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Abstract 

This paper provides an approximate analytic solution method for evaluating the 
performance of concurrency control protocols developed for real-time database systems 
(RTDBSs). Transactions processed in a RTDBS are associated with timing constraints 
typically in the form of deadlines. The primary consideration in developing a RTDBS 
concurrency control protocol is the fact that satisfaction of the timing constraints of 
transactions is as important as maintaining the consistency of the underlying database. 
The proposed solution method provides the evaluation of the performance of concur- 
rency control protocols in terms of the satisfaction rate of timing constraints. As a case 
study, a RTDBS concurrency control protocol, called High Priority, is analyzed using 
the proposed method. The accuracy of the performance results obtained is ascertained 
via simulation. The solution method is also used to investigate the real-time perfor- 
mance benefits of the High Priority over the ordinary Two-Phase Locking. © 1998 
Elsevier Science Inc. All rights reserved. 

Keywords: Real-time database systems; Concurrency control; Performance evaluation; 
Markov modeling; Analytic solution 

I. Introduction 

A real-time database system (RTDBS)  is designed to provide timely re- 
sponse to the transact ions o f  data-intensive applications. Examples o f  
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RTDBS application areas include computer-integrated manufacturing, airline 
reservation systems, stock market, banking, and command and control systems. 
Similar to a conventional real-time system, transactions processed in a RTDBS 
are associated with timing constraints, typically in the form of deadlines. Access 
requests of transactions to data or other system resources are scheduled on the 
basis of the timing constraints. What makes a RTDBS different from a real-time 
system is the requirement of preserving the logical consistency of data in ad- 
dition to considering the timing constraints of transactions. The requirement to 
maintain data consistency is the essential feature of a conventional database 
system. However, the techniques used to preserve data consistency in database 
systems are all based on transaction blocking and transaction restart, which 
makes it virtually impossible to predict computation times and hence to provide 
schedules that guarantee deadlines in a RTDBS. As a result, it becomes nec- 
essary to extend traditional database management techniques with time-critical 
scheduling methods. While the primary performance goal in conventional da- 
tabase systems is to minimize the average response time of transactions and to 
maximize throughput, the main objectives in RTDBSs is to maximize the 
number of transactions that satisfy their deadlines. 

The scheduling problem in RTDBSs has been addressed by a number of 
recent studies. The general approach taken in developing new scheduling al- 
gorithms has been to use existing techniques in CPU scheduling, buffer man- 
agement, IO scheduling, and concurrency control, and to apply time-critical 
scheduling methods to observe the timing requirements of transactions [17,30]. 
A considerable amount of RTDBS research has been devoted to performance 
evaluation of time-cognizant concurrency control protocols. However, the 
performance studies were either based on simulation (e.g., [1,8,10,14,15,19, 
22,27,28]), or carried out on a RTDBS testbed (e.g., [13]). To the best of our 
knowledge, no analytic performance study has been reported so far involving 
the evaluation of concurrency control protocols in RTDBSs, which is the main 

2 contribution of this paper. 
The behavior of concurrency control protocols in traditional database sys- 

tems has been investigated using both simulation (e.g., [2,9,16,18]) and analytic 
models (e.g., [5,6,20,21,26]). In this paper, we attempt to extend the existing 
analyses for concurrency control protocols to a real-time environment. 3 We 
analyze the performance of RTDBS concurrency control protocols via Markov 
modeling. As indicated in all analytic works listed above, it is practically im- 
possible to find an exact analytic solution to the performance evaluation 
problem of a concurrency control protocol. To simplify the problem, we an- 

2 Recently some analytical performance studies of RTDBSs have appeared in the literature (e.g., 
[11,24]); however, those works do not particularly involve the performance of concurrency control 
protocols. 

3 Our initial work in this direction appeared in [29]. 
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alyze an isolated individual transaction, rather than capturing the states of all 
concurrent transactions. It is assumed that the isolated transaction sees the 
average state of other transactions. This method was found to be fairly accu- 
rate in analyzing the performance of two-phase locking [5,23,25] and time- 
stamp-ordering algorithms [20,21]. The model provided is able to reflect the 
impact of the presence of other transactions on the performance of the isolated 
transaction. However, the analysis is approximate since the average behavior 
of transactions is modeled rather than their dynamic behavior. The accuracy of 
the performance results obtained by the analysis is ascertained using a simu- 
lation program which simulates the dynamic behavior of each transaction. 

The proposed solution method is used to evaluate the performance of 
concurrency control protocols in terms of the satisfaction rate of  timing con- 
straints. As a case study, we analyze a RTDBS concurrency control protocol, 
called High Priority (HP), using the solution method. Some performance ex- 
periments are conducted to evaluate the protocol under various conditions. To 
see how the 'real-time' aspect makes a difference, the solution method is also 
used to model ordinary Two-Phase Locking (2PL), and the performances of 
2PL and HP are comparatively evaluated. The experiment results help us show 
that the proposed analytic solution is a valid and useful method to predict the 
performance of concurrency control protocols developed for RTDBSs. 

The remainder of the paper is organized as follows. The next section pro- 
vides the structure and characteristics of a RTDBS model used in the evalu- 
ation of concurrency control protocols. Section 3 describes the analytic 
solution method proposed to model the behavior of the protocols. In Section 4, 
protocol HP is described, and an analysis of the protocol based on the pro- 
posed solution method is provided. Validation results of the analytic solution 
and the results of some experiments are also discussed in this section. Section 5 
extends the analysis by removing some of the constraints applied in developing 
the RTDBS model. Finally, Section 6 provides a brief discussion of our work 
together with the future plans. 

2. RTDBS model 

This section briefly describes the RTDBS model used in evaluating the 
performance of RTDBS concurrency control protocols. The model is based on 
a closed queuing model of a single site database system. It contains one CPU 
resource shared by transactions. 

Each transaction submitted to the system is associated with a real-time 
constraint in the form of a deadline, and is assigned a unique real-time priority 
determined on the basis of its deadline. Any priority assignment policy that 
makes use of the deadline information can be adapted by the system. 'Earliest 
Deadline First' (EDF) policy is one possible candidate which states that a 



22 0. Ulusoy / Information Sciences 111 (1998) 19~17 

transaction with an earlier deadline has higher priority than a transaction with 
a later deadline [l]. It is assumed that if any two transactions have the same 
deadline, the one that has arrived at the system earlier is considered to have a 
higher priority. The priority of  a transaction is 'static'; i.e., the priority assigned 
at transaction's arrival time remains the same during the lifetime of  the 
transaction. 

The 'slack time' of  a transaction is defined as the distance from the current 
time to the deadline of  the transaction. The slack time of a new transaction in 
our system is considered to be proportional to the estimated response time of  
the transaction, and the proportionality factor is determined by the parameter 
S. (See the derivation of  slack time ST of  a transaction in Section 4.1.2). While 
our calculations involve the estimation of  transaction processing times in as- 
signing deadlines, we assume that the system itself lacks the knowledge of 
processing time information. 4 It is assumed that the delay for the initialization 
of  each transaction is distributed exponentially with mean 1/g 0 . 

The basic unit of  access (or locking) is referred to as a data item. The 
number of  data items stored in the database is denoted by the parameter D. 
Concurrent data access requests of transactions are controlled by using a 
concurrency control protocol. Depending on its real-time priority, an access 
request of a transaction is either granted or results in blocking or abort of  the 
transaction. If the access request is granted, the transaction obtains a lock on 
the data item and starts processing it. The processing time at the CPU is as- 
sumed to be exponentially distributed with mean 1/pp. A blocked transaction 
is not allowed to proceed until after the data lock it requires is released. A 
transaction releases all the locks it has been holding after it is either committed 
or aborted. A transaction can be committed after it has processed the last data 
item in its access list. An executing transaction is aborted if its deadline expires. 
Depending on the concurrency control protocol adapted, a data conflict might 
also lead to an abort decision. 

The other primary constraints applied in developing our model are: 
• Each transaction accesses the same number of data items, which is specified 

by the parameter d. 
• Data items accessed by each transition are uniformly distributed over the da- 

tabase with no duplicates. 
• All data accesses are exclusive (i.e., there are no shared locks). 
• The shared database system is memory-resident; thus, an access to a data 

item does not involve any disk access. 
• The transaction population in the system (the level of  multiprogramming) is 

constant and determined by the parameter t. 

4 'Deadline' is the only information provided by the arriving transaction to be used in scheduling 
decisions. 
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Section 5 extends the analysis of  each of  the following cases: variable 
transaction size, non-uniform data accesses, shared as well as exclusive locking 
modes, and a disk-resident database. A discussion on the possibility of  relaxing 
the constant transaction population assumption is provided in the last section. 

Table 1 summarizes the parameters of  the RTDBS model. 

3. Performance analysis of RTDBS concurrency control protocols 

3.1. Steady-state distribution 

All transactions processed in the system are assumed to be identical and 
exhibit the average steady-state behavior. The execution of  an isolated indi- 
vidual transaction is modeled by a Markov chain with 2d + 1 states as shown 
in Fig. 1. State (0) of  the chain represents the initialization phase of  the 
transaction. The other 2d states are labeled by a tuple (i, X), where i is an 
integer which can take any value from the set { 1 ,2 , . . . ,  d}, and denotes that the 
transaction is accessing its ith data item. X can take either of  the two values: B 
(blocked) or P (processing). The access request of  the transaction on a data 
item might result in blocking of  the transaction (with probability Pb). In a 
RTDBS environment, the real-time priority of  the transaction plays the major 
role in determining the blocking probability (see Section 4.1.1). State (i, B) 
represents the situation that the transaction is blocked at its attempt to access 
its ith data item. The blocking times of the transaction are assumed to be in- 
dependent and identically distributed; the blocking delay at state (i, B) is as- 
sumed to be exponentially distributed with mean 1/#a, for all i E { 1 ,2 , . . . ,  d}. 
State (i, P), denotes the case that the transaction is processing its ith data item. 
The lock on a data item is obtained right before processing it. After processing 
a data item, the next data item to be accessed by the transaction is chosen from 
a uniform distribution among all data items that have not already been ac- 
cessed by the transaction. The data conflict check for the first data access re- 
quest of  the transaction (which will lead to either blocking of  the transaction or 
granting the lock on the requested data item) is performed in state (0), while 
that for the ith request (2 ~< i ~< d) is performed before leaving the processing 

Table 1 
Parameters of the RTDBS model 

S 
Po 
PP 
D 
d 

t 

Slack factor used in assigning transaction deadlines 
Mean transaction initialisation rate 
Mean CPU service rate 
Number of data items stored in the database 
Number of data items accessed by each transaction 
Number of transactions processed in the system at any moment in time 
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state (i - 1, P). At any state (L X), it is possible that the transaction can be 
aborted as a result of  a data conflict or due to the situation that its deadline has 
expired. An aborted transaction releases all the locks it has been holding• The 
aborting probabilities in states (i, B) and (i, P) are denoted by Pa(i,B) and Pa(i,P), 
respectively. It is assumed that aborting a transaction at any state does not take 
effect until the transaction leaves that state. An aborted transaction goes to 
state (0) to be reinitialized and it returns to the system as a new transaction• As 
discussed before, the number of  transactions executing in the system at any 
moment in time is kept constant. 

When the transaction completes processing d data items, it is said to be 
committed and it goes to state (0) to be initialized as a new transaction• A 
transaction cannot be aborted after processing its last data item; i.e., P a ( d , P )  = 0. 

Let {P(0), P(1, B), P(1, P), P(2, B)P(2, P ) , . . . ,  P(d, B), P(d, P)} be the stea- 
dy-state distribution of  the Markov chain (each element in this set denotes the 
probability of  being at a particular state). The following system of linear 
equations can be given for this distribution: 

P(1, B) : #° PbP(0), 
#B 

a(1, P) = #o (1 - PbP~0,B))P(0), 
#P 

e ( 2 ,  B)  = Pb (1  - e aO ,p ) ) ( l  - 
#B 

e(2,  P) = "~ (1 - PbP~0,~)) (1 -- e.O,p))(1 -- ebea(Z,~))P(0), 
#P 

e(3,  B) = NPb(1  - Pao,p))(1 - PbP.(1,B)) (1 - e.(21")) 
#B ' 

× (1 - 

P(3, P) = P0 (1 - P b P a ( 1 , B ) ) ( 1  - -  Pa0,p))(1 - PbP~(2,B)) 
~ a  

× (1 -- Pa(2,p))(1 - PbPa(3,B))P(0), 

i - l  

P(i, B) = , ~ - ~ P b I - [ [ ( 1  - -  P a ( k , p ) ) ( l  - PbPa(k,B))]P(0), i C {1 ,2 , . . . ,  d}, 
/'*B k=l  

i - I  

p ( i ,  p )  = #o (1 - PbPa(1,B))I ' I [(1 -- Pa(k,p))(l - PbP~(k+,,B))]P(O), 
/h' k= l  

i E {1 ,2 , . . . , d} ,  

d 

P(0) + E ( P ( i ,  B) + P(i, P)) = 1. 
i=1 

(1) 

(2)  

(3)  
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Table  2 
Probabi l i ty  (PcoMMrrl(~.r)) o f  commi t t ing ,  given tha t  the cur ren t  s ta te  is (i,X) 

~" PCOMMIT(i~') 

P. . -r lrd- 1 
B (1 - a(,,B))Hk=, [(1 - Paq,,r,)) (1 - PbPa(k+LB))] 

P (1 - Pa(~,e))yI~=,+ ' [(1 - PbP.(,,., )(1 - Pa(~,m))] 

The system can be solved by first determining P(0) by substituting Eqs. (1) and 
(2) in Eq. (3), and then computing the other steady-state probabilities 
P(i, B), P(i, P)(I ~< i ~< d) from Eqs. (1) and (2). 5 However, the solution to each 
of these probabilities is provided in terms of #B,Pb,Pb(i,B), and Pa(i,P). The 
blocking and abort probabilities can be determined on the basis of the con- 
currency control protocol employed. Computation of variables Pb,Po(i,B), and 
Pa(~,v) is provided for the High Priority protocol in Sections 4.1.1 and 4.1.2, and 
for the Two-Phase Locking protocol in Section 4.2.2. The average blocking 
time of a transaction is formulated in the next section. 

3.2. Computation of average blocking delay 

When a transaction T is blocked by another transaction T' on a data item, T 
is not reactivated until after T' releases the lock on that item (i.e., until T' is 
committed or aborted). The time period transaction T remains blocked is de- 
termined by the remaining lifetime of blocking transaction T' and is indepen- 
dent of the current state of T. 6 In estimating the average remaining lifetime of 
the blocking transaction, we use the same steady-state distribution and other 
probabilities as the isolated transaction, because all transactions in the system 
are assumed to be identical and exhibit the average steady-state behavior. 

Given that the current state of a transaction is (i,X), the average remaining 
time RT(or) of the transaction can be determined by the following formula: 

d,P 

RT(ac) ---- PCOMMITI(i,x)D(i,X);COMMIT -}- Z (Pa(j,r)l(~;c)D(~r);(/,r)), (4) 
(j,Y)=(i,X) 

where PCOMM~TI(i~) is the probability that the transaction will commit given that 
its current state is (i,X) (See Table 2), the implicit assumption in the formulas 
presented is I-[~=J(i) = 1, if a > b; D(i~V);COMMIT is the average time distance 
between state (i,X) and the commit time (see Table 3); Pa0,r)l(i~r) is the prob- 
ability that the transaction will be aborted in state (j, Y) given that its current 
state is (i,X) (see Table 4); and D(i,x);0,r) is the average time distance from state 

5 No te  that ,  the equa t ions  a s su m e  l ib=i f ( i )  = 1, if a > b. 
6 A s s u m i n g  t ha t  the n u m b e r  o f  locks held by the  t ransac t ion  << D (da tabase  size). 



O. Ulusoy / Information Sciences 111 (1998) 19-47 

Table 3 
Average distance (D(ga-);COMMIT) from state (i,X) to commit 

27 

X D(i,X);COMMIT 

B ¼ + ( d - i ) ( P b ~ + ~ )  

P (d - i)(Pb ~ + ~) 

Table 4 
Probability (P(j,r)10~c)) of aborting in state (j, Y), given that the current state is (i,X) 

X Y Pao, r)l(i,x) 

B B l--Pa(i,S))(1--Pa(i,p))l-I~-=i+l[(1--PbPa(k,B))(1--Pa(k,p))]PbPa(i,S) i f j > i  
Pa(i,s) otherwise O" = i) 

B P (1 - P.(,,B))I-I~-I [(1 - Pa(k,p))(1 - PbPa¢,+,,.~))]ea(j,P) 

P B 1 - Pa(ij.)[I~[J~+,[(l --PbPa(k,B))(1 --Pa(k,P))]PbPaO,B) i f j  > i 
Undefined otherwise 

e P H~21[(1 -P.ik,P~)(1 --P~P.(k+~,.>)]Pa~,P~ 

(i,X) to state (j, Y) (see Table 5). Remember that abort of a transaction in a 
state takes place once the transaction leaves that state. As discussed in the 
preceding section, it is assumed that a transaction that has just completed 
processing its last data item cannot be aborted (i.e., Pa(d,P) = 0). 

Using the average remaining lifetime of the blocking transaction, the aver- 
age time in a blocked state is estimated as 

1 
- -  = P(1, P)RT(1,p) + P(2, B)RT(2,B) + P(2, P)RT(2,p) + . . .  
PB 

+ P(d, B)RT(a,B) + P(d, P)RT(a,p). 

The set of  states the blocking transaction can be in excludes state (1, B), since a 
blocking transaction must be holding at least one lock. The average blocking 
time formula can be rewritten as 

Table 5 
Average distance (D(ig);(j,r)) from state (i,X) to state (j, Y) 

X Y (D(ix)~(/,r)) 

B B 

B P 

P B 

P P 

(]" -- i ) ( ~  + Pb ~) 

~ + (J'-- i)(Pb ~ + ~) 

(Pb~ + ~/-  i -  1/(~ + Pb~/ 
Undefined 

(j - i)(Pb ~ + ~) 

i f j > i  
otherwise (j = i) 
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1 (d,P) 
- - =  Z (P(i,X)RT(i~v)). (5) 
/~B (i:~)=0,P) 

The effects of chained blockings is reflected in this formula, since the calcula- 
tion of the remaining time (which determines the length of blocking delay) 
takes the delay of blockings into account. The computation of kt B requires 
numerical iteration as will be detailed in Section 4.1.3. 

3.3. Performance metric 

We are primarily interested in the rate a transaction satisfies its deadline. 
The transaction completion rate will be a good performance measure because a 
transaction makes its deadline if and only if it completes processing all data 
items in its access list (late transactions are aborted). The completion (commit) 
rate ~ of a transaction can be computed from the steady-state distribution of 
the system 

= P(d,P)#p. 

4. Case study: Modeling and an evaluation of the high priority protocol 

'High Priority' (HP), described in [1], is one of the most popular RTDBS 
concurrency protocols proposed so far. Protocol HP is based on the two- 
phase locking scheme, and it aborts a low priority transaction when one of its 
locks is requested by a higher priority transaction. HP is characterized by its 
simplicity and low implementation overhead compared to the other RTDBS 
concurrency control protocols appeared in the literature. Also, in an earli- 
er simulation work, we found that it can outperform other protocols under a 
variety of execution environments [28]. Although in this paper we concentrate 
on the evaluation of protocol HP, the ideas presented are also applicable 
to the analysis of other concurrency control protocols developed for 
RTDBSs. 

In protocol HP, the winner in the case of a lock conflict between two 
transactions is always the higher priority transaction. In resolving a conflict, if 
the transaction requesting the lock has higher priority than the transaction that 
holds the lock, the latter transaction is aborted and the lock is granted to the 
former one. Otherwise, the lock-requesting transaction is blocked by the higher 
priority lock-holding transaction. 

A high priority transaction never waits for a lower priority transaction. This 
condition prevents deadlocks if it is assumed that the real-time priority of a 
transaction does not change during its lifetime and that no two transactions 
have the same priority. 
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4.1. Modeling protocol HP 

4.1.1. Computation of blocking probability 
Pb is the probability of  blocking the transaction at its data access attempt at 

any point of  its execution. We assume that this probability is independent of  
the current state and the past history of  the transaction (i.e., the number of  
data locks held by the transaction). This assumption is reasonable as long as 
D >> d. Pb is estimated by using the following formula: 

Locks_hp 
Pb-- 

D 
Locks_hp stands for the average number of locks held by transactions with 
higher priority. The number of  transactions that have higher priorities than the 
priority of  the isolated transaction can be 0, 1 ,2 , . . . ,  ( t -  1) with equal prob- 
ability. That is, the average number of transactions with higher priorities will 
be (0 + 1 + 2 + - - .  + (t - 1))/t = (t - 1)/2. Let L denote the average number 
of data items locked by a transaction. L can be formulated as a function of  the 
steady-state distribution. 

d 

L = Z [ ( i  - 1)P(i, B) + iP(i, P)]. (6) 
i=1 

Note that, the number of  locks held by the transaction in state (i, B) is i -  1, 
while that number is i in state (i, P). Based on these observations, we may write 

(t - 1)L (7) 
Locks_hp - 2 

Pb can then be expressed as 

Pb -- ( t -  1)r 
2----if- (8) 

4.1.2. Computation of abort probabilities 
The transaction can be aborted at any state (i,X) (where i E {1 ,2 , . . .  ,d}, 

and X E {B, P} due to any of  the following two facts: 
• a data conflict occurs (i.e., one of  its locks is requested by a higher priority 

transaction), 
• deadline of  the transaction expires. 
Thus, two separate components, Pa(i;c/(1) and Pa(i,X)(2), are involved in the 
eva~uation of  the abort probability at any state. 

Pa(i,B) = Pa(i,B)(1) + Pa(i,B)(2) - P a ( i , B ) ( 1 )  * Pa(i,B)(2), i C { 1 ,2 , . . . ,  d}, (9) 

Pa(i,P) = Pa(~,e)(1) + Pa(,,p)(2) 

- Pa(i,a)(1) * Pa(i,p)(2), i E {1 ,2 , . . .  ,d - 1}, (10) 
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where Pa(i,B)(1): The probability that the transaction will abort at blocking state 
(i, B) due to a data conflict. Pa(;,B)(2): The probability that the transaction will 
abort  at blocking state (i, B) due to expiration of  its deadline. Paci,P)(1): The 
probability that the transaction will abort at processing state (i, P) due to a 
data conflict. Pac~,P)(2): The probability that the transaction will abort at pro- 
cessing state (i, P) due to expiration of  its deadline. As stated before, a trans- 
action cannot be aborted after processing its last data item; i.e., Pa(d,P) = O. 

The average data access rate of  a transaction is 1/(Pb(1/#a) + 1/#p) (data 
items per unit time). The average data access rate of  all the transactions that 
have higher priority than that of  the isolated transaction is 
( t -  1)/2(Pb(1/lAa) + 1/#p). Therefore, the average number of  data items that 
are accessed by all higher priority transactions during the blocking delay 1/lAB 
of the transaction is ( t -  1)/2#B(Pb(1/IAB)+ 1/lAp). Since the transaction in 
state (i, B) holds i - 1 data locks, we can specify the probability that one of the 
locks held by the transaction is requested by a higher priority transaction as 

Pa( i ,B)(1)  = ( i -  1) ( t -  1) 
D 2#B(Pb(1/IAB ) + 1/lAp) 

#p ( i -  1 ) ( t -  l) ( l l )  
= PblAa ~ lAB 2 D  

The same probability at a processing state can be specified in a similar way; 
however, in this case, the number of  locks held by the transaction in state (i, P) 
is i. 

It. i ( t -  1) (12) 
ea(i,P) (1) = PblAp q- lAB 20  

It is assumed that D is assigned a value large enough to produce a sensible 
value for the probabilities (i.e., a value within the range [0,1]). 

In calculating the probability of  transaction abort due to deadline expiration 
we employ the following approach. First, it is assumed that each transaction is 
assigned a deadline proportional to its size (i.e., the number of  data accesses 
required by the transaction). The slack time ST of a new transaction (i.e., the 
time distance to its deadline) in our model is estimated as 

( 1 l))  
ST = S . R E S  = S  + d  P b - - + - -  , 

lAB lAP 

where S is the slack factor and RES is the average transaction response time. 
Thcn, denoting the average agc of a transaction in state (i,X) by AGE(~r), 

AGE(~,s) 
Pa(i,a)(2) - -  ST ' 

AGE(i,p) 
Pa(i,p) (2) -- ST ' 

where 
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AGE(i,B) : + (i --  1) Pb + + 
#o /zB 

AGE(i,p) = - -  + i P b  + • 

Substitution of the average age and slack time parameters yields 

Pa(i,B)(2) = 1/m + ( i -  1)(eb/~B + 1/~p) + 1/~B 
S(1/~0 + d(eb/~,. + 1/~p)) ' (13) 

1//~o + i(Pb/#B + 1/#p) (14) 
Pa(i,p)(2) : S ( 1 / ~ 0  q-d(Pb/ t~B + 1//~p)) " 

Abort probabilities P,(~,B) and Pa/~,P) can be expressed in their final forms by 
substituting Eqs. (11)-(14) in Eqs. (9) and (10). 

4.1.3. Numerical  solution 
Fig. 2 presents the procedure employed in solving the linear system of equa- 

tions for the steady-state distribution (i.e., Eqs. (1)-(3)), average blocking delay 
(i.e., Eq. (5), blocking probability (i.e., Eq. (8), and aborting probabilities (i.e., 
Eqs. (9) and (10)). As mentioned before, a numerical iteration is needed in 
computing the value of the average block delay (1//~a) because a choice for/~B 
determines the steady-state probabilities which when substituted in Eq. (5) 
generates a new computed value for/~B. 

It was observed in our initial experiments that under any set of reasonable 
parameter values, when the parameter c of iteration is set to 0.001, the number 
of iterations to reach convergence never exceeds 4 with different initial values of 
#B and/~. In the computations of the following experiments, we used an initial 
average blocking delay (1//1~) value of d/21t P, which corresponds to the av- 
erage remaining lifetime of a transaction in a system with no contention. The 
blocking probability/~ was initially assumed to be (t - 1 )d /4D by setting L 
(average number of locks held by a transaction) to d / 2  in Eq. (8). 

solution_procedure { 
~'B = 0 
initialize Pb, /~B 
whi le  ( I~B-~I  

Compute P,~(i,x) = P,~o,x)(Pb,#v), i E {1,2 ..... d } ; X  E { B , P }  
Compute P(0) = P(0)(Pb, t~B, P~O,Y)), 

P(i, X) = P(i, X)(Pb, #B, P<j.r))  
i,j  • {1,2 ..... d};X,Y • {n,P} 

Pb = Pb(P(O),P(i ,X)) ,  i • {1,2 ..... d } ;X  • { B , P }  

/~B = /~n(/~, P(0), P(i, X), Pb, P,~(j,Y)), i, 3" • {1, 2 ..... d}; X, Y • {B, P} 

Fig. 2. System solution by numerical iteration. 
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4.1.4. Validation results 
In this section, we use the results of a simulation program to ascertain the 

accuracy of the analytic solution. Primary restrictions of the analytic model 
were removed in the simulation program. The analytic model assumed that all 
transactions processed in the system are identical and exhibit the average 
steady-state behavior. In simulation, each transaction in the system was simu- 
lated individually. The dynamic behavior of each transaction was simulated as 
compared to the average behavior captured by the analytic model. Due to the 
space limitation, the readers are referred to [28] for the details of the simulator. 

Each simulation run was continued until 5000 transactions were successfully 
committed. The 'independent replication' method was used to validate the 
results by running each configuration 25 times with different random number 
seeds and using the averages of the replica means as final estimates. 90% 
confidence intervals were obtained for the simulation results. The formula 
involved in calculating the performance metric of interest is 

number of committed transactions 

Y = simulated time 

Remember that the transaction completion (commit) rate y also specifies the 
rate a transaction satisfies its deadline (Section 3.3). The results of the simu- 
lation and analytic solution were compared for various sets of parameter 
values. In this paper, only a sample of validation results is presented for 
conciseness. 7 The slack factor value chosen for the estimations is S = 5. 

Table 6 presents the performance results of the concurrency control pro- 
tocol in terms of y for both the analytic solution and simulation. The results are 
presented for three different values of database size (D). The level of multi- 
programming (t) was set to 5,15 and 25 for each D value explored. The number 
of data items accessed by each transaction (d) was varied from 5 to 15 for each 
setting of D and t. These ranges of parameter values enabled us to observe how 
well the results from the analytic solution and simulation agree under both low 
and high levels of data contention. Each simulation result provided is the 
midpoint of a 4% confidence interval. The estimates for the analytic solution 
and simulation are quite close. The difference between the performance results 
obtained with the analytic solution and simulation does not exceed 10% for 
each setting of the parameters. The accuracy of the analytic solution is a litter 
better under low data conflict conditions (i.e., for low values of parameters t 
and d, and high values of D) compared to the accuracy obtained with high 
levels of data conflict. This can be attributed to the fact that the behavior of 
transactions is more predictable when there is not many conflicts between them. 

7 The validation results obtained for other settings of parameters are qualitatively in agreement 
with those presented here. 
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Table 6 
The deadline satisfaction rate ~ (transaction/second) obtained with the analytic solution and sim- 
ulation with various values of D, t, and d 

t d D = 1000 D = 5000 D = 1000 

Analytic Simulation Analytic Simulation Analytic Simulation 

5 5 11.62 12.25 11.83 12.45 11.85 12.40 
7 7.26 7.66 7.53 7.90 7.57 7.88 
9 4.78 5.12 5.09 5.35 5.13 5.30 

11 3.24 3.45 3.57 3.76 3.62 3.79 
13 2.24 2.39 2.57 2.75 2.61 2.79 
15 1.56 1.71 1.87 2.03 1.92 2.10 

15 15 11.02 11.49 11.70 12.17 11.79 12.08 
7 6.48 6.79 7.36 7.66 7.48 7.80 
9 3.94 4.22 4.90 5.21 5.03 5.28 

11 2.41 2.63 3.36 3.63 3.51 3.61 
13 1.48 1.62 2.35 2.52 2.50 2.66 
15 0.89 0.96 1.67 1.82 1.81 1.92 

25 5 10.45 10.93 11.58 12.21 11.73 12.33 
7 5.79 6.16 7.19 7.48 7.40 7.72 
9 3.25 3.52 4.71 4.94 4.94 5.20 

11 1.81 1.96 3.17 3.41 3.40 3.66 
13 0.98 1.05 2.16 2.32 2.40 2.53 
15 0.52 0.56 1.49 1.63 1.71 1.83 

4.2. An evaluation o f  protocol HP 

4.2.1. Sample performance results 
In  this section,  we present  the results  o f  some exper iments  tha t  eva lua te  the 

pe r fo rmance  o f  the High  Pr io r i ty  p ro toco l  in terms o f  t r ansac t ion  comple t i on  
ra te  ~ (the ra te  a t r ansac t ion  satisfies its deadl ine)  using the p r o p o s e d  analy t ic  
so lu t ion  me thod .  W e  do  no t  a im to p rov ide  a comple te  set o f  exper iments  or  a 
de ta i led  pe r fo rmance  study;  ins tead,  our  in ten t ion  is to present  some examples  
o f  employ ing  our  analy t ic  m e t h o d  in the eva lua t ion  o f  the p r o t o c o l  and  to 
show tha t  the m e t h o d  is capab le  o f  p roduc ing  reasonab le  results.  The  average 
service t ime for  process ing  a d a t a  i tem (i.e., 1 /#p)  and  the average de lay  for  
t r ansac t ion  in i t ia l iza t ion  (i.e., 1/#0) were bo th  set to 10 m. The  size o f  the 
d a t a b a s e  chosen  for  the first two exper iments  was D = 1000 d a t a  items. W i t h  
the small  d a t a b a s e  size value  it was a imed  to eva lua te  the p ro toco l  under  high 
levels o f  d a t a  conflicts  a m o n g  t ransac t ions .  This  small  d a t a b a s e  can be 
cons idered  as the  mos t  f requent ly  accessed f rac t ion  o f  a larger  da tabase .  
Ca lcu la t ions  in all exper iments  were p e r f o r m e d  under  three different mul t i -  
p r o g r a m m i n g  levels; i.e., t = 5, 15, and  25 t ransac t ions .  



34 O. Ulusoy I Information Sciences 111 (1998) 19-47 

12.0 

10.0 ~,,x~ ~ t =  5 
I - ~ t  = 1 5  

7 6 . 0  

4.0 

2.0 

0.0 i ~ ~ " : " ~ ' " ~  
5 7 9 11 13 15 

d 

Fig. 3. Deadline satisfaction rate as a function of  the transaction size. 

The first experiment investigated the impact of varying average transaction 
size on the performance of the High Priority protocol. The parameter d was 
varied from 5 to 15 in steps of 2. The slack factor value used for this analysis was 
S = 5. Increasing the size of transactions corresponds to increasing number of 
conflicts among the concurrent transactions. As displayed in Fig. 3, the trans- 
action completion rate (or equivalently, the deadline satisfaction rate) decreases 
drastically as the number of data items accessed by each transaction increases. 
The solution method yields sensible results because increasing number of data 
conflicts leads to an increase in both blocking delays and the number of conflict 
aborts; thus, it is likely that more transactions will miss their deadlines. 

In the second experiment the value of parameter d was fixed at 10, and the 
effects of deadline distribution on the performance of the protocol was eval- 
uated. The value of the slack factor parameter S was varied from 2 to 10. A 
small value of S corresponds to a tight deadline. Not surprisingly, the per- 
formance of the protocol becomes better as the assigned deadlines get looser. 
Also, the differences between the performances obtained with different multi- 
programming levels increase in favor of low multiprogramming levels as the 
deadlines becomes larger. The results of this experiment are presented in Fig. 4. 

In the last experiment, the database size D was varied from 500 to 3000 data 
items. The results are displayed in Fig. 5. The number of data items accessed 
by each transaction was d = 10 in this analysis. As the database size gets larger, 
the performance in terms of the deadline satisfaction rate becomes better for 
each setting of multiprogramming level t. Since the data accesses for each 
transaction are uniformly distributed over the database, the access sets of 
concurrent transactions do not have many common items when a large number 
of data items is stored in the underlying database; i.e., the data contention level 
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Fig. 4. Deadline satisfaction rate as a function of  the slack factor that is used in assigning deadline 
to a new transaction. 
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Fig. 5. Deadline satisfaction rate as a function o f  the database size. 

in the system is low. The worse performance for small values of database size is 
an expected result of more data contention due to data access conflicts. Under 
high multiprogramming levels, the database size becomes more effective in 
determining the real-time performance, as can be seen from the figure. 

4.2.2. Evaluating the performance improvement over the two-phase locking 
protocol 

As described at the beginning of this section, the High Priority protocol HP 
extends the basic Two-Phase Locking (2PL) protocol by involving real-time 
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priorities of transactions in scheduling decisions. To see how the 'real-time' 
aspect makes a difference, it would be interesting to have comparative per- 
formance results of HP and 2PL. In this section, our analytical solution 
method is used to model 2PL and to obtain a new set of results to be compared 
against the results of HP. 

In 2PL protocol, a transaction is blocked on its lock request on a data item if 
the data item has already been locked. The transaction remains blocked until 
the transaction holding that lock is either committed or aborted. There is no 
priority aborts in this case. Deadlock is a possibility in 2PL, and whenever a 
deadlock occurs, one of the transaction in the deadlock cycle is aborted to 
resolve the deadlock. The blocking and abort probabilities of a transaction 
nees! to be recalculated for 2PL. 

Computation of blocking probability for 2PL: 

Locks 
eb = ~  

D 
Locks denotes the average number of locks held by all the transactions in the 
system except the isolated transaction. Remember that, in calculating the 
blocking probability for protocol HP, we only considered the locks held by 
higher priority transactions since a transaction can be blocked only if the lock 
requested by the transaction is currently being held by a higher priority 
transaction. In 2PL, no priority information is involved in scheduling, and a 
transaction is blocked if the requested lock is being held by any other trans- 
action in the system. 

PD can then be expressed in terms of the aveJ:age number of data items 
locked by a transaction (i.e., L; see Eq. (6)). 

eb = ( t -  1)______~L 
D 

Computation of  abort probabilities for 2PL: 
We do not have data conflict aborts (i.e., priority aborts) in 2PL; on the 

other hand, a transaction can be aborted due to either a blocking deadlock or 
expiration of its deadline. 

Deadlock checks are performed at the end of the processing states. Fol- 
lowing any processing state (i, P) with i = 1 ,2 , . . . ,  d - 1, if the next data access 
request leads to blocking, 8 then deadlock detection has to be performed. In the 
case of a deadlock, the transaction is aborted to resolve the deadlock and a 
transition to state (0) occurs. 

Abort at a blocking state (i, B), with i = 1 ,2 , . . . ,  d, is possible only due to 
the fact that deadline of the transaction expires. An expression for the prob- 

s At the first data access attempt there is no possibility of  deadlock (even if the transaction is 
blocked) since no data locks is currently being held by the transaction. 
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ability that the transaction will abort at a blocking state due to expiration of its 
deadline is provided in Eq. (13) of Section 4.1.2. 

The abort probability at a processing state (i, P) will be expressed in terms of 
two separate components Pa(i,P) (1) and Pa(i,P) (2): 

Pa(i,P) = Pa(i,p)(l) + Pa(i,p)(2) - -Pa( i ,p ) ( l )  * Pa(i,p)(2), i E {1,2, . . .  , d -  1}, 

where P,(i,p)(1) is the probability that the transaction will abort following 
processing state (i, P) due to a blocking deadlock, and Pa(i,P)(2) is the proba- 
bility that the transaction will abort at the end of processing state (i, P) due to 
expiration of its deadline. Pa(i,P)(2) is specified in terms of the system param- 
eters in Eq. (14) of Section 4.1.2. Pa(i,P)(1) may be expressed as 

Pa(i,P) (1) = Pb * Pdl(i), 

where Pd~(~) is the probability of deadlock, given that the isolated transaction 
(say T) has been blocked at its attempt to obtain the i + 1st lock. This prob- 
ability is equal to the probability that the transaction holding the requested 
lock (say T') is in a blocked state and it has been blocked on a data item locked 
by transaction T: 

= 1,(j, B) (t --- 1)L' 

i is the number of locks currently held by transaction T and (t - 1)L is the 
average number of locks held by all the transactions in the system except T'. In 
the summation formula j starts from 2 because at blocking state (1, B) the 
transaction owns no locks and thus it cannot be involved in a deadlock. 

Note that, to simplify our calculations we are considering only the occur- 
rence of deadlocks of cycle length two (i.e., two transactions are involved in 
each deadlock). 9 To resolve a deadlock we abort the transaction that has just 
made the lock request leading to the deadlock. 

The numerical solution provided in Section 4.1.3 can be used in solving the 
blocking and abort probabilities together with the equations for the steady- 
state distribution. 

Sample performance experiments: 
Comparison of the performances of protocols 2PL and HP was provided in 

a number of earlier works [1,12,28] that are all based on simulation. Evaluating 
both protocols under various conditions, all those works agreed that HP 
provides better performance than 2PL in terms of the fraction of satisfied 
deadlines. They also indicated that the gap between the performances of the 
protocols becomes larger as the level of transaction load in the system or data 
contention among transactions increases. 

9 It was shown elsewhere [7] that the occurrence of  deadlocks of cycle length greater than two is 
very unlikely and can be ignored in analyzing concurrency control protocols. 
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In this section, we present the comparative performance results of protocols 
2PL and HP obtained using the proposed analytic solution. To be able to 
compare our results against others', the protocols' performances were evalu- 
ated under different levels of transaction load and data contention. For that 
purpose, parameter t (i.e., the level of multiprogramming), D (i.e., number of 
data items stored in the database), and d (i.e., average number of data items 
accessed by each transaction) were employed in the performance experiments. 

In the first experiment, the value of parameter t was varied from 5 to 45 in 
steps of 5, and for each value the transaction completion (deadline satisfaction) 
rate was calculated. The results obtained with both protocols are presented in 
Fig. 6. One can see that, involving real-time priorities of transactions in 
scheduling (i.e., using protocol HP) can provide a considerable performance 
improvement over 2PL. This result is due to the large blocking delays expe- 
rienced by high priority transactions with 2PL. The probability of blocking 
(Pb) and the delay at each blocking state 0 /#8)  was found to be much higher 
with 2PL compared to that with HP. The results also show that the difference 
between the performances of protocols HP and 2PL becomes much more 
pronounced under high transaction load conditions. 

Data contention exists due to the conflicting data access requests of trans- 
actions, which results in either transaction blocking or transaction abort to 
resolve the conflict. In the second experiment, we studied the effects of data 
conflicts, and thus data contention on the comparative real-time performance 
of the protocols. The value of the database size D was varied from 500 to 3000 
data items. As the database size increases, less data contention (due to fewer 
data access conflicts) occurs among concurrently executing transactions. As 
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Fig. 6. Deadline satisfaction rate as a function of  the multiprogramming level for protocols HP and 
2PL. 
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Fig. 7. Deadline satisfaction rate as a function of  the database size for protocols HP  and 2PL. 

displayed in Fig. 7, the real-time performance improvement provided by HP 
over 2PL is at a higher level when the size of the shared database is small (i.e., 
under high levels of data contention). Another parameter we used to vary data 
contention was the average transaction size d. The range of d values employed 
in computing deadline satisfaction rate of protocols HP and 2PL was [7,13 data 
items]. Longer transaction lifetime results in more data conflicts and worse 
performance for both protocols. However, as can be seen in Fig. 8, employing 
protocol HP reduces the steep degradation in real-time performance which is 
experienced as the number of data items accessed by each transaction increases. 
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Fig. 8. Deadline satisfaction rate as a function of  the transaction size for protocols HP and 2PL. 



40 O. Ulusoy / Information Sciences 111 (1998) 19-47 

The similarity between performance results obtained by using the analytic 
model and those obtained previously in some simulation works (e.g., [1,12,28]) 
indicates that the proposed analytic solution can be considered to be a valid 
and useful method to predict the performance of concurrency control protocols 
for RTDBSs. 

5. Extensions to the analysis 

5.1. Considering variable size transactions 

One of  the assumptions of  our analysis is that each transaction accesses a 
fixed number of  data items. This section discusses how the constant size 
transaction assumption can be relaxed in the analysis. In modeling a variable 
size transaction, we adapt the following method presented in [20]: after pro- 
cessing a data item, a transaction commits with probability Pc or accesses 
another data item with probability 1 - pc. The number of  data items that can 
be accessed by a transaction is bounded 10 by parameter d. 

In the state-transition diagram of a transaction (Fig. 1), each processing 
state (i, P) with i = 1 ,2 , . . . ,  d - 1 has its three outward transitions updated as 
follows: (i, P) ~ (0) with rate (Pc + (1 -pc)Pa(i,p))# P (the transaction goes to 
s ta te (0)  whether it is committed or aborted), ( i , P ) ~  ( i+  1,B) with rate 
( 1 - p c ) ( 1 -  Pa(i,p))Pb#p, and ( i , P ) ~  ( i +  1,P) with rate ( 1 - P c ) ( 1 -  Pa(i,P)) 
(1 -Pb)#p .  The steady-state probabilities should be recalculated based on the 
new transition values. 

The completion (commit) rate of  a transaction can be specified as 

d-1 

~, = ~-'~P(i, P)pda I, + P(d, P)pp. 
i=1 

Another formula affected is RT(i,~) which represents the average remaining 
time of  a transaction at state (i,X). Eq. (4) can be reformulated as follows: 

(d,P) (d,P) 

RT(oc) = ~ (PcU, y)l(i,x)D(i~);(j,y))-I- ~ (PaU,Y)l(i,x)D(ip~);(j,Y)), 
(J,Y)=(i,X) (j,Y)=(i,X) 

where P~,r)l(~.r) is the probability of  commit at the end of  state (j, Y) given that 
the current state is (i,X). In formulating ecu, r)l(~,r), S can take any one of  the 
values B and P, while Y can take only value P since a transaction can only be 
committed following a processing state. If  X = B 

~o A possible variation can be to bound  the transaction size by the number  of  data  items in the 
database (i.e., D). In that  case, the total number  o f  states in the state transition diagram of  a 
transaction would be 2D + 1. 
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j -1  

Pc(j,Y)I(i,X) = ( l  - -  Pa( i ,B) ) l - I [ (1  - pc)(1 - Pa(,,p))(1 - Pbma(k+l,B))]pc • 
k=i 

Otherwise (i.e., X = P) 

j -1  

= I l l ( 1  - p c ) ( 1  - P a ( k , p ) ) ( 1  - -  PbPa(k+l,B))]Pc. 
k=i 

In both cases, i f j  = d, the last term of the formula (i.e., Pc) should be replaced 
by 1 (i.e., following the process of dth data item the transaction always com- 
mits). Pa(j,r)l(ivc) and D(ix);(j,r) were already calculated in Section 3.2 (see 
Tables 4 and 5). No further changes are required for the extension of  the 
analysis to the case of  variable transaction size. 

5.2. Considering non-uniform data accesses 

Our analysis has assumed that data items accessed by each transaction are 
uniformly distributed over the database. In this section, to allow locality to be 
modeled, some portion of  the database is considered to be 'hot'; i.e., it is ac- 
cessed more frequently than the other parts of  the database. We adapt the h/ph 
data access model [16], where h specifies the fraction of  the hot region of  the 
database, and ph specifies the probability of  accessing the hot region. In other 
words, 100 *P h% of data accesses are directed to the hot region and the re- 
maining accesses go elsewhere (that can be called the 'cold' region) in the 
database. Within the hot (or cold) region, data items are chosen using a uni- 
form distribution. The blocking and abort probabilities for protocol HP can be 
recalculated as follows. 

5.2.1. Computation of  blocking probability 

Pb = Pb[hPh + Pblh( 1 - - P h ) ,  

Pblh{Pblh}: The probability of  blocking on a data access attempt given that the 
access is to the hot {cold} region of  the database. It can be expressed in terms 
of  Locks_hp; i.e., the average number of  locks held by higher priority trans- 
actions (see Section 4.1.1): 

phLocks_hp 
Pb[h - -  hD ' (15) 

phLocks_hp is the average number of locks in the hot region held by higher 
priority transactions, hD specifies the size of  the hot region. 

Similarly, 

Pblh - -  (1 - ph)Locks_hp (16) 
( 1  - h)D 
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Substitution of  Eqs. (7), (15) and (16) yields 

((1 - h)P~h + h(1 --ph)2)(t -- 1)L 
Pb= 

2h(1 - h)D 

5.2.2. Computation of  abort probabilities 
The abort probabilities due to data conflicts (i.e., Pa(i,B))(1) and Pa(~,p)(1)) 

need to be reformulated: 

Pa(,,B)(1) = Pa(i,n)(1)lhPh + P,//,B)(1)Ia(1 --Ph), 

Pa(~,n)(1)lh{Pa(i,B)(1)ifi}: The probability that one of the locks held by the 
transaction is requested by a higher priority transaction, given that the re- 
quested lock is in the hot {cold} region. 

Based on the calculations of Section 4.1.2, 

Pa(i,S)(1)lh _ph ( i - -  1) ( t -  1) 
hD 2UB(Pb(1/UB) + 1/Up) 
Up p h ( i -  1 ) ( t -  1) 

PbUp + UB 2hD ' 

(1 - - p h ) ( i -  1) ( t -  1) 
Pa(/'S)(1)lh = (1 -- h)D 2un(Pb(1/#B) + 1/Up) 

UP 1 - - p h ( i -  1 ) ( t -  1) 
PbUp + UB 2(1 -- h)D 

ea(i,B) (1) can then be expressed as 

~p p h ( i -  1 ) ( t -  1) 
Pa(~,s) (1) = Ph Pb#p + #B 2hD 

(1 --ph)(i-- 1)(t-- 1) UP + (1  
-- Ph) PbUp + UB 2(1 - h ) O  

Pa(i,P) (1) can be computed similarly, 

PB ph i ( t -  1) #S (1 - -ph) i ( t -  1) 
Pa(i'p)(1) = Ph Pb#p + #B 2hD + (1 --Ph)pb#p + US 2(1 -- h)D 

5.3. Considering shared and exclusive accesses together 

So far in the analysis we have assumed that all data accesses are exclusive. 
This section extends the analysis by incorporating both shared and exclusive 
accesses. Denoting the probability of shared access by ps, the blocking and 
abort probabilities for protocol HP are reformulated as follows. 
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5.3.1. Computation o f  blocking probability 

Pb = PblsPs + Pblo(1 _ p d ,  

Pbls{PbL~}: The probability that the transaction is blocked given that the type of 
access is shared {exclusive}. 

ExLocks_hp 
Pbls -- D ' 

ExLocks_hp specifies the average number of exclusive locks currently held by 
higher priority transactions. 

Locks_hp 
Pble -- D ' 

Locks_hp is the average number of locks (both shared and exclusive) held by 
higher priority transactions. Section 4.1.1. formulates Locks_hp in terms of  the 
system parameters (Eq. (7)). Computation of ExLocks_hp in the same way yields 

( t -  1)(1 -ps)L 
ExLocks_hp = 2D 

Pb can then be estimated as 

Pb =ps(1 - P s ) ( t -  1)L ( t -  1)L 
2D ~- (1 -Ps )  2--D--' 

- 1)L 
Pb = (1 _p2) ( t  2-/) . 

5.3.2. Computation of  abort probabilities 
Consideration of shared as well as exclusive accesses affects the probability 

of conflict aborts at blocking states (i.e., Pa(i,B)(1)) and processing states (i.e., 
Pa(i,a)(1)). In determining those probabilities, the computation method pre- 
sented in Section 4.1.2 can be followed. 

A conflict abort at a blocked state (i, B) occurs when one of the locks held by 
the transaction is requested by a higher priority transaction. 

Pa(i,B)(1) = Pa(/,B)(1)lsPs +Pa(i,B)(1)le(1 -Ps) ,  

Pa(/,m (1)Is {Pa(i,m (1)re }: The probability of conflict abort at blocking state (i, B), 
given that the lock requested by a high priority transaction is of  type shared 
{exclusive}. 

Based on the calculations of Section 4.1.2, 

Pa(i,,)(1)ls = (1 - p s ) ( i -  1) ( t -  1) 
D 2#B(Pb(1/#a) + 1/#p) 

/~p (1 - -ps)( i -  1 ) ( t -  1) 
= Pb#p + #B 2D 
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Note that, (1 - p s ) ( i -  1) gives the average number of  exclusive locks held by 
the isolated transaction at state (i, B). In calculating Pa(t,B)(1)le, on the other 
hand, since it is given that the lock requested by higher priority transaction is 
exclusive, all ( i -  I) locks (shared or exclusive) of  the isolated transaction 
should be considered: 

Pa(i,a)(1)le = ( i -  1) ( t -  l) 
n 2#B(Pb(1/#B) + 1/#p) 

#p ( i -  1 ) ( t -  1) 

Pb]2v ~- #B 2D 

After the substitutions, Pa(g,a)(1) can be expressed in its final form: 

#a (1 -p~s ) ( i -  1 ) ( t -  1) 
Pa(i,B) (1) = Pbfla q- ~/B 2D 

Similarly, the computation of  Pa(g,P)(1) (i.e., the probability that the transaction 
aborts at processing state (i, P) due to a data conflict) considering both shared 
and exclusive locks yields 

# ,  (1 - ~ ) i ( t -  1) 
Pa(g,P) (1) - Pb#e + #B 2D 

5.4. Considering a disk-resident database 

The assumption that the database is resident in main memory can be relaxed 
in the following way. Suppose that a data access might involve an access to disk 
for reading the data or for writing computed results into the database. Here we 
assume that these requests are served by the disk at rate #D according to 
Poisson distribution. 

One method of  considering both the CPU and disk access overheads is 
aggregating the CPU and the disk into a single load-dependent server which 
serves access to data items at the rate p(i) when i transactions are being pro- 
cessed [21]. Assuming a processor sharing discipline, the service rate of  a 
transaction is #(i)/i. Since the number of  transactions in our system remains 
fixed at t, the term #(t)/t can be replaced by a constant p (i.e., # = p(t)/t). 
Derivation of  #(i) for queuing networks is provided using Norton's  theorem in 
[4]. Applying that formula to our system, we obtain 

#(t) _ #cPu (1 - 1 ) 
1 + (/2O/#p) + ( # o / # a )  2 + . . .  + ( / 2o /#a )  t ' 

where #Cl, U is the service rate of  the CPU (Pcau = t#p in our system). To 
consider the impact of  disk accesses in the analysis, #p (i.e., the CPU service 
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rate per transaction) in all formulas provided in preceding sections must be 
replaced by the aggregate service rate p which is equal to It(t)/ t .  

6. Summary and future work 

This paper provided an approximate analytic solution method for evaluat- 
ing the performance of  priority-based concurrency control protocols developed 
for real-time database systems (RTDBSs). Each transaction processed in the 
RTDBS model employed in the evaluation was assumed to carry a priority 
based on its timing constraint (i.e., deadline). As a case study, the performance 
of  a RTDBS concurrency control protocol, called High Priority (HP), was 
evaluated using the proposed solution method. Protocol HP is based on the 
two-phase locking method and it aborts a low priority transaction when one of 
its locks is requested by a higher priority transaction. The evaluation of HP 
was provided in terms of  the rate of satisfying a transaction deadline. Vali- 
dation of  the accuracy of the results obtained by the proposed analytic solution 
method was performed against simulation. Results of  some sample perfor- 
mance experiments, each evaluating the effects of  a different system parameter, 
were presented in the paper. 

The solution method was also used to model Two-Phase Locking (2PL) 
protocol to be able to compare the performances of protocols 2PL and HP 
(i.e., to evaluate the performance impact of  involving real-time priorities of  
transactions in scheduling decisions). The performances of two protocols were 
compared in terms of  the rate of satisfied transaction deadlines to see whether 
our method is capable of  producing reasonable results. It was found that HP 
outperforms 2PL especially under high levels of transaction load. This was an 
obvious result confirming what was obtained in some earlier simulation works. 

Several opportunities exist for expanding on the work performed. Our 
analysis involved a closed queuing model to keep the transaction population 
constant. To relax the assumption of constant transaction population the 
analysis can be extended to an open system which is driven by an external 
transaction source at a certain arrival rate and the service rate of transactions 
in the system is load-dependent. This appears to be a promising area for future 
research. Another possible extension, we are planning to work on, is consid- 
ering different transaction classes in the model each having a different 'criti- 
calness'. 11 In such RTDBS environments, the priority of a transaction is a 
function of both its deadline and criticalness. This extension will make it 
possible to evaluate the real-time performance for each class of transactions. 
Finally, we are also planning to apply the proposed analytic solution method 
to the evaluation of other concurrency control protocols developed for 

| 1 The criticalness of a transaction is an indication of its level of importance [3]. 
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RTDBSs.  We believe that the method can serve as a simple and fast perfor- 
mance evaluation tool  to be used in the design and analysis o f  priority-based 
concurrency control protocols.  
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