaction opera-
tion until CS is committed.

In the case of retriable subtransactions, the global transactions do not
see an inconsistent database if G T M avoids serialization of any subtrans-
action between the commitment of a global transaction and the commit-
ment of a retriable subtransaction that belongs to the committed global
transaction. A global transaction G that contains a retriable subtransac-
tion RS can be committed without waiting RS to finish its execution.
G T M can commit G, while RS is still being executed at a site, but it does
not permit another subtransaction to take a ticket at that site until RS

takes its ticket.

TRANSAC'TION E X E C U T I O N M O D E L F O R MDBS 217

If O T M protocol is employed, the execution of retriable subtransaction
RS of G can be handled as follows:

• If G enters the ready-to-commit state before a ready-to-commit
message arrives for RS, a + ~ ticket value is used for G in GSG test.
Since the RS has not taken its ticket yet, the + ~ ticket value in GSG
test ensures that no other subtransaction is serialized between the
commitment of G and the commitment of RS.

• When RS is committed, the agent sends a commit message to G T M
in order to update the ticket value of G.

If the employed protocol is CTM, agents simply do not allow other
subtransactions to take their tickets until RS is successfully committed.
The execution protocol for a retriable subtransaction RS can be described
as follows:

• Once the agent receives a take-a-ticket message for RS, it does not
send ready-to-take-a-ticket messages for other subtransactions exe-
cuted at that site until RS takes its ticket successfully.

• G T M makes the state of RS ready-to-commit after sending a take-a-
ticket message to it.

• If G T M issues a commit for RS, the agent does not submit the ticket
operation of other subtransactions to the LDBS until RS is commit-
ted.

4. S I M U L A T I O N M O D E L

With the simulation experiments of this section, we aimed to investigate
the performance implications of MDBS transaction management . Various
experiments have been conducted to evaluate the cost of transaction
processing in an MDBS environment. The performance of O T M and CTM
algorithms built on the proposed transaction model has also been evalu-
ated.

Reliability and recovery issues are not considered in our simulation
model. We assume a reliable system, in which no site failures or communi-
cation network failures occur. The other assumptions of the simulation
model can be listed as follows:

• LDBSs can abort a transaction that executes at its site to recover
from a local deadlock.

218 T. DEViRMi~ AND 0 . ULUSOY

• LDBSs notify the transaction programs when unilaterally abort a
transaction. This means that MDBS will be aware of subtransaction
aborts at local sites.

• Subtransactions have a visible ready-to-commit state.

The architecture of our MDBS that was adapted from [10] is illustrated
in Figure 3. An MDBS is modeled as a closed network with a single global
site and a number of local sites. A global transaction manager (GTM)
resides at the global site, and it acts as a server to global clients. Global
transactions are submitted to the system through the GTM interface.
There exists one LDBS residing at each local site. A global transaction
agent (GTA) is built on top of each LDBS. GTM sends the global
subtransactions to GTAs of the relevant sites. Each GTA is responsible for
submitting global subtransactions to its LDBS, as well as communicating
with GTM. Local clients submit local transactions to the LDBS at their
sites.

The configuration parameters of our MDBS model are listed in Table 1.
It is assumed that each global or local client submits its transactions one
after another. The size of the local database is assumed to be the same at
each site. A page is considered as the unit of data access. Each data page
in the database is simulated individually. The simulation program also
keeps track of the list of data pages resident in the main memory of each
site.

Each local transaction processed at a site contains read and write
operations on data pages stored at that site. The parameters associated

Global Clients

. / 9

. .

I.,oeal Clients

[LDBS I Site
., .

i i.ax:al Clients

Fig. 3. MDBS architecture.

T R A N S A C T I O N E X E C U T I O N M O D E L F O R MDBS 219

TABLE 1

Configuration Parameters

NumSites
GNumClient
LNumClient
LDBsize
LMemsize

Number of local sites
Number of global clients
Number of local clients at each site
Size of each local database (in pages)
Main memory size at each site (in pages)

with local transactions are described in Table 2. The local transaction size
(i.e., LTranSize) refers to the number of data page accesses of a local
transaction. Each data page accessed is updated with a probability of
L WriteProb. When a local transaction execution is completed, a new local
transaction is generated at that site after a think time which is specified by
parameter L ThinkTime.

The global transaction parameters used in our simulation model are
listed in Table 3. As discussed in the previous sections, a global transaction
can be modeled as a tree where the internal nodes are global transactions
and the leaf nodes are subtransactions. The maximum height of a global
transaction tree and the maximum number of child transactions at each
internal node are specified by parameters TreeHeight and NumChild,
respectively. The maximum number of subtransactions executed in a global
transaction is then (Numfhild) TreeHeight. Since we assume that at most one
subtransaction of a global transaction can be executed at each site, the
number of subtransactions of a global transaction also determines the
number of local database sites that the global transaction may access.

The dependencies among the children of a global transaction are
determined by the probabilities of different dependency types. To analyze
the effects of compensating and retriable transactions, OrdinaryProb, Com-
pensatableProb, and RetriableProb parameters are defined. These parame-
ters determine, on the average, the ratio of subtransactions' types in the
overall global transaction. The values of the three parameters at any
instant should sum up to 1. Similar to a local transaction, each subtransac-

TABLE 2
Local Transaction Parameters

L TranLen
L WriteProb
L Think Time

Local transaction length in pages
Data update probability at a local transaction access
Think time of a local client

220 T. DEViRMJ~ AND 0 . ULUSOY

TABLE 3
Global Transaction Parameters

TreeHeight
NumChild
AlternativeProb
PreferenceProb
PrecedenceProb
OrdinaryProb
Retriable Prob
Compensatable Prob
GTranLen
G Writ e Pr ob
G Think Time

Maximum height of a global transaction tree
Maximum number of children in each global transaction
Probability of alternative relation
Probability of preference relation
Probability of precedence relation
Probability of ordinary subtransactions
Probability of retriable subtransactions
Probability of compensatable subtransactions
Subtransaction length in pages
Data update probability at a subtransaction access
Think time of a global client

tion contains a number of read and write operations on data pages.
Ticketing operations of a subtransaction are assumed to be read and write
operations on a specific page.

Resource-related parameters used in the simulation model are de-
scribed in Table 4. The delay of communication messages and the process-
ing cost of those messages (at both the source and destination sites) are
explicitly simulated by using the parameters MessTransTime and
CPUMessTime, respectively. A resource unit at each local site is modeled
by one CPU and two disks. Each site is assumed to have an equal number
of resource units, which is determined by the parameter LResourceUnit .

4.1. SIMULATION MODEL COMPONENTS

In this subsection, we describe the simulation model components in
more detail. An illustration of the simulation model is provided in Fig-
ure 4. Each component of the model can be described as follows:

• Global Transaction Generator (GTG): GTG simulates the global
client behavior by generating global transactions on the basis of the

TABLE 4

Resource Parameters

Mess Trans Time
CPUMess Time
LResource Unit
LCPUTime
L Disk Time

Delay of a communication message
CPU time to process a communication message
Number of resource units at each site
CPU time to process one data page
Disk time to read/write one data page

TRANSACTION EXECUTION MODEL FOR MDBS 221

Global Site

Local Site

Globa l Transact ion Genera tor (G T G)

Main Module CC
Manager

N~twork Manager

Lt~al
Tran.,~action

Generator
(LTG)

M a i n M o d o l o __1
m] [~ -#
I Data CC

Manager Manager

- - - t
Fig. 4. Simulation model components.

parameters listed in Table 3. At the beginning of the simulation,
GNumClient global transactions are created and submitted to GTM.
During the simulation, a new transaction can only be created after the
termination of a global transaction.

• Global Transaction Manager (GTM): GTM accepts global transac-
tions from GTG and models their execution. It consists of two
modules:

- - Main Module: This module models the transaction execution with
the help of the Concurrency Control (CC) manager. There are
two main functions of this module. First, it accepts global transac-
tions and decomposes them into their subtransactions executed at
each local site according to the rules discussed in Section 3.
Second, it establishes a 2PC protocol with agents and coordinates
incoming and outgoing messages for subtransactions. When a

222 T. DEViRMi~ AND 6. ULUSOY

global transaction enters the ready-to-commit state, it decides
either commitment or abortion of that transaction after communi-
cating with the CC manager.

- - Concurrency Control (CC) Manager: The CC manager models the
execution of a concurrency control algorithm for serialization of
global transactions. It also performs deadlock detection if neces-
sary. This module enables us to plug in different global concur-
rency control and deadlock detection algorithms for performance
studies.

• Local Transaction Generator (LTG): This component simulates the
local client behavior and generates local transactions based on the
values of parameters provided in Table 2. Similar to GTG, it submits
a new transaction when one of the previously submitted local transac-
tions completes its execution.

• Global Transaction Agent (GTA): The GTA resides at each local site
and models the execution of global subtransactions at that site.
Similarly to GTM, it consists of two modules.

- - Main Module: The GTA main module is responsible for control-
ling the submission of subtransactions at its site. It determines the
submission time of a subtransaction's operations with the help of
the CC manager and the messages coming from GTM. Submis-
sion time of the ticketing operation is also determined by the
GTA main module based on the local concurrency control algo-
rithm. If the local concurrency control algorithm is based on
locking, GTA submits the ticketing operations at the end of each
transaction execution [9]. The main module also handles the
submission of compensating subtransactions by interacting with
the CC manager.

- - CC Manager: It is the local agent part of the concurrency control
algorithm implemented in GTM. It carries out the global concur-
rency control for subtransactions at its site.

• Network Manager: It models the network resource connecting the
local sites and the global site.

• Local Transaction Manager (LTM): The LTM accepts and models the
execution of local transactions and subtransactions. It consists of
three modules.

- - Main Module: The main module models the local transaction
execution by interacting with the CC manager and data manager.

- - CC Manager: The CC manager models the local concurrency
control algorithm as well as the local deadlock detection algo-
rithm.

TRANSACTION EXECUTION MODEL FOR MDBS 223

- - Data Manager: The data manager models data accesses by inter-
acting with the resource manager and the main module of LTM.

• Resource Manager: This component models CPU and disk accesses at
its site.

5. SIMULATION EXPERIMENTS

Our performance model was implemented on a simulation testbed using
the CSIM simulation package from MCC [17]. Each run of the simulation
experiments was continued until 5000 transactions (global + local) were
processed in the system. The independent replication method was used to
validate the results by running each configuration ten times with different
random number seeds and using the averages of the replica means as final
estimates. 90% confidence intervals were obtained for the performance
results. The width of the confidence interval of each statistical data point
is less than 4% of the point estimate. In displayed graphs, only the mean
values of the performance results are plotted.

In the experiments, we employed the basic two-phase-locking (2PL)
concurrency control algorithm [2] at the local sites. For the detection of
local deadlocks, a local wait-for graph was maintained at each site. To
handle global deadlocks, we implemented a time-out mechanism for the
execution of global transactions.

The basic performance metrics used are global (local) throughput (i.e.,
the number of committed global (local) transactions per second), and
global (local) abort ratio (i.e., the number of global (local) transaction
aborts over the total number of global (local) transactions submitted to the
system). The throughput results are also indicative of how the response
time trends would be for the transactions.

Simulation experiments were driven by the parameter values presented
in Table 5. The parameter values were chosen so as to be comparable to
the related simulation studies such as [1, 10]. The workload model used in
the experiments simulates an environment in which there exist some
amount of data and resource contention among the global and local
transactions. All of the local sites are assumed identical and operating
under the same parameter values.

We observed in our preliminary experiments that using an adaptive
restart delay of an average global (local) transaction response time for the
aborted global (local) transactions gives the best results.

In the experiments of the following sections, we investigate the perfor-
mance impact of OTM and CTM algorithms and the extended transaction
model characteristics.

224 T. DEVIRMJ~ AND 0 . ULUSOY

TABLE 5
Default Values for Configuration and Workload Parameters

NumSites 8 sites
GNumClient 20 clients
LNumClient 30 clients
LDBSize 1000 pages
LMemsize 250 pages
L TranLen 8 pages
L WriteProb 0.25
LThinkTime 0 ms
TreeHeight 1, 3
NumChUd 2
AlternativeProb 0.00
PreferenceProb 0.00
PrecedenceProb 0.00
OrdinaryProb 1.00
Retriab le Prob 0.00
CompensatableProb 0.00
GTranLen 8 pages
GWriteProb 0.25
GThinkTime 0 ms
MessTransTime 5 ms
CPUMessTime 20 ms
LResourceUnit 5
LCPUTime 100 ms
LDiskTime 200 ms

5.1. EVALUATION OF OTM A N D CTM CONCURRENCY
CONTROL ALGORITHMS

The comparative performance of OTM and CTM global concurrency
control algorithms was evaluated under different levels of data contention
by varying parameter GWri teProb. The global throughput results obtained
with the algorithms are displayed in Figure 5. Under very low levels of data
contention (i.e., when the workload consists only of read-only transactions),
OTM performs better than CTM. The worse performance of CTM can be
contributed to the overhead of blocking a completed subtransaction until
all of its siblings become ready to take a ticket. However, as the data
contention among transactions increases, the performance of OTM be-
comes worse than that of CTM. This result is due to the increasing
number of validation aborts with OTM. Figure 6 presents the abort ratios
of both algorithms under different levels of data contention. OTM has a
higher abort ratio due to validation aborts. The other types of aborts, i.e.,
deadlock recovery and time-out aborts, are experienced with both OTM
and CTM.

T R A N S A C T I O N E X E C U T I O N M O D E L F O R M D B S 225

6 . 0

5 . 0

4 . 0

3 . 0

2 . 0

1 .0
0 . O 0

Fig. 5.

~ ,.~ C T M

i +
0 . 2 5 O.I=0 0 . 7 5 1 . 0 0

G W r i t e P r o b

Global throughput versus global write probability.

0 . 4

0_3

i 0 . 2

d . d C T M
r-~ r-~ O T M

/

S
J

0.1

i
°'~.00 0.25

/
/

/
/

/

/ /

o . ~ o o.'~s 1 .oo
G W r l t e P r o b

Fig. 6. Global abort ratio versus global write probability.

226 T. DEViRMi~ AND O. ULUSOY

Under high levels of data contention, OTM again outperforms CTM.
This result can be explained by the fact that the increasing blocking times
of subtransactions (due to higher data contention) lead to a large number
of global and local deadlocks with algorithm CTM.

We also evaluated the algorithms under different levels of resource
contention by varying the parameter LResourceUnit. The performance of
the algorithms improved when the number of hardware resources was
increased; however, the comparative performance of the algorithms was
similar to what we observed under various levels of data contention.

5.2. IMPACT OF DEPENDENCY RELATIONS

In this set of experiments, we investigated the performance impact of
each dependency relation type individually. Figure 7 illustrates the effects
of processing various amounts of alternative relation transactions 6 on the
performance of global transactions with both OTM and CTM algorithms.
It is assumed that there exist no other types of dependencies among

6Here, we again use the term "transaction" to mean either subtransaction or global
transaction.

5 . 0

5 . 0

4 . 0

¢~ 3 . 0

2 . 0

1_0

I"- ~x C T I V I
O T M

0 . 0 0 0 . 2 5 0 . 5 0 0 . 7 5 1 . 0 0
A l t e m a t i v e P r o b

Fig. 7. Global throughput versus probability of alternative dependency relation.

TRANSACTION EXECUTION MODEL FOR MDBS 227

transactions (i.e., PreferenceProb and PrecedenceProb parameters are set to
0). As the number of transactions with alternative dependency increases,
the global throughput of the system also increases up to a certain point;
however, increasing the number of such transactions beyond that point
results in worse performance. This means that having the alternative
dependency for some of the transactions can improve the performance
since the overhead of restarting transactions is avoided. However, if the
system runs alternative child transactions for most of the submitted global
transactions, then the performance benefit of avoiding restarts is out-
weighed by the increased data and resource contention among the large
number of transactions processed concurrently in the system.

For small numbers of alternative transactions, the CTM algorithm
outperforms OTM. Remember that, in the preceding section, we obtained
the same result with GWriteProb = 0.25 (i.e., the default value used in the
experiments of this section), and explained this result by the validation
aborts experienced with OTM. For the AlternativeProb values that are
greater than 0.25, the performance of OTM becomes better than that of
CTM. For those values, the amount of transaction aborts avoided by
executing alternative transactions becomes large enough to affect the
comparative performance of OTM and CTM. The performance impact of
the primary drawback of OTM, i.e., the overhead of validation aborts, is
reduced by the alternative transactions. Figure 8 displays the abort ratios

0 . 4

0 . 3

0 . 2

0 . 1

0 . 0
0 . 0 0

• -3 ,~1 C T M
E] 13 O T M

0 . 2 5 0 . 5 0 0 . 7 5 1 . 0 0
A l t e r n a t I v e P r o b

Fig. 8. Global abort ratio versus probability of alternative dependency relation.

228 T. DEViRMi~ AND O. ULUSOY

obtained with both algorithms as a function of the fraction of alternative
transactions. Although the number of transaction aborts with OTM is still
larger than that of CTM, it is reduced to a great extent compared to the
results obtained with no alternative transactions (Figure 6). The worse
performance of CTM is due to the blocking times of completed subtrans-
actions before getting their tickets, and the higher chances of transaction
deadlocks.

The throughput results of the experiment that evaluated the effects of
preference dependency among transactions is provided in Figure 9. The
comparative performance trends of OTM and CTM algorithms is similar
to that we obtained with the alternative dependency. This is an expected
result since, as explained in previous sections, the preference relation is
implemented by executing concurrently all of the transactions that are
alternative to the preferred transaction. Therefore, the discussion we have
provided above for the relative performance of OTM and CTM with the
alternative relation is also valid for the preference relation. However, as a
difference from the results obtained with the alternative dependency, a
very slight throughput improvement is observed by increasing the fraction
of transactions with preference dependency up to a value of 0.25. Also, the
throughput obtained in general with the preference relation is at a lower

6 . 0

5 . 0

4 . 0

3 . 0

2 . o / ' . , ~ C T M
c3 c:~ o " r l ~

° o o o~,~ o~o o ~
P r e f e r e n c e P r o b

1 . 0 0

Fig. 9. Global throughput versus probability of preference dependency relation.

TRANSACTION EXECUTION MODEL FOR MDBS 229

level compared to that with the alternative relation. All of these results
can be contributed to the higher overhead of executing transactions with
the preference dependency. In implementing the preference dependency,
GTM submits all of the alternative transactions; however, it waits for the
completion of the preferred one. Transactions that are alternative to the
preferred transaction and have completed their execution are not commit-
ted unless the preferred one is aborted due to some reason. This will result
in increased response times and lower throughput for global transactions.

When we increased the number of resource units at each site, we
observed better performance by issuing transactions with alternative and
preference dependencies. This result is obvious because the overhead of
processing a large number of extra transactions is reduced by providing
them with surplus resources.

Figure 10 presents the throughput results obtained with different de-
grees of precedence dependency. Increasing the number of transactions
with precedence dependency results in a performance degradation with
both algorithms OTM and CTM. The precedence dependency among
transactions leads to an increase in the response times, as dependent
transactions have to wait for the commitment of some other transactions.
Therefore, each additional precedence dependency affects the throughput
negatively. As another difference from the results of other types of
dependencies, the performance of OTM never becomes better than the

6 . 0

5 . 0

4 . 0

3 . 0

2 . 0

1 . 0

~- ~3 C T M
o o O T M

0 . 0 0 0 . 2 5 0 . 5 0 0 . 7 5 1 . 0 0
P r e c e d e n c e P r o b

Fig. 10. Global throughput versus probability of precedence dependency relation.

230 T. DEViRM]~ AND 6. ULUSOY

performance of CTM when there exists precedence dependency among
some transactions. Since this type of dependency leads to an increase in
the response times of transactions, the impact of validation aborts experi-
enced with OTM is more crucial. Although the blocking times and the
probability of deadlocks also increase with more precedence dependency,
and this affects the performance of CTM negatively, the overhead of the
large number of validation aborts becomes the determining factor for the
relative performance of OTM and CTM.

5.3. IMPACT OF COMMIT INDEPENDENT SUBTRANSACTIONS

In the experiments of this section, we investigated how compensatable
and retriable subtransactions affect the performance of global trans-
actions. We set parameters AlternativeProb, PreferenceProb, and Pre-
cedenceProb to 0 to isolate the effects of transaction dependencies. In the
first experiment, we evaluated the performance impact of retriable trans-
actions by varying parameter RetriableProb from 0.00 to 1.00 in steps of
0.25. All of the subtransactions that are not retriable are assumed to be of
type ordinary.

Figure 11 illustrates the throughput results of global transactions for
different ratios of retriable subtransactions with algorithms OTM and

6 . 0

5 . 0

4 . 0

3 . 0

2 . 0

~ , . ~ C T M
C~ O T M

A a_

D 0

' - 0 . o o ' ' ~, 0 . 2 5 0 . 5 0 O. S . 0 0
R e t f l m b l l P r o b

Fig. 11. Global throughput versus probability of retriable subtransactions.

TRANSACTION EXECUTION MODEL FOR MDBS

O . 4

0 . 3

0 . 2

0 . 1

~--. ~.~ C T M
r ~ n O T M

J

i
° ' °o .oo o.~,5 o .~o o.~'~ ~ .oo

R e t d a b l e P r o b

Fig. 12. Global abort ratio versus probability of retriable subtransactions.

231

CTM. A slight improvement is observed in the performance of both
algorithms as the probability of retriable subtransactions increases. Al-
though it is expected that retriable subtransactions can provide substantial
improvements in the performance since they provide global transactions to
commit early, this expectation is not confirmed by the results. With OTM,
the performance advantage gained by early global commits is outweighed
by the increased number of transaction aborts during validation tests. It
should be ensured by this algorithm that no other transaction is serialized
between a global transaction and its retriable subtransaction. Failure to
satisfy this condition can be the source of many validation aborts. Abort
ratios of the algorithms are displayed in Figure 12. Although the abort
ratios of transactions are not affected by retriable subtransactions with
CTM, the throughput improvement is not substantial with this algorithm
either. The overhead in this case is the blocking times experienced with
transactions. Although a global transaction with a retriable subtransaction
is allowed to commit early, the CTM algorithm requires that the other
subtransactions running concurrently at the same site wait for that sub-
transaction until it takes its ticket. The comparative performance of OTM
and CTM does not seem to be affected by the amount of retriable
subtransactions.

The impact of compensatable subtransactions on the global throughput
is illustrated in Figure 13. We should not expect global performance gains

232 T. DEViRMi~ AND O. ULUSOY

6 . 0

~ . 0

4 . 0

3 . 0

2 . 0

1 . 0

-'~ C T M
r-~ O T M

Fig. 13.

0 . 0 0 0 . 2 5 0 . 5 0 0 . 7 5 1 . 0 0
C o r n p e n s a t a b l e P r o b

Global throughput versus probability of compensatable subtransactions.

from the compensatable transactions since the response time of a global
transaction does not depend on the execution of its compensatable chil-
dren. 7 CTM's performance is not much affected by the amount of compen-
satable subtransactions. The performance of OTM, on the other hand, is
affected negatively when the number of compensatable subtransactions is
increased. A compensatable subtransaction can be committed earlier than
its parent transaction; however, during the validation test of OTM, GTA
aborts the subtransactions that have obtained higher ticket values than the
compensatable subtransaction before its parents commits. The number of
such aborts is large enough to degrade the performance of OTM. The
sharp increase in the number of aborts as a function of increasing ratio of
compensatable subtransactions can be seen in Figure 14.

5.4. IMPACT OF EXTENDED TRANSACTIONS ON LO CAL TRANSACTIONS

The experiments of this section were conducted to evaluate the impact
of various dependency types and global subtransaction types on the perfor-

7However, from the local DBMS point of view, early committed subtransactions can
improve the local transaction throughput as the locks are released earlier. This
prediction is confirmed by the experiments of the next section.

TRANSACTION EXECUTION MODEL FOR MDBS 233

0 . 6

O . 5

Fig. 14.

0 . 4

0 . 3

0 . 2

0 . 1

0 . 0
0 . 0 0

/ ' - , .~ C T M
r-~ Q O T M

0.~5 0.50 0_'75 .00
CompensatableProb

Global abort ratio versus probability of compensatable subtransactions.

mance of local transactions. It was observed in those experiments that the
local transactions perform better in general when OTM rather than CTM
is employed to ensure global serializability. With CTM, a subtransaction
that has completed all of its operations has to wait for the completion of
its sibling subtransactions before getting its ticket. This situation leads to
an increase in the number of data conflicts between subtransactions and
local transactions. The possibility and the overhead of local deadlocks also
increase. Therefore, the performance of local transactions is affected
negatively.

In the first set of experiments, we investigated the performance impact
of alternative and preference dependency types among transactions. For
each of those two dependency types, we observed that an increase in the
number of dependent transactions results in a performance degradation
for local transactions with both OTM and CTM algorithms. That observa-
tion can be explained by the fact that, with both dependency types, the
extra subtransactions that are created as alternatives to each other cause
an increase in the level of both data and resource contention. Therefore,
local transactions experience more data and resource conflicts. Figure 15
presents the local throughput results obtained for the preference relation
type. We observed similar performance trends with alternative transac-
tions.

234 T. DEVIRMI~ AND O. ULUSOY

g . O

8 . 0 ¸

7 . 0

6 . 0

5 . 0

~.~ ,5, C T M
LJ ~ O T M

Fig. 15.

0 . 0 0 0 . 2 5 0 . 5 0 0 . 7 5 1 . 0 0

P r e f e r e n c e P r o b

Local throughput versus probability of preference dependency relation.

Figure 16 shows how the precedence relation affects the performance of
local transactions. As the number of transactions with precedence depen-
dency increases, the performance obtained with CTM becomes drastically
worse than that with OTM. While processing dependent transactions,
OTM allows a completed transaction to release its locks before the
dependent transaction starts its execution. With CTM, this is not the case;
therefore, local transactions have more data conflicts with subtransactions.

Including different amounts of retriable subtransactions in the system
did not have a considerable effect on the performance of local transac-
tions. Increasing the number of retriable subtransactions, and therefore
having more global transactions be committed earlier improved the local
transaction throughput very slightly. This is because, although some global
transactions can commit earlier, their retriable subtransactions continue to
contend with local transactions for system resources. The situation, how-
ever, was different with compensatable subtransactions. Committing some
of the subtransactions earlier and releasing their resources gave a better
chance to local transactions to access the required resources without
experiencing much contention and to finish early. Figure 17 provides the
local throughput results obtained as a function of the fraction of compen-
satable subtransactions. For a very large number of compensatable sub-
transactions, OTM cannot provide further improvement in the local per-
formance. This result can be contributed to the GTA aborts that we have
discussed at the end of the preceding section.

T R A N S A C T I O N E X E C U T I O N M O D E L F O R M D B S 235

9 . O

8 . 0 ,

7 . 0

8 . 0

5 . o . ~ o hs 0.~,0 0.;'5 1.oo
P r ~ D 4 N : l l ~ n c ~ P r o b

Fig. 16. Local throughput versus probability of precedence dependency relation.

1 0 . 0

9 . 0

8 . 0

7 _ 0
~- -~- C T M
u cJ O T M

8"0.00 o.~,8 ' o.ho o.~,5' , .oo
C o m p e n l l a t a b l e P r o b

Fig. 17. Local throughput versus probability of compensatable subtransactions.

236 T. DEViRMi~ AND O. ULUSOY

6. CONCLUSIONS

Most work in the multidatabase systems (MDBSs) area has focused on
the issues of transaction management and concurrency control (e.g., [3, 4,
7, 16]). It is difficult to implement traditional transaction management
techniques in an MDBS due to the heterogeneity and autonomy of the
connected local sites. In this paper, we introduced an extended transaction
model for MDBSs. The proposed transaction model covers nested transac-
tions, various dependency types among transactions, and commit-indepen-
dent subtransactions that make the model much more flexible and power-
ful than the traditional transaction model. The execution architecture
described for transactions does not make any assumption regarding the
concurrency control protocols executed at the local sites connected to the
MDBS. The global serializability is ensured through the ticketing method
proposed by Georgakopoulos et al. [9]. Atomic commitment of global
transactions is provided through the use of the two-phase commit (2PC)
protocol. The blocking effect of 2PC is reduced by executing commit-inde-
pendent subtransactions.

We provided a detailed simulation model of an MDBS to investigate the
performance implications of the proposed transaction model. The simula-
tion model was also used to evaluate the comparative performance of the
two variations of the ticketing method: the optimistic ticketing method
(OTM) and the conservative ticketing method (CTM). It was observed in
the evaluations that the transaction restarts experienced with validation
tests constitute a substantial overhead for the response time of transac-
tions when OTM is employed. The primary overhead of CTM, on the other
hand, is the blocking delays of transactions prior to the assignment of
ticket values. The blocking delays also lead to a large number of transac-
tion deadlocks under high levels of data contention.

When we evaluated the performance impact of transaction dependency
types involved in our transaction model, we observed that processing
transactions with alternative or preference dependency improves the global
throughput of the system if such transactions do not constitute a large
fraction of all the transactions processed in the system. Otherwise, the
performance benefit provided by avoiding some of the transaction aborts is
outweighed by the increased data and resource contention due to process-
ing a large number of extra transactions introduced by the alternative or
preference dependency. The situation under high contention was worse
with the preference dependency since the additional transactions intro-
duced as altematives to the preferred transaction do not provide any
advantage unless the preferred transaction is aborted due to some reason.

TRANSACTION E X E C U T I O N M O D E L FOR MDBS 237

Processing transactions with the precedence dependency degraded the
global throughput of the system, as expected, since the level of concur-
rency is lower with such transactions. Also, the cost of transaction aborts is
higher with the precedence dependency, which causes OTM to perform
worse than CTM.

The dependency types among global transactions had a negative impact
on the performance of local transactions. With the alternative and prefer-
ence dependencies, the extra transactions created as alternatives to each
other lead to an increase in the level of data and resource contention at
each local site. Therefore, local transactions experience more data and
resource conflicts. The precedence dependency among transactions also
causes a degradation in the local transaction throughput. The performance
of local transactions with CTM was worse than that with OTM in the
presence of transactions with each of dependency types.

The performance results obtained with commit-independent subtransac-
tions can be summarized as follows. Enabling global transactions to
commit early by issuing retriable subtransactions results in some, although
not substantial, improvement in the global throughput of the system. The
early committed global transactions do not have a considerable impact on
the performance of local transactions because, although some global
transactions can commit earlier, their retriable subtransactions continue to
contend with local transactions for system resources.

Compensatable subtransactions, on the other hand, do not provide any
improvement in the performance of global transactions because commit-
ment of subtransactions earlier than their global parent transactions does
not have an effect on the response time of parents. However, early
committed compensatable subtransactions were observed to improve the
performance of local transactions, as the locks of such subtransactions are
released earlier.

REFERENCES

1. R. Agrawal, M. J. Carey, and M. Livny, Concurrency control modeling: Alternatives
and implications, ACM Trans. Database Syst. 12(4) (1987).

2. P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency Control and RecoL,ery
in Database Systems, Addison-Wesley, Reading, MA, 1987.

3. Y. Breitbart, H. Garcia-Molina, and A. Silberschatz, Overview of multidatabase
transaction management, Tech. Rep. STAN-CS-92-1432, Dept. Computer Science,
Stanford Univers!.ty, Stanford, CA, 1992.

4. T. Devirmi§ and O. Ulusoy, A transaction model for multidatabase systems, in: 2nd
Int. Euro-Par Conference, 1996, pp. 862-865.

5. W. Du, A. Elmagarmid, Y. Leu, and S. Osterman, Effects of local autonomy on
heterogeneous distributed database systems, Tech. Rep. TR-ACT-OODS-EI-059-90,
Microelectron. and Comput. Corp., Austin, TX, 1990.

238 T. DEViRMi~ AND 0. ULUSOY

6. A. Elmagarmid, Y. Leu, W. Litwin, and M. Rusinkiewicz, A multidatabase trans-
action model for InterBase, in: 16th Int. Conf. Very Large Databases, 1990,
pp. 507-518.

7. A. Elmagarmid and A. Zhang, A theory of global concurrency control in multi-
database systems, VLDB J. 2(3):331-360 (1993).

8. H. Garcia-Molina, Using semantic knowledge for transaction processing in a dis-
tributed database, ACM Trans. Database Syst. 8(2):186-213 (1983).

9. D. Georgakopoulos, M. Rusinkiewicz, and A. P. Sheth, Using tickets to enforce the
serializability of multidatabase transaction, IEEE Trans. Knowledge and Data Engrg.
6(1):166-180 (1994).

10. J. Huang, S. Hwang, and J. Srivastava, Concurrency control in federated database
systems: A performance study, Tech. Rep. TR93-15, Dept. Computer Science,
University of Minnesota, Minneapolis, 1993.

11. W. Litwin, L. Mark, and N. Roussopoulos, Interoperability of multiple autonomous
databases, A CM Computing Surveys 22(3):267-293 (1990).

12. S. Mehrotra, R. Rastogi, H. F. Korth, and A. Silberschatz, A transaction model for
multidatabase systems, Tech. Rep. TR-92-14, Dept. Computer Science, University of
Texas, Austin, 1992.

13. J. E. Moss, Nested Transactions: An Approach to Reliable Distributed Computing,
M1T Press, Cambridge, MA, 1985.

14. C. Pu, Superdatabases for composition of heterogeneous databases, in: 4th Int.
Conf. Data Engrg., 1988.

15. M. Rusinkiewicz, P. Krychniak, and A. Cichocki, Towards a model for multi-
database transactions, Tech. Rep. UH-CS-92-18, Dept. Computer Science, Univer-
sity of Houston, Houston, TX, 1992.

16. H. J. Schek, G. Weikum, and W. Schaad, A multi-level transaction approach to
federated dbms transaction management, in: 1st Int. Workshop Interoperability in
Multidatabase Syst., 1991.

17. H. Schwetman, CSIM User's Guide, MCC Tech. Rep. ACT-126-90, 1990.
18. A. Sheth and J. Larson, Federated database systems for managing distributed,

heterogeneous, and autonomous databases, ACM Computing Surveys 22(3):183-236
(1990).

19. A. Zhang, M. Nodine, B. Bhargava, and O. Bukhres, Ensuring relaxed atomicity for
flexible transaction in multidatabase systems, in: ACM SIGMOD Int. Conf. Manage-
ment of Data, 1994, pp. 67-78.

Received 1 April 1996

