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Abstract

Using harmonic analysis on symmetric spaces we reduce the singular spectral problem
for products of matrices to the recently solved spectral problem for sums of Hermitian ma-
trices. This proves R.C. Thompson’s conjecture [Matrix Spectral Inequalities, Johns Hopkins
University Press, Baltimore, MD, 1988]. © 2000 Elsevier Science Inc. All rights reserved.
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1. Introduction

Let a point with initial positionx0 in Euclidean spaceE3 make a sequence of
jumpsx0, x1, . . . , xn of fixed lengthsai = |xi − xi−1| in random directions. What
can one say about the distribution of the final pointxn?

This problem has a long history partially described in [13]. The first solution ap-
pears in the last published paper of Rayleigh [19]. He discovered that the probability
densitypn(x) is a piecewise polynomial function of the distanced = d(x, x0) from
the initial pointx0 and calculatedpn explicitly for n 6 6. Later on, Treloar [22] gave
a closed form of the solution for arbitraryn.

In this work, we apply random walks on groups and symmetric spaces (see Sec-
tion 3 for precise definitions) to matrix spectral problems. The main technical tool is
a decomposition of the probability distribution by spherical functions (Theorems
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3.3.1 and 3.4.2). We include a number of examples, which cover some classical
formulae, as well as new ones.

For application to the matrix spectral problems only three examples are essential,
namely, the sphereS3, Euclidean spaceE3, and Lobachevskii spaceL3. They form
a special case of a triple of symmetric spaces associated with any compact simply
connected groupG:

• the groupG itself;

• its Lie algebraLG;

• the dual symmetric spaceHG = GC/G.

For the unitary groupG = SU(n) the spaceLG consists of (skew) Hermitian trace-
less matrices, whileHG = SL(n,C)/SU(n) := Hn may be identified with the space
of positive Hermitian unimodular matricesH via polar decompositionA = H · U ,
A ∈ SL(n,C), U ∈ SU(n). In the casen = 2, we recover the above tripleS3 '
SU(2), E3 andL3.

The spacesG,LG, andHG have positive, zero, and negative curvature, and may be
treated as members of one family depending on the scalar curvature−∞ < K < ∞.
LetpG, pL andpH be probability densities for random walks inG,LG andHG. For
the unitary groupG = SU(n) they have the following meaning:

• pL(H) gives the distribution of sumsH = H1 +H2 + · · · +HN of independent
random Hermitian matricesHk with given spectra

λ(Hk) =
{
λ
(k)
1 > λ

(k)
2 > · · · > λ(k)n

}
:= λ(k).

• pG(U) is the distribution of productsU = U1U2 · · ·UN of independent random
unitary matricesUk ∈ SU(n) with given spectra

ε(Uk) = exp
(
i λ(k)

)
.

• pH (A) is the distribution of productsA = A1A2 · · ·AN of random unimodular
matricesAk ∈ SL(n,C) with givensingular spectra

σ(Ak) = λ
(√
AkA

∗
k

)
= exp

(
λ(k)

)
.

In all three cases the densitiespL(H) = pL(λ), pG(U) = pG(ε), andpH (A) =
pH(σ) depend only on the spectraλ = λ(H), ε = ε(U), andσ = σ(A). The spectra
in turn parametrize orbits ofG in the corresponding symmetric spaces. The word
“random” refers to the uniform distribution in the orbits.

In view of these interpretations, the classical spectral problems for

(i) sums of Hermitian matricesH1 +H2 + · · · +HN ,

(ii) products of unitary matricesU1U2 · · ·UN ,

(iii) singular spectrum of productsA1A2 · · ·AN , Ak ∈ SL(n,C)
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are just questions about thesupportsof the densitiespL(λ), pG(ε), andpH(σ). It
turns out that the densities, and their supports, in cases (i) and (iii) are closely related.

Theorem A. Letexp : T → T be the exponential map for a maximal torusT ⊂ G

in a compact simply connected group G, and let the previous notations be in force.
Then the following identity holds:

pL(λ)

N∏
k=0

∏
α>0

(
λ(k), α

) = pH(exp iλ)
N∏
k=0

∏
α>0

sinh
(
λ(k), α

)
, (1.1)

where the internal product is extended over all positive rootsα of G.

Both sides of (1.1) are actually polynomials inλ(0) := −λ, λ(1), . . . , λ(N) ∈ T
in each chamber defined by the system of hyperplanes,(

w0λ
(0) +w1λ

(1) + · · · +wNλ
(N), ωi

) = 0,

whereωi are fundamental weights, andwk ∈ WG are elements of Weyl groupWG

(Theorems 4.2.3 and 5.1.1). A similar formula holds for random walks inG, but only
for sufficiently smallλ (Theorem 4.2.3).

Since the exponential mapping for the hyperbolic spaceHG is bijective, and the
densitiespL andpH differ only by nonvanishing factors sinh(λ(k), α)/(λ(k), α), the
distributions have essentially the same support

supp(pH ) = exp(supp(pL)).

For the unitary group this may be stated as follows.

Theorem B. The following conditions are equivalent:

1. There exist matricesAi ∈ GL(n,C) with given singular spectra

σi = σ(Ai) and σ = σ(A1A2 · · ·AN).
2. There exist Hermitiann× n matricesHi with spectra

λ(Hi) = log σi and λ(H1 +H2 + · · · +HN) = log σ.

The theorem was conjectured by Thompson [20] (see also [21]), who was in-
spired by the striking similarity between known results for Hermitian and singular
spectral problems. The Hermitian problem has recently been solved in my paper [16],
see [2,9,10,18,24] for further improvements, including Horn’s conjecture. There are
analogues of Theorem B for orthogonal and simplectic groups.

The piecewise polynomial structure of the densities, which is given in explicit
form in Section 5 of the paper, in principle shifts the spectral problems into the com-
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binatorial domain. Nevertheless, currently this approach fails to produce a solution
for the unitary spectral problem, comparable with an elegant one given by Agnihotri
and Woodward [1].

Application of harmonic analysis on symmetric spaces to spectral problems of
linear algebra was initiated by Berezin and Gelfand [3], see also [7]. The formulae
for random walks infinite groupsgo back to Frobenius [8] (up to terminology), for
more recent treatments see [4,14]. The main result (Theorem A) may be considered
as a hyperbolic version of the so-calledwrapping theoremfor compact groups [6],
which essentially is an extension of the identity (4.19) of Theorem 4.2.2 to arbitrary
elementsak of Lie algebraLG. Unfortunately, this extension has no probabilistic in-
terpretation, and hence no reduction of the unitary spectral problem to the Hermitian
one beyond region (4.20).

2. Symmetric spaces

2.1.

Let us recall that a Riemann manifoldX is said to besymmetricif the geodesic
symmetryσ : X → X with center at any pointx0 is an isometry. By definitionσ
maps a pointx on a geodesic throughx0 into a symmetric pointx ′ on the same
geodesic and at the same distance fromx0. It follows from the definition that a sym-
metric spaceX admits a connected transitive Lie group of isometriesG and may be
identified with the homogeneous spaceX = G/K with compactisometry groupK,
which up to a finite index may be given by one of the formulae

K = {g ∈ G | gx0 = x0} = {g ∈ G | gσ = σg}.
So in essence symmetric spaces are parametrized byCartan pairs(G, σ) consisting
of a Lie groupG and an involutionσ : G → G with compact centralizerK. Then
there exists a unique, up to proportionality,G-invariant metric onX = G/K and the
geodesic symmetry with center atx0 = fK

gK 7→ ff−σ gσK
is an isometry.

2.2. Examples

The following symmetric spaces are important either for motivation or for the
main applications of our study.

2.2.1. Spaces of rank 1
The sphereSn, Euclidean spaceEn, and Lobachevskii spaceLn have evident

symmetric structures. For example, Euclidean space has Cartan presentationEn =
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M(n)/SO(n) with group of rigid motionsM(n) as isometry group, and central sym-
metry as Cartan involution. These are typical examples of spaces of rank 1, for which
double cosetsK\G/K depend on one parameter.

2.2.2. The three spaces
A compact groupG may be considered as a symmetric space with isometry group

G×G, acting by left and right multiplicationx 7→ g1xg
−1
2 . The Cartan involution

interchanges the factors inG×G, and the isotropy groupK is G itself diagonally
embedded inG×G.

The Lie algebraLG of a groupG is a symmetric space with noncompact isometry
group generated by translations and the adjoint action ofG.

LetLG ⊗ C be the complexification ofLG andGC be the corresponding complex
reductive group. ThenHG = GC/G is a symmetric space with complex conjugation
in GC as Cartan involution. This space is called thedual symmetric spaceto G.

For the group SU(2) the three spaces are just the sphereS3, Euclidean spaceE3,
and Lobachevskii spaceL3.

2.2.3. Positive Hermitian matrices
The dual space to the unitary group SU(n), that is,Hn := SL(n,C)/SU(n), may

be identified with the space of unimodular positive Hermitian matrices via the polar
decompositionA = H · U , with angular partU ∈ SU(n), and the positive Hermitian
matrixH = √

A ·A∗ as radial component. The eigenvalues ofH are said to be the
singular valuesof A. This is the central example for our study of the singular values
spectral problem.

3. Random walks

3.1.

We begin with the classical example of random walk in Euclidean spaceEn, which
may be defined as a sequence of random points inEn

0 = x0, x1, x2, . . . , xN (3.1)

such that the differencesδi = xi − xi−1 are independentanduniformly distributed
in spheres of given radiiai .

TreatingEn as the symmetric spaceG/K = M(n)/SO(n) we may identify the
spheres with double cosetsKgK. Then the random walk (3.1) is given by a sequence
of elements

g1, g2, . . . , gN ∈ G, (3.2)

which are independent and uniformly distributed in the double cosetsXi = KgiK.
The original sequence of elements (3.2) may be reconstructed from these data as
follows:
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xi = g1g2 · · · giK ∈ G/K = X.

So we arrived at the following:

Definition 3.1.1. A random walk in the symmetric spaceX = G/K is a sequence
of random elements

xi = g1g2 · · · giK ∈ G/K, (3.3)

where thegi are independent and uniformly distributed in given double cosetsXi =
KgiK.

Example 3.1.2(Random walk in spaceHn). As we have seen in Section 2.2.3, the
space of positive Hermitian matricesHn is a symmetric space with Cartan represen-
tationHn = GL(n,C)/U(n). A double cosetU(n)gU(n) ⊂ Hn in this case consists
of matricesA ∈ GL(n,C) with fixed singular spectrumσ(A).

The matrixA, considered as an operator inCn, transforms the unit sphere into an
ellipsoid with semiaxis equal to the singular values ofA. Hence, one may visualize a
random walk inHn as a sequence of ellipsoids inCn obtained from the unit sphere by
a succession of dilations with given coefficientsσ (k)1 , σ

(k)
2 , . . . , σ

(k)
n along randomly

chosen orthogonal directionse(k)1 , e
(k)
2 , . . . , e

(k)
n .

Notation 3.1.3. For given double cosetsXi = KgiK in the symmetric spaceX =
G/K let

PX(x) = P(X1,X2, . . . , XN | x) (3.4)

be the probability density for the distribution of the final elementx = xN in the
random walk (3.3).

In the following section, we evaluate the densities (3.4) in terms of spherical
functions.

3.2. Spherical functions

To evaluate the densities we first needspherical functionson the symmetric space
X = G/K.

Definition 3.2.1. A functionϕ ∈ L2(G/K) is said to besphericalif ϕ(1) = 1, and
the following equation holds:∫

K

ϕ(xky) dk = ϕ(x)ϕ(y) ∀x, y ∈ G.

Note that the equation implies bi-invariance of spherical functions

ϕ(k1xk2) = ϕ(x) ∀k1, k2 ∈ K.
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The importance of spherical functions for analysis on symmetric spaces may be seen
from the following properties. LetHϕ ⊂ L2(G/K) be theG-invariant Hilbert sub-
space generated by the spherical functionϕ. Then

1. G : Hϕ is an irreducible representation (which is said to bespherical), andϕ ∈
Hϕ is the unique, up to proportionality, bi-invariant function inHϕ .

2. Hence, in the compact case the spaceHϕ is finite-dimensional.

3. Hϕ ⊥ Hψ for ϕ /= ψ.

4. L2(G/K) is a direct sum (or integral for noncompactX = G/K) of the irreduc-
ible representationsHϕ.

For all classical symmetric spaces the spherical functions are explicitly known
[11,12].

Example 3.2.2. For Euclidean spaceEn = M(n)/SO(n), spherical functions de-
pend only on the distanced = |x| from the origin, and may be expressed via Bessel
functions:

ϕλ(x) = 2νC(ν + 1) · Jν(λd)
(λd)ν

, ν = n− 2

2
.

Example 3.2.3. For a compact groupG, considered as a symmetric space (Sectiion
2.2.2), the spherical functions are just normalized charactersϕ(g) = χ(g)/χ(1) of
irreducible representationsG : Uχ , and the corresponding spherical representation
of G×G isHϕ = Uχ ⊗ Uχ .

3.3. Compact case

Now we are in a position to evaluate the probability distribution for a random
walk in a compact symmetric space.

Theorem 3.3.1. The probability density of the random walk(3.3) in a compact sym-
metric spaceX = G/K has the following decomposition into spherical functions:

P(X1,X2, . . . , XN | x) =
∑
ϕ

dimHϕ · ϕ(x)
N∏
i=1

ϕ(Xi), (3.5)

where the sum runs over all spherical functions.

Remark. Since spherical functions are bi-invariant,ϕ(gi) depends only on the dou-
ble cosetXi = KgiK. This explains the notationϕ(Xi) = ϕ(gi).

Proof. To clarify the structure of the proof we split it into one-move steps.

Step 1. For any spherical functionϕ andxi ∈ X the following identity holds:
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K×K×···×K

ϕ(k1x1k2x2 · · · kNxN) dk1 dk2 · · · dkN

= ϕ(x1)ϕ(x2) · · ·ϕ(xN). (3.6)

Forn = 1 the equation follows from the definition of spherical function∫
K

ϕ(kx) dk = ϕ(1)ϕ(x) = ϕ(x),

and simple induction arguments prove it in general.�

Step 2. The identity of Step1 may be rewritten in the form∫
X

ϕ(x)P (X1,X2, . . . , XN | x) dx = ϕ(X1)ϕ(X2) · · ·ϕ(XN) (3.7)

whereXi = Kxi.

Let us consider the mapping

µ : K ×K × · · · ×K → X

k1 × k2 × · · · × kN 7→ k1x1k2x2 · · · kNxN.
The functionϕ(k1x1k2x2 · · · kNxN) is constant on the fibers ofµ and

P(X1,X2, . . . , XN | x) dx

is equal to the volume of the fiberµ−1(dx). Hence, by Fubini’s theorem∫
K×K×···×K

ϕ(k1x1k2x2 · · · kNxN) dk1 dk2 · · · dkN

=
∫
X

ϕ(x)P (X1,X2, . . . , XN | x) dx

and the result follows. �

Step 3. The density has the following decomposition into series of spherical
functions

P(X1,X2, . . . , XN | x) =
∑
ϕ

ϕ(x)

(ϕ, ϕ)
ϕ(X1)ϕ(X2) · · ·ϕ(XN),

where(f, g) = ∫
X
f (x)g(x) dx.

As with any reasonable bi-invariant function, the density admits a decomposition
into spherical harmonics

P(X1,X2, . . . , XN | x) =
∑
ϕ

aϕϕ(x),

with coefficients

aϕ = 1

(ϕ, ϕ)

∫
X

P(X1,X2, . . . , XN |x)ϕ(x) dx
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(3.7)= 1

(ϕ, ϕ)
ϕ(X1)ϕ(X2) · · ·ϕ(XN),

and the result follows. �

To get the final formula (3.5) we have to evaluate(ϕ, ϕ).

Step 4. The following equality holds:

(ϕ, ϕ) = 1

dimHϕ
. (3.8)

This step is equivalent to evaluation of thePlancherel measurefor X (see the
following). It may be proved as follows. Let us denote by(g)H : Hϕ → Hϕ the linear
operator of the spherical representationHϕ corresponding to the elementg ∈ G.
Then the operator∫

G×K
(g−1kg)H dg dk

commutes withG and hence by Schur’s lemma is a scalar∫
G×K

(
g−1kg

)
H

dg dk = λ · id. (3.9)

Applying this operator to the spherical functionϕ(x) we get

λϕ(x) =
∫ ∫

K×G
ϕ
(
g−1kgx

)
dk dg =

∫
G

ϕ
(
g−1)ϕ(gx) dg,

where in the last equality we make use of the functional equation for spherical func-
tions (stated as Definition 3.2.1 in our exposition). Forx = 1 we getλ = (ϕ, ϕ), and
taking the trace of (3.9) we finally get

(ϕ, ϕ) dimHϕ =
∫ ∫

G×K
χ

(
g−1kg

)
dg dk =

∫
K

χ(k) dk = 1.

The last integral is equal to the multiplicity of the trivial component inK : Hϕ, and
hence is 1. �

Example 3.3.2(Random walks inS3). We identify the sphere with the group SU(2).
Then by Example 3.2.3, the normalized characterϕk = sin kθ/(k sinθ) of the irre-
duciblek-dimensional representationG : Uk is a spherical function, andHk = Uk ⊗
Uk is the corresponding spherical representation of SU(2)× SU(2). Applying The-
orem 3.3.1, we arrive at the formula

P(α1, α2, . . . , αN | x) =
∞∑
k=1

1

kN−1

sin kθ

sin θ

∏
i

sin kαi
sin αi

,

where the random walk is defined by a sequence of independent jumps by angles
α1, α2, . . . , αN , beginning at the North pole (θ = 0), andθ = θ(x) is the latitude of
the final pointx ∈ S3.
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Rather unexpectedly we may sum up the series and get a finite answer (by God’s
will the wonder repeats itself in all compact groups). To proceed, we first express
sin kα and sinkθ by exponentials

2−n−2i−n−1

sin θ sin α1 sin α2 · · · sin αn

×
∑
±

∑
k /=0

(−1)#(−)exp(i k(±θ ± α1 ± α2 ± · · · ± αn))

kn−1
,

where the first sum runs over all combinations of signs±. Then apply the Fourier
expansion for Bernoulli polynomialsBν(x)∑

k /=0

exp(2p i kx)

kν
= − (2p i)ν

ν! B̃ν(x),

whereB̃ν(x + 1) = B̃ν(x) andB̃ν(x) = Bν(x) for 0< x < 1. As a result we finally
get

P 3
S(α1, α2, . . . , αN | x)
= pn−1

(n− 1)!4 sin θ
∏n

1 sin αi

×
∑
±
(−1)#(−)B̃n−1

(
θ ± α1 ± · · · ± αn

2p

)
, (3.10)

where we exclude the first± sign using the symmetrỹBν(−x) = (−1)νB̃ν(x).

Example 3.3.3(Random walks inE3). Let us now suppose that the jumpsαi > 0 are
so small that the final pointx never reaches the South pole, that is,

α1 + α2 + · · · + αn < p. (3.11)

Then formula (3.10) may be simplified as follows:

PS3(α1, α2, . . . , αN | x)
= p

(n− 2)!2n sin θ
∏n

1 sin αi

×
∑

θ±α1±α2±···±αn<0

(−1)#(−)(θ ± α1 ± · · · ± αn)
n−2. (3.12)

For the proof, let us note that the sum over signs± in (3.10) is nothing but thenth
difference. Hence, for anypolynomialBn−1(x) of degreen− 1 the sum vanishes∑

±
(−1)#(−)Bn−1

(
θ ± α1 ± · · · ± αn

2p

)
= 0.
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The functionB̃n−1 in (3.10) is not polynomial, but under condition (3.11) its argu-
ment spreads over two intervals of polynomiality(−1,0) and(0,1). Splitting the
sum into two polynomial parts∑

θ±α1±···±αn>0

(−1)#(−)Bn−1

(
θ ± α1 ± · · · ± αn

2p

)

+
∑

θ±α1±···±αn<0

(−1)#(−)Bn−1

(
1 + θ ± α1 ± · · · ± αn

2p

)
,

and using the functional equationBν(x + 1)− Bν(x) = νxν−1 we get the result.
Let us now suppose that the radius of the sphereS3 tends to infinity in such a way

thatRθ → d andRαi → ai . Then taking limits in (3.12) we get the Treloar formula
[22] for random walks inE3:

PE3(a1, a2, . . . , an | d)
= lim
R→∞

1

2p2R3
P 3

S(α1, α2, . . . , αn | θ)

= 1

p(n− 2)!2n+1da1a2 · · · an
×

∑
d±a1±a2±···±an<0

(−1)#(−)(d ± a1 ± a2 ± · · · ± an)
n−2, (3.13)

where 2p2R3 = vol S3.

3.4. Plancherel measure and noncompact case

For a noncompact symmetric spaceX = G/K, the spherical representationsHϕ
are usually infinite-dimensional, and formula (3.5) makes no sense. Nevertheless, on
the space of spherical functions (denote it byK) there exists the so-calledPlancherel
measuredµ(λ), which may be characterized by the equation∫

G

|f (g)|2 dg =
∫

K
|f̂ (λ)|2 dµ(λ) (3.14)

for any bi-invariant functionf ∈ L2(K\G/K). Here

f̂ (λ) =
∫
G

f (g)ϕλ(g) dg (3.15)

is thespherical transformof f.

Example 3.4.1. For a compact groupG, the Plancherel measure is discrete. To
evaluate the measure of a spherical functionf = ϕλ we begin with its spherical
transform
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f̂ (γ ) =
∫
G

ϕλ(g)ϕγ (g) dg = (ϕλ, ϕγ )δλγ ,

and substitute this value in (3.14)

(ϕλ, ϕλ)
2µ(λ) = (ϕλ, ϕλ).

Then by (3.8)

µ(λ) = 1

(ϕλ, ϕλ)
= dimH(ϕλ).

The last step in the proof of Theorem 3.3.1 is nothing but a computation of the
Plancherel measure. In a sense the Plancherel measure is an analogue of dimension
for infinite-dimensional spherical representations. The Plancherel measure is known
for all Riemannian symmetric spaces [11,12].

Theorem 3.4.2. The density of a random walk in an arbitrary symmetric space
X = G/K is given by the formula

P(X1,X2, . . . , XN | x) =
∫

K
ϕλ(x

′)
∏
i

ϕλ(Xi) dµ(λ), (3.16)

wherex ′ is the symmetric element to x with respect to(the image of) the unit element
1 ∈ G, from which the random walk begins.

Proof. The proof has the same logical structure as in the compact case, except that
instead of series one has to use integrals. In a sense it is even simpler, since we do
not need step 4, which is hidden in the inversion formula

f (x) =
∫

K
ϕλ(x)f̂ (λ) dµ(λ) (3.17)

for spherical transform (2.15).�

Remark 3.4.3.Theorems 3.3.1 and 3.4.2 are actually based on two properties of
the spherical transform (3.15): multiplicativity with respect to the convolutionf ∗
h(x) = ∫

G
f (xg)h(g−1x) dg of bi-invariant functions

f̂ ∗ g = f̂ · ĝ,
and inversion formula (3.17). Both of these properties hold for any commutative
hypergroup[4,14]. This provides a general template for such kind of results.1

Example 3.4.4.For Euclidean spaceEn the spherical functions and the Plancherel
measure are given by the formulae:

1 The author is grateful to the referee for this remark.
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ϕλ(x) = 2νC(ν + 1)
Jν(λr)

(λr)ν
, r = |x|, ν = n− 2

2
,

dµ(λ) = 2

(4p)ν+1C(ν + 1)
λn−1 dλ.

So a random walk inEn with independent steps of lengtha1, a2, . . . , aN has the
density

P(a1, a2, . . . , aN | x) = const.
∫ ∞

0
λn−1Jν(λr)

(λr)ν

N∏
i=1

Jν(λai)

(λai)ν
dλ.

For the planeE2 this amounts to Kluyver’s formula [15]

PE2(a1, a2, . . . , aN | x) = 1

2p

∫ ∞

0
λJ0(λ|x|)J0(λa1)J0(λa2) · · · J0(λaN) dλ,

and forn = 3 to that of Rayleigh [19]

PE3(a1, a2, . . . , aN | x) = 1

2p2

∫ ∞

0
λ2 sin(λr)

λr

N∏
i=1

sin(λai)

λai
dλ. (3.18)

The general case is due to Watson [23].

4. The three symmetric domains

4.1. Positive Hermitian matrices

Let us begin with the symmetric spaceHn of positive Hermitiann× n matrices.
The action of SL(n,C)

H 7→ AHĀt, H ∈ Hn, A ∈ SL(n,C)

gives rise to the Cartan presentationHn = SL(n,C)/SU(n). An orbit of the unitary
group SU(n) onHn consists of unimodular Hermitian matricesH with fixed positive
spectrumλ(H) which we write in exponential formλ(H) = eS , where

S: s1 > s2 > · · · > sn, s1 + s2 + · · · + sn = 0. (4.1)

The corresponding double coset

C(S) ⊂ SL(n,C)//SU(n) := SU(n)\SL(n,C)/SU(n)

consists of all matricesA ∈ SLn(C)with givensingular spectrumσ(A) = λ(
√
AĀt).

Theorem 3.4.2, when applied toHn, yields a distribution of the singular spectrum
of products

A = A1A2 · · ·AN
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of independent random factorsAi uniformly distributed in the space of matrices
C(Si) with given singular spectrumσ(Ai) = eSi . To get an explicit formula we
need the spherical functions and the Plancherel measure forHn. They were found
by Gelfand and Naimark in 1950 (see [11, Chapter IV, Theorem 5.7] for Harish–
Chandra’s extension on arbitrary complex semisimple groups). The spherical func-
tions onHn are SU-invariant and hence depend only on the spectrum eS (4.1) of a
matrixH ∈ Hn. They may be written in the form

ϕλ(S) =
(

2

i

)n(n−1)/2 1!2! · · · (n− 1)! det
∥∥ei λpsq

∥∥∏
p<q(λq − λp)

∏
p<q

(
e2sq − e2sp

) , (4.2)

whereλ = (λ1, λ2, . . . , λn) ∈ Rn. One can easily see thatϕλ is invariant with re-
spect to translationsλp 7→ λp + α and permutations of the componentsλp. So the
spherical functions are parametrized by the cone

K =
{
λ1 > λ2 > · · · > λn,

λ1 + λ2 + · · · + λn = 0.

The Plancherel measure onK is proportional to∏
p<q

(λq − λp)
2 dλ

where dλ is Lebesgue measure onK ⊂ Rn−1.

Example 4.1.1(Random walk in Lobachevskii spaceL3). Let us consider in detail the
group SL(2,C), which is locally isomorphic to the Lorentz group SO(3,1). Hence,
in this case the symmetric space of positive unimodular Hermitian matricesH2 is a
model for the Lobachevskii spaceL3 = SO(3,1)/SO(3). Theorem 3.4.2 yields the
following formula for random walks in Lobachevskii space of curvature radius−R
with jumps of lengthai :

PL3(a1, a2, . . . , aN | x) = 1

4p2R3

∫ ∞

−∞
λ2 sin dλ

λ sinh d

∏
i

sin aiλ

λ sinh ai
dλ, (4.3)

whered is the distance ofx from the initial point. Puttinga0 = d and leaving aside
the constants the integral reduces to the form∫

R

N∏
k=0

sin akλ
dλ

λN−1
,

and may be evaluated as follows. First of all change the real lineR to the contour
Rε passing around zero by a small semicircle in the upper halfplane, and then write
down sines via exponentials:

1

(2 i)N+1

∑
±
(−1)#(−)

∫
Rε

exp(i(± a0 ± a1 ± · · · ± aN)λ)
dλ

λN−1
.

If the sum(± a0 ± a1 ± · · · ± aN) is positive, then the contour may be closed by a
big semicircle in the upper halfplane. Hence by the residue theorem the integral is
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zero. For the negative sum, one can close the contour in the lower halfplane, and in
this case∫

Rε

exp(i(± a0 ± a1 ± · · · ± aN)λ)
dλ

λN−1

= −2p i Res0
exp(i(± a0 ± a1 ± · · · ± aN)λ)

λN−1

= − 2p i

(N − 2)! [i(± a0 ± a1 ± · · · ± aN)]N−2.

As a result we get closed formulae for the integral∫
R

N∏
k=0

sin akλ
dλ

λN−1

= p

2N−1(N − 2)!
∑

a0±a1±···±aN<0

(−1)#(−)[a0 ± a1 ± · · · ± aN ]N−2,

and for the density (4.3) of a random walk in Lobachevskii space of radiusR

PL3(a1, . . . , aN | x)
= 1

pR32N+1(N − 2)! sinh d
∏
k sinh ak

×
∑

d±a1±···±aN<0

(−1)#(−)[d ± a1 ± · · · ± aN ]N−2. (4.4)

Remark 4.1.2.The last formula for Lobachevskii spaceL3 of radiusR = 1 differs
only by simple factors from those of Euclidean space (3.13) and the unit sphere (3.12):

PE3(a1, a2, . . . , aN | d)=PL3(a1, a2, . . . , aN | d)sinh d

d

N∏
k=1

sinh ak
ak

=PS3(a1, a2, . . . , aN | d)sin d

d

N∏
k=1

sin ak
ak

, (4.5)

where the second equality holds only in the domain of injectivity of the exponential
mapping for the spherea1 + a2 + · · · + aN < p. The origin of this striking similarity
lies in the identity

∑
m>0

m2
N∏
k=0

sin akm

m sin ak
=

∫ ∞

0
λ2

N∏
k=0

sin akλ

λ sin ak
dλ (4.6)

valid for ak > 0 such thata1 + a2 + · · · + aN < p. In the following section, we ex-
tend both (4.5) and (4.6) to an arbitrary compact simply connected group.
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4.2. Some identities

LetR be the root system of a simply connected compact groupGwith simple roots
α1, α2, . . . , αn and fundamental weightsω1, ω2, . . . , ωn. We will use the standard
notation for the halfsum of the positive roots

ρ = 1

2

∑
α>0

α = ω1 + ω2 + · · · + ωn,

and write Weyl’s character formula in the form

χω = Dω
Dρ
, Dω =

∑
w∈W

sign(w) ewω, (4.7)

whereω = ω̃ + ρ is strictly inside the Weyl chamber (̃ω is a dominant weight). The
summation is over the Weyl groupW = WG.

We will represent the dimension of the character in a similar form

dimχω = d(ω)

d(ρ)
, d(ω) =

∏
α>0

(
ω, αv

)
. (4.8)

The advantage of these not quite standard notations is that the characterχω and
its dimension may by extended to a skew-symmetric function of arbitrary weight
λ ∈ K ⊗ R in the space spanned by the weight latticeK:

χwλ = sign(w)χλ, d(wλ) = sign(w)d(λ),

and in additiond(λ) is a product of linear forms inλ.
Let now exp: T → T be the exponential mapping for a maximal torusT ⊂ G,

normalized by the condition ker(T
exp→ T ) = {a ∈ T | (ω, a) ∈ Z ∀ω ∈ K}. Then

χω(exp a) = Dω(exp a)

Dρ(exp a)
=

∑
w∈W e2p i(wω,a)∏

α>0

(
ep i(α,a) − e−pi(α,a)

) , a ∈ T.

Since the spherical functions onG are normalized characters

ϕω(exp a) = d(ρ)Dω(exp a)

d(ω)Dρ(exp a)
,

by Theorem 3.3.1 and Example 3.2.3 the random walk inG with jumps expak has
the density

PG(exp a) = const.∏
k

∏
α>0 sin p(α, ak)

∑
(ω,αvi )>0

d(ω)2
N∏
k=0

Dω(exp ak)

d(ω)
, (4.9)

where the constant depends only onN, and to simplify the notations we puta0 = −a.
According to Gelfand–Naimark and Harish–Chandra [11, Chapter IV, Theorem

5.7] spherical functions on the dual symmetric spaceHG = GC/G are obtained from
those ofG by the formal substitutionρ 7→ i ρ, and taking the elementλ ∈ K ⊗ R in
the positive Weyl chamber instead of the integer weightω ∈ K:
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ϕλ(exp ia) = d(i ρ)Dλ(exp a)

d(λ)Di ρ(exp a)
= d(i ρ)

d(λ)

∑
w∈W e2p i(wλ,a)∏

α>0

(
e−p(α,a) − ep(α,a)

) .
Since the Plancherel measure in this case is known dµ(λ) ∝ d(λ)2dλ, by Theorem
3.4.2 we get the density of the random walk inH = HG with steps exp iak:

PH(exp ia)

= const.∏N
k=0

∏
α>0 sinh p(α, ak)

×
∫
(λ,αvi )>0

d(λ)2
N∏
k=0

Dλ(exp ak)

d(λ)
dλ, (4.10)

where as before we puta0 = −a.
We are now ready to prove the analogue of identity (4.6).

Theorem 4.2.1. Letak satisfy the inequalities

|(ωi,w0a0 +w1a1 + · · · +wNaN)| < 1 (4.11)

for all fundamental weightsωi andwk ∈ WG. Then the following identity holds:

∑
(ω,αvi )>0

d(ω)2
N∏
k=0

Dω(exp ak)

d(ω)
=

∫
(λ,αvi )>0

d(λ)2
N∏
k=0

Dλ(exp ak)

d(λ)
dλ. (4.12)

The sum in(4.12)runs over integral weights inside the positive Weyl chamber, while
the integral is taken over the chamber itself.

Remark 4.2.2.The left-hand side of (4.12) is a periodic function ofak with simple
rootsαvi as periods, while the right-hand side is manifestly a homogeneous function.
Hence equality (4.12) cannot be valid for allak. We will see in the following section
that the sum in (4.12) is apolynomialfunction of a0, a1, . . . , aN in each chamber
defined by affine hyperplanes

(ω,w0a0 + w1a1 + · · · +wNaN) = p ∈ Z (4.13)

for ω ∈ K andwk ∈ W . The theorem implies that the integral in (4.12) is polynomial
in each cone defined by hyperplanes (4.13) passing through zero.

Proof of Theorem 4.2.1. We start with the Poisson summation formula∑
ω∈K

f (ω) =
∑
`∈L

f̂ (`) (4.14)

valid for any reasonable functionf in the spaceK ⊗ R spanned by the weight lattice
K. Heref̂ is the Fourier transform

f̂ (q) =
∫

K⊗R

f (p) exp(−2p i(p, q)) dp,
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andL = ker(T
exp−→ T ) is the dual lattice toK. We apply (4.14) to theW-invariant

function

f (λ) = d(λ)2
N∏
k=0

Dλ(exp ak)

d(λ)

vanishing on the mirrors(λ, αvi ) = 0 to get

∑
(ω,αvi ) /=0

d(ω)2
N∏
k=0

Dω(exp ak)

d(ω)

=
∑
`∈L

∫
KR

exp(−2p i(λ, `))d(λ)2
N∏
k=0

Dλ(exp ak)

d(λ)
dλ. (4.15)

Theorem 4.2.1 just says that the sum on the right-hand side of (4.15) reduces to
the first term̀ = 0. For the proof let us begin with a slightly different integral∫

KR

d(λ)2
exp(2pi(λ, `))

d(λ)

N∏
k=0

Dλ(exp ak)

d(λ)
dλ, (4.16)

which byW-symmetrization may be written in the form

1

|W |
∫

KR

d(λ)2
Dλ(exp ` )

d(λ)

N∏
k=0

Dλ(exp ak)

d(λ)
dλ. (4.17)

The last integral enters into formula (4.10) for the densityPH(exp(−i ` )) of the
random walk in the hyperbolic spaceHG. Since the set exp(iL) is discretein HG,
the densityPH (exp(−i ` )), and integrals (4.16) and (4.17) vanish identically for
` /= 0 and sufficiently small stepsak. Taking derivatives of integral (4.16) in the
directions of all positive rootsαv > 0, we kill the extra factord(λ) = ∏

αv>0(λ, α
v)

in the denominator, and arrive to the vanishing of all terms in the right-hand side of
(4.15) with` /= 0. This proves identity (4.12) for smallak.

The precise form (4.11) of the domain, in which the identity holds, follows from
piecewise polynomiality of its left-hand side, which will be proved in the following
section, and homogeneity of the right-hand side.�

Now we are in a position to establish relations between the densitiesPG, PL
andPH of random walks in the compact groupG, its Lie algebraLG, and the dual
symmetric spaceHG = GC/G with steps expak, ak, exp iak.

Theorem 4.2.3.The densitiesPG, PL, PH are related by the formulae

PL(a)=PH(exp ia)
N∏
k=0

∏
α>0

sinh p(α, ak)

p(α, ak)
(4.18)



A.A. Klyachko / Linear Algebra and its Applications 319 (2000) 37–59 55

=PG(exp a)
N∏
k=0

∏
α>0

sin p(α, ak)

p(α, ak)
, (4.19)

wherea0 = −a and the last equality is valid under the restriction

|(ωi,w0a0 +w1a1 + · · · +wNaN)| < 1 (4.20)

for all fundamental weightsωi andwk ∈ W .

Proof. We have to prove only the first identity (4.18), since the second one follows
from Theorem 4.2.1 and formulae (4.9) and (4.10) for the densitiesPG andPH .

To proceed we need a formula for the densityPL. We can readily get it by treating
a random walk in the Lie algebraL with stepsak as a properly rescaled walk inHG
with very small steps exp(i εak). This leads to the following calculation:

PL(a1, a2, . . . , aN | a)
= lim
ε→0

εdimLPH (exp iεa1,exp iεa2, . . . ,exp iεaN | exp iεa)

4.10= lim
ε→0

CεdimL∏N
k=0

∏
α>0 sinh p(α, εak)

∫
(λ,αif v)>0

d(λ)2
N∏
k=0

Dλ(exp εak)

d(λ)
dλ

λ 7→λ/ε= C

∫
(λ,αvi )>0

d(λ)2
N∏
k=0

Dλ(exp ak)

d(λ)
dλ lim

ε→0

N∏
k=0

∏
α>0

ε

sinhp(α, εak)

4.10= PH (exp ia1,exp ia2, . . . ,exp iaN | exp ia)

×
N∏
k=0

∏
α>0

sinh p(α, ak)

p(α, ak)
. �

Corollary 4.2.4. The supports of the probability measuresPL andPH for random
walks inLG andHG with stepsak andexp iak are related by the equation

suppPH = exp(i suppPL).

Proof. By (4.18) the measures differ only by nonvanishing factors(sinh p(α, ak))/
(p(α, ak)). �

For the unitary group SU(n) this solves Thompson’s conjecture [20].

Theorem 4.2.5.Letσi, i = 1,2, . . . , N, andσ be positive spectra. Then the follow-
ing statements are equivalent:

1. There exist matricesAi ∈ GL(n,C) with singular spectraσi = σ(Ai) andσ =
σ(A1A2 · · ·AN).

2. There exist Hermitiann× n matricesHi with spectraλ(Hi) = log σi and
λ(H1 +H2 + · · · +HN) = log σ .
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Proof. Solvability of the equationsλ(H1 +H2 + · · · +HN) = log σ and σ =
σ(A1A2 · · ·AN) in (Hermitian) matrices with given (singular) spectra means that
σ and logσ are in the supports of the corresponding measuresPH andPL. Hence
the claim follows from the previous corollary.�

Remark 4.3.6.A similar result holds for other classical groups, say for the singu-
lar spectrum of a product of complex orthogonal matricesAi ∈ SO(n,C) and the
spectrum of a sum of real symmetricn× n matricesHi .

5. Piecewise polynomiality

In this section, we prove piecewise polynomiality of sums like

∑
(ω,αvi )>0

d(ω)2
N∏
k=0

Dω(exp ak)

d(ω)
, (5.1)

which enter in the density formula (4.9) for random walks in a compact groupG. Our
exposition follows [17]. The summands areW-invariant functions, hence we may ex-
tend the sum over all nonsingular weightsd(ω) /= 0. SinceDω = ∑

w∈W sgn(w) ewω

the problem reduces to the sums of the form

∑
d(ω) /=0

e2p i(ω,a)

d(ω)N−1

for a = w0a1 + w1a2 + · · · +wNaN , wk ∈ W . In addition,d(ω) = ∏
αv>0(ω, α

v)

is a product of linear forms, hence we finally arrive at the series

fL(x|α1, α2, . . . , αN ) =
∑

ω∈2p i K

e(ω,x)

(ω, α1)(ω, α2) · · · (ω, αN ) , (5.2)

where the sum runs over thoseω ∈ 2p i K for which (ω, αk) /= 0. Hereαi ∈ L are
arbitrary elements in a latticeL, K is the dual lattice, andx ∈ L⊗ R.

Let us consider affine hyperplanes inLR of the formH + a, a ∈ L, where the
subspaceH ⊂ L⊗ R is spanned by some vectorsαi . They divideL⊗ R into con-
nected pieces calledchambersof the systemαk .

Theorem 5.1.1. Function(5.2) is polynomial of degree N on each chamber, and its
highest form does not depend on the chamber.

Remark 5.1.2.Function (5.2) is well defined as adistributioneven if the systemαk
does not spanLR. For example, an empty system of vectors gives theδ-function of
latticeL (it is just another way to write the Poisson summation formula (4.14)).
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Example 5.1.3(Root systems). In the case of the density function (5.1) we deal
with the system of positive rootsαv , each taken with multiplicityN − 1. It is well
known that any subspace spanned by a set of roots is parabolic, i.e., spanned by
a part of a basis [5, VI.1.7, Proposition 24]. Such a subspace of codimension 1
〈α1, α2, . . . , α̂i , . . . , αn〉 is orthogonal to the fundamental weightωi . Hence the cham-
bers of function (5.1) are defined by affine hyperplanes(ω, a) = p ∈ Z, with ω
conjugate to a fundamental weight, anda = w0a0 + w1a1 + · · · + aNwN . The sys-
tem of hyperplanes(ω, x) = p, as opposed to the mirrors(α, x) = p, behaves highly
irregularly. Apparently neither the combinatorial structure of the chambers nor even
the number of the chambers modulo translations are known.

Both assertions of Theorem 5.1.1 become evident from the following combinato-
rial description of function (5.2).

Proposition 5.1.4.Let us defineϕ : RN → L⊗ R by

ϕ : (t1, t2, . . . , tN ) 7→ t1α1 + t2α2 + · · · + tNαN . (5.3)

Then

fL(x | α1, α2, . . . , αN ) =
(

mean value of〈t1〉〈t2〉 · · · 〈tN 〉
on the fiberϕ−1(L− x)

)
, (5.4)

where 〈t〉 = [t] − (1/2) = B̃1(t) is the periodic extension of the first Bernoulli
polynomial.

Remark 5.1.5.The right-hand side of (5.4) should be understood in the following
way. Since the product〈t1〉〈t2〉 · · · 〈tN 〉 is periodic, the mean value may be taken over
sections of the unit cube 06 ti 6 1 by the affine subspacesϕ−1(a − x), a ∈ L. Eq.
(5.4) implies polynomiality offL(x) near thosex for which the affine subspaces
are in general position to the unit cube, i.e., do not intersect its faces of dimen-
sionm < n = dimLR. In other words the polynomiality fails only forx ≡ ti1αi1 +
ti2αi2 + · · · + timαim modL,m < n, i.e., on the walls of the chambers.

Proof of Proposition 5.1.4.In the following, we will understand the right-hand side
of formula (5.2) as the Fourier expansion of ageneralisedfunction. In particular,
fL(x|∅) is the Fourier expansion ofδ-function of the latticeL. With this understand-
ing we have the recurrence relation

fL(x | α1, α2, . . . , αN ) =
∫ 1

0

(
t − 1

2

)
fL(x + tα1|α2, α3, . . . , αN ) dt, (5.5)

which may be proved as follows:∫ 1

0

(
1 − 1

2

)
fL(x + tα1 | α2, α3, . . . , αN ) dt
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=
∑

ω∈2p i K

e(x,ω)

(α2, ω)(α3, ω) · · · (αN, ω)
∫ 1

0

(
t − 1

2

)
e(ω,α1)t dt

=
∑

ω∈2p i K

e(x,ω)

(α1, ω)(α2, ω) · · · (αN, ω)
= fL(x | α1, α2, . . . , αN).

In this calculation we use∫ 1

0

(
t − 1

2

)
exp((ω, α1)t) dt =

{
0 if (ω, α1) = 0,
1/(ω, α1) if (ω, α1) /= 0.

(5.6)

Applying (5.5)N times we get

fL(x | α1, α2, . . . , αN)

=
∫

[0,1]N

(
t1 − 1

2

)
· · ·

(
tN − 1

2

)

×fL(x + t1α1 + · · · + tNαN) dt1 dt2 · · · dtN

=
(

mean value of〈t1〉〈t2〉 · · · 〈tN 〉
on the fiberϕ−1(L− x)

)
.

In the second linefL(x) = fL(x | ∅) is theδ-function of the latticeL. �

In the density function (5.1) we deal with a system of positive rootsα > 0, each
taken with multiplicityN − 1. In this case, the following version of the proposition
may be more relevant.

Corollary 5.1.6. The function

fL
(
x | αm1

1 , α
m2
2 , . . . , α

mN
N

) =
∑

ω∈2p i K

e(ω,x)

(ω, α1)m1(ω, α2)m2 · · · (ω, αN )mN

is equal to the mean value of the product
∏N
i=1(−1)mi+1(B̃mi (ti))/mi ! on

ϕ−1(L− x). Here B̃m is the periodic extension of mth Bernoulli polynomial on
(0,1).

Proof. To get the result one has to modify the proof of the proposition, using instead
of (5.6) the formula

(−1)ν+1

ν!
∫ 1

0
Bν(t) e(ω,α1)t dt =

{
0 if (ω, α1) = 0,
1/(ω, α1)

ν if (ω, α1) /= 0,
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which follows from the Fourier expansion of Bernoulli polynomials (see Example
3.3.2). �
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