The dual of the principal ideal generated by a pure p-form

I. Dibag
Department of Mathematics, Bilkent University, 06533 Bilkent, Ankara, Turkey

Received 19 September 2000
Communicated by Walter Feit

Abstract

We observe that our methods in [J. Algebra 183 (1996) 24-37] generalize to determine the dual (e.g. annihilator) of the principal ideal generated by a pure p-form. © 2002 Elsevier Science (USA). All rights reserved.

1. Generalization of [1]

In [1] we determined the dual of the principal ideal generated by an exterior 2-form (e.g. [1, Theorem 2.3.3]). In this Note we shall observe that our methods in [1] generalize to determine the dual of the principal ideal generated by a pure p-form.

Definition 1.1. An exterior p-form $w \in \wedge^{p}(V)$ on a vector space V is called a pure p-form of genus g iff there exist a set of $p g$ linearly independent vectors $x_{i} \in V$ such that $w=x_{1} \wedge \cdots \wedge x_{p}+x_{p+1} \wedge \cdots \wedge x_{2 p}+\cdots+x_{(g-1) p+1} \wedge \cdots \wedge x_{g p}$. Note that every 2 -form is a pure form.

Let w be a pure p-form of genus g. Put $w_{j}=x_{(j-1) p+1} \wedge \cdots \wedge x_{j p}$ so that $w=w_{1}+\cdots+w_{g}$. Then $\left[w_{i}+(-1)^{p-1} w_{j}\right] \wedge\left[w_{i}+w_{j}\right]=0$. Take all possible partitions of g in the form $\left(i_{1} j_{1}\right)\left(i_{2} j_{2}\right) \cdots\left(i_{r} j_{r}\right)\left(k_{1} \ldots k_{g-2 r}\right), i_{t} \leqslant j_{t}$

[^0]$(1 \leqslant t \leqslant r), i_{1}<\cdots<i_{r}, k_{1}<\cdots<k_{g-2 r}$ for all $0 \leqslant r \leqslant[g / 2]$. Let $\theta(w)$ be the homogeneous ideal multiplicatively generated by generators
$$
g_{\alpha}=\left[w_{i_{1}}+(-1)^{p-1} w_{j_{1}}\right] \wedge \cdots \wedge\left[w_{i_{r}}+(-1)^{p-1} w_{j_{r}}\right] \wedge v_{k_{1}} \wedge \cdots \wedge v_{k_{g-2 r}}
$$
where $v_{k_{j}}=x_{i}$ for some $\left(k_{j}-1\right) p+1 \leqslant i \leqslant k_{j} p$.
The whole machinery of [1] generalizes to prove the following analogue of [1, Theorem 2.3.3].

Theorem 1.2. $K[(w)]=\theta(w)$ (where $K[(w)]$ denotes the dual or annihilator of the principal ideal (w) generated by $w)$.

References

[1] I. Dibag, Duality for ideals in the Grassmann algebra, J. Algebra 183 (1996) 24-37.

[^0]: E-mail address: dibag@fen.bilkent.edu.tr (I. Dibag).

