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Abstract

Using harmonic analysis on symmetric spaces we reduce the singular spectral problem
for products of matrices to the recently solved spectral problem for sums of Hermitian ma-
trices. This proves R.C. Thompson’s conjecture [Matrix Spectral Inequalities, Johns Hopkins
University Press, Baltimore, MD, 1988]. © 2000 Elsevier Science Inc. All rights reserved.
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1. Introduction

Let a point with initial positionrg in Euclidean spac&® make a sequence of
jumpsxo, x1, ..., x, of fixed lengthsa; = |x; — x;_1| in random directions. What
can one say about the distribution of the final paiyf

This problem has a long history partially described in [13]. The first solution ap-
pears in the last published paper of Rayleigh [19]. He discovered that the probability
densityp, (x) is a piecewise polynomial function of the distanrte- d(x, xp) from
the initial pointxg and calculategh, explicitly for n < 6. Later on, Treloar [22] gave
a closed form of the solution for arbitrany

In this work, we apply random walks on groups and symmetric spaces (see Sec-
tion 3 for precise definitions) to matrix spectral problems. The main technical tool is
a decomposition of the probability distribution by spherical functions (Theorems
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3.3.1 and 3.4.2). We include a number of examples, which cover some classical
formulae, as well as new ones.

For application to the matrix spectral problems only three examples are essential,
namely, the spherg®, Euclidean spac&?, and Lobachevskii spade’. They form
a special case of a triple of symmetric spaces associated with any compact simply
connected grouf:
e the groupG itself;
e its Lie algebral g;
e the dual symmetric spadé; = G¢/G.
For the unitary grouy = SU(n) the spacd.; consists of (skew) Hermitian trace-
less matrices, whilél; = SL(n, C)/SU(n) := H,, may be identified with the space
of positive Hermitian unimodular matrice$ via polar decompositiodd = H - U,
A € SL(n, C), U € SU®). In the casen = 2, we recover the above tripl@3 ~
SU2), E2 andl 3.

The space§, L, andHg have positive, zero, and negative curvature, and may be
treated as members of one family depending on the scalar curvature: K < oo.
Let pg, pr andpy be probability densities for random walks®) L andHg. For
the unitary groug; = SU(n) they have the following meaning:

e pr (H) gives the distribution of sume = H; + H> + - - - + Hy of independent
random Hermitian matriced; with given spectra

MH) = P 20 )=,

e pi(U) is the distribution of product& = U1U> - - - Uy of independent random
unitary matriced/; € SU(n) with given spectra

e(Ux) = exp(ir®).

e py(A) is the distribution of productd = A1A5--- Ay of random unimodular
matricesA; € SL(n, C) with givensingular spectra

o (A0 = 2(\/ kAt ) = exp(: ).

In all three cases the densitigg (H) = pr (1), pg(U) = pg(e), and py (A) =
pu (o) depend only on the spectka= A(H), ¢ = ¢(U), ando = o (A). The spectra
in turn parametrize orbits d& in the corresponding symmetric spaces. The word
“random” refers to the uniform distribution in the orbits.
In view of these interpretations, the classical spectral problems for

(i) sums of Hermitian matriceH1 + H2 + - - - + Hy,
(i) products of unitary matrice&1U; - - - Uy,
(i) singular spectrum of product$;1A2--- Ay, Ay € SL(n, C)
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are just questions about tisepportsof the densitiepr (1), pc(e), andpg (o). It
turns out that the densities, and their supports, in cases (i) and (iii) are closely related.

Theorem A. Letexp: 7 — T be the exponential map for a maximal tofisc G
in a compact simply connected group &d let the previous notations be in force.
Then the following identity holds

N N
pe) [TT] (A% a) = puexp i) [T [ ] sinh(x®. a), (1.1)

k=0a>0 k=0a>0

where the internal product is extended over all positive raots G.

Both sides of (1.1) are actually polynomialsif? := —x, 2@ ... AN ¢ 7
in each chamber defined by the system of hyperplanes,

(wor @ + wir® + -+ wyaA™ W) =0,

wherew; are fundamental weights, ang, € W are elements of Weyl grouys
(Theorems 4.2.3 and 5.1.1). A similar formula holds for random walk iout only
for sufficiently smallx (Theorem 4.2.3).

Since the exponential mapping for the hyperbolic spdgeis bijective, and the
densitiesp; and py differ only by nonvanishing factors sigh®, o)/ (A, ), the
distributions have essentially the same support

SUPApH) = eXPSUPHpL))-

For the unitary group this may be stated as follows.

Theorem B. The following conditions are equivalent
1. There exist matriced; € GL(n, C) with given singular spectra

oi=0(A;)) and o =o0(A1A2---Apn).
2. There exist Hermitiam x n matricesH; with spectra
MH;) =logo; and A(H1+ H2+---+ Hy) =logo.

The theorem was conjectured by Thompson [20] (see also [21]), who was in-
spired by the striking similarity between known results for Hermitian and singular
spectral problems. The Hermitian problem has recently been solved in my paper [16],
see [2,9,10,18,24] for further improvements, including Horn’s conjecture. There are
analogues of Theorem B for orthogonal and simplectic groups.

The piecewise polynomial structure of the densities, which is given in explicit
form in Section 5 of the paper, in principle shifts the spectral problems into the com-
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binatorial domain. Nevertheless, currently this approach fails to produce a solution
for the unitary spectral problem, comparable with an elegant one given by Agnihotri
and Woodward [1].

Application of harmonic analysis on symmetric spaces to spectral problems of
linear algebra was initiated by Berezin and Gelfand [3], see also [7]. The formulae
for random walks irfinite groupsgo back to Frobenius [8] (up to terminology), for
more recent treatments see [4,14]. The main result (Theorem A) may be considered
as a hyperbolic version of the so-calledapping theorenior compact groups [6],
which essentially is an extension of the identity (4.19) of Theorem 4.2.2 to arbitrary
elementsy, of Lie algebral . Unfortunately, this extension has no probabilistic in-
terpretation, and hence no reduction of the unitary spectral problem to the Hermitian
one beyond region (4.20).

2. Symmetric spaces

2.1

Let us recall that a Riemann manifoiis said to besymmetridf the geodesic
symmetryo : X — X with center at any pointg is an isometry. By definitiorr
maps a poin on a geodesic throughy into a symmetric poink’ on the same
geodesic and at the same distance fr@imit follows from the definition that a sym-
metric spaceX admits a connected transitive Lie group of isometfieand may be
identified with the homogeneous spaXe= G/K with compactisometry grougK,
which up to a finite index may be given by one of the formulae

K={geG|lgxo=x0)={geG|go=o0g}

So in essence symmetric spaces are parametriz€align pairs(G, o) consisting
of a Lie groupG and an involutiors : G — G with compact centralizelK. Then
there exists a unique, up to proportional®¢jnvariant metric onX = G/K and the
geodesic symmetry with centeraf = fK

sK — ff78°K

is an isometry.
2.2. Examples

The following symmetric spaces are important either for motivation or for the
main applications of our study.

2.2.1. Spacesofrank 1
The sphereS”, Euclidean spac&”, and Lobachevskii spacE' have evident
symmetric structures. For example, Euclidean space has Cartan preseftation
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M (n)/SO(n) with group of rigid motionsV/ (n) as isometry group, and central sym-
metry as Cartan involution. These are typical examples of spaces of rank 1, for which
double coset& \G/K depend on one parameter.

2.2.2. The three spaces

A compact groufis may be considered as a symmetric space with isometry group
G x G, acting by left and right multiplicatiown +— glxgz_l. The Cartan involution
interchanges the factors @ x G, and the isotropy groufd is G itself diagonally
embedded G x G.

The Lie algebrd.; of a groupG is a symmetric space with noncompactisometry
group generated by translations and the adjoint actid@®. of

Let Lg ® C be the complexification af ; andG ¢ be the corresponding complex
reductive group. The#l; = G¢/G is a symmetric space with complex conjugation
in G¢ as Cartan involution. This space is called th&l symmetric spade G.

For the group SKR) the three spaces are just the sphgteEuclidean spacg?,
and Lobachevskii spade’.

2.2.3. Positive Hermitian matrices

The dual space to the unitary group @Y that is,H,, := SL(n, C)/SU(n), may
be identified with the space of unimodular positive Hermitian matrices via the polar
decompositio = H - U, with angular part/ € SU(n), and the positive Hermitian
matrix H = +/ A - A* as radial component. The eigenvaluesiodre said to be the
singular valuef A. This is the central example for our study of the singular values
spectral problem.

3. Random walks
3.1.

We begin with the classical example of random walk in Euclidean spgaehich
may be defined as a sequence of random poinks in

0= x0, X1, X2, ..., XN (3.1)

such that the difference$s = x; — x;_1 areindependenanduniformly distributed
in spheres of given radii; .

TreatingE" as the symmetric spad@/K = M (n)/SO(n) we may identify the
spheres with double cosé{gK. Then the random walk (3.1) is given by a sequence
of elements

81, 82,---,8N € G, (3.2)

which are independent and uniformly distributed in the double cosets Kg; K.
The original sequence of elements (3.2) may be reconstructed from these data as
follows:
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xi=g182 - &K € G/K = X.
So we arrived at the following:

Definition 3.1.1. A random walk in the symmetric spaéé= G/K is a sequence
of random elements

xi =g182 - &K € G/K, (3.3)

where theg; are independent and uniformly distributed in given double casgts
KgiK.

Example 3.1.2(Random walk in spacél,). As we have seen in Section 2.2.3, the
space of positive Hermitian matricég, is a symmetric space with Cartan represen-
tationH,, = GL(n, C)/U(n). Adouble coset/ (n)gU (n) C H, inthis case consists
of matricesA € GL(n, C) with fixed singular spectrumsi (A).

The matrixA, considered as an operator@, transforms the unit sphere into an
ellipsoid with semiaxis equal to the singular valueg\oHence, one may visualize a
random walk inH,, as a sequence of ellipsoidsi¥i obtained from the unit sphere by
a succession of dilations with given coefficien{é‘), oz(k), e o,fk) along randomly

chosen orthogonal directiomg‘), eg‘), el

Notation 3.1.3. For given double cosets; = Kg; K in the symmetric spack¥ =
G/K let

Px(x) = P(X1,X2,..., XN | x) (3.4)

be the probability density for the distribution of the final element xy in the
random walk (3.3).

In the following section, we evaluate the densities (3.4) in terms of spherical
functions.

3.2. Spherical functions

To evaluate the densities we first nesggherical functionen the symmetric space
X =G/K.

Definition 3.2.1. A functiong € L2(G/K) is said to besphericalif ¢(1) = 1, and
the following equation holds:

/Kﬁﬁ(Xk)’) dk = p(x)p(y) Vx,yeG.

Note that the equation implies bi-invariance of spherical functions
@(kixko) = ¢(x) Vki,kz € K.
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The importance of spherical functions for analysis on symmetric spaces may be seen
from the following properties. LeH, C L?(G/K) be theG-invariant Hilbert sub-
space generated by the spherical functiofhen

1. G : H, is an irreducible representation (which is said tospéerica), andg €
H, is the unique, up to proportionality, bi-invariant function/ify .
2. Hence, in the compact case the spHgés finite-dimensional.
3. H, L Hy forg # .
4. L?(G/K) is a direct sum (or integral for noncompatt= G/K) of the irreduc-
ible representations,,.
For all classical symmetric spaces the spherical functions are explicitly known
[11,12].

Example 3.2.2. For Euclidean spac&" = M (n)/SO(n), spherical functions de-
pend only on the distaneeé= |x| from the origin, and may be expressed via Bessel
functions:

Jy(\d) n—=2

oy VT T2

on(x) =2"T(v+1)-

Example 3.2.3. For a compact grou@, considered as a symmetric space (Sectiion
2.2.2), the spherical functions are just normalized charagters= x(g)/x (1) of
irreducible representatior@ : U,, and the corresponding spherical representation
of G xGisH, =U, ®Uy.

3.3. Compact case

Now we are in a position to evaluate the probability distribution for a random
walk in a compact symmetric space.

Theorem 3.3.1. The probability density of the random wgx 3)in a compact sym-
metric spaceX = G/K has the following decomposition into spherical functions

N
P(X1,X2..... Xy | x) =) dimH, - 9(x) [ [e(X). (3.5)
¢ i=1
where the sum runs over all spherical functions.

Remark. Since spherical functions are bi-invariaptg;) depends only on the dou-
ble cosetX; = Kg; K. This explains the notatiop(X;) = ¢(g;).

Proof. To clarify the structure of the proof we split it into one-move steps.

Step 1. For any spherical functiop andx; € X the following identity holds
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/ @(kixakoxz - - -kyxy) dky dkz - - - dky
KxKx--xK

= p(x)e(x2) - p(xN). (3.6)
Forn = 1 the equation follows from the definition of spherical function

/qu(kx) dk = p(De(x) = p(x),

and simple induction arguments prove it in generall

Step 2. The identity of Steft may be rewritten in the form
/ P()P(X1, X2,..., Xy | x) dr = p(X1)9(X2) - 9(XN) (3.7)
X

whereX; = Kx;.
Let us consider the mapping
mu:KxKx---xK—>X
k1 X ko x --- X ky — kix1koxo---knxy.
The functionp (k1x1k2x2 - - - kyx ) is constant on the fibers of and
P(X1,X2,..., XN | x)dx
is equal to the volume of the fiber—1(dx). Hence, by Fubini’s theorem

/ @(k1x1koxo - - -kyxy) dkq dkyp - - - dky
KxKx---xK

:/ e(xX)P(X1,X2,..., XN | x) dx
X

and the result follows. O

Step 3. The density has the following decomposition into series of spherical
functions

PO L (XDe(X2) -+ p(Xn),
(¢, ©)

P(X1, X2, ..., Xy | x) =)
¢

where(f, g) = [y f(x)g(x) dx.
As with any reasonable bi-invariant function, the density admits a decomposition

into spherical harmonics
P(Xl7 X27 ey XN | x) = Za(ﬂw(x)5
¢

with coefficients
1
(@, 9)

ay = / P(X1, Xo,..., Xn|X)p(x) dx
X
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@7

1
P(XDp(X2) - -9(XnN),
(@, 9)
and the result follows. [
To get the final formula (3.5) we have to evaluéte ¢).

Step 4. The following equality holds

(@, ) = (3.8)

dimH,’

This step is equivalent to evaluation of tRéancherel measuréor X (see the
following). It may be proved as follows. Let us denotegyy : H, — H, the linear
operator of the spherical representatiélp corresponding to the elemepte G.
Then the operator

/ (¢ tkg)y dg dk
GxK

commutes withG and hence by Schur’s lemma is a scalar

/ (g7kg),, dg dk = A - id. (3.9)
GxK
Applying this operator to the spherical functigix) we get
Ap(x) = / / g tkgx) dk dg = / o(g He(gx) dg.
G

where in the last equallty we make use of the functional equation for spherical func-
tions (stated as Definition 3.2.1 in our exposition). ket 1 we getr = (¢, ¢), and
taking the trace of (3.9) we finally get

(¢, @) dim H, _// g kg) dgdk_/ x (k) dk = 1.
K

The last integral is equal to the multiplicity of the trivial componenkin H,,, and
henceis 1. O

Example 3.3.2(Random walks it5°%). We identify the sphere with the group &).
Then by Example 3.2.3, the normalized charagies sin k6 /(k sing) of the irre-
duciblek-dimensional representati@n : Uy is a spherical function, anfly, = U ®
Uy is the corresponding spherical representation of23t SU(2). Applying The-
orem 3.3.1, we arrive at the formula

e.¢] . .
1 sink6 sin ko;

P =

(a1, 02,..., 0N | X) ;kN_l Sno ll_[ Sna;’

where the random walk is defined by a sequence of independent jumps by angles

a1, o2, ..., oy, beginning at the North polé@ (= 0), andd = 6(x) is the latitude of

the final pointx € S8.
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Rather unexpectedly we may sum up the series and get a finite answer (by God’s
will the wonder repeats itself in all compact groups). To proceed, we first express
sin ka and sink6 by exponentials

2—n—2;—n—1

sin @ sinaq Sinag---Sin «,
Ho)OXPi k(0 oy Fapt - +ay))
x> (=1 =t :

+ k0

where the first sum runs over all combinations of signsThen apply the Fourier
expansion for Bernoulli polynomialg,, (x)

Z exp2rikx) _ i)Y ~
T

By (x),

v

k#0

whereB, (x + 1) = B, (x) andB, (x) = B, (x) for 0 < x < 1. As a result we finally
get

P3(e1. 0z, ... an | x)
Ttn_l
- (n—1'4sin0 ]} sine;
- Otard---+
OBy (), (3.10)
= 21

where we exclude the first sign using the symmetr, (—x) = (—1)” B, (x).
Example 3.3.3(Random walks iit%). Let us now suppose that the jumps> 0 are
so small that the final poirtnever reaches the South pole, that is,

a1t o+ toay <. (3.11)
Then formula (3.10) may be simplified as follows:

P§3(Oll, a25 ...,OlN | x)
_ T
 (n—2)12" sin O[] sinw;
x Z D) O tar - Lay)" 2 (3.12)

0+a1tart---ta, <0

For the proof, let us note that the sum over signs (3.10) is nothing but thath
difference. Hence, for anyolynomialB,_1(x) of degree: — 1 the sum vanishes

0tart---%
Y )B4 < “ a") =0.
~ 2n
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The functionB,_1 in (3.10) is not polynomial, but under condition (3.11) its argu-
ment spreads over two intervals of polynomialityl, 0) and (0, 1). Splitting the
sum into two polynomial parts

0+orx-- Lo,
) (—1)#<—>Bn_1( o “)

2n
Otay+-+a, >0

Otar1+- -+«
+ ) =D)IB <1+ ! ) :
P
Otay+-ta, <0

and using the functional equatidh (x + 1) — B, (x) = vx"~1 we get the result.

Let us now suppose that the radius of the splsereends to infinity in such a way
thatRo — d andRw; — a;. Then taking limits in (3.12) we get the Treloar formula
[22] for random walks irE3:

P|E3(al5a27"'5an |d)
— | 3
—R|I_r)ﬂoo WPS((X:L,(XZ,...,(X" |9)
B 1
T onn — 212" dagas - - - ay
X > ()" d+artar+-- +a,)" 2, (3.13)

d+aytar+t---+a, <0

where 2R3 = vol S8.

3.4. Plancherel measure and noncompact case

For a noncompact symmetric spake= G /K, the spherical representatiofg
are usually infinite-dimensional, and formula (3.5) makes no sense. Nevertheless, on
the space of spherical functions (denote ithythere exists the so-calld®lancherel
measural (1), which may be characterized by the equation

/G |f(g)I? dg = /A | F )% die(n) (3.14)
for any bi-invariant functiory € L?(K\G/K). Here
7oy = /G F(©P(9) dg (3.15)

is thespherical transfornof f.

Example 3.4.1. For a compact grougs, the Plancherel measure is discrete. To
evaluate the measure of a spherical functjoe= ¢, we begin with its spherical
transform
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f) = /Gm(g)% (g) dg = (¢, 9y)dny,
and substitute this value in (3.14)

(@1, 920210 = (@1, @2).
Then by (3.8)

pn) = )= dim H (¢).

(@3, ¢

The last step in the proof of Theorem 3.3.1 is nothing but a computation of the
Plancherel measure. In a sense the Plancherel measure is an analogue of dimension
for infinite-dimensional spherical representations. The Plancherel measure is known
for all Riemannian symmetric spaces [11,12].

Theorem 3.4.2. The density of a random walk in an arbitrary symmetric space
X = G/K is given by the formula

P(X1,X2,..., XN | Xx) = / gpk(x/) H@A(Xi) du(n), (3.16)
4 i

wherex’ is the symmetric element to x with respedfthe image ofthe unit element
1 € G, from which the random walk begins.

Proof. The proof has the same logical structure as in the compact case, except that
instead of series one has to use integrals. In a sense it is even simpler, since we do
not need step 4, which is hidden in the inversion formula

fx)= /A @ (0) F() due(r) (3.17)

for spherical transform (2.15).00

Remark 3.4.3.Theorems 3.3.1 and 3.4.2 are actually based on two properties of
the spherical transform (3.15): multiplicativity with respect to the convolugion

h(x) = [ f(xg)h(g~1x) dg of bi-invariant functions

and inversion formula (3.17). Both of these properties hold for any commutative
hypergroug4,14]. This provides a general template for such kind of results.

Example 3.4.4.For Euclidean spac€&’ the spherical functions and the Plancherel
measure are given by the formulae:

1 The author is grateful to the referee for this remark.
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Ju(h -2
o(x) =2"T(v+1) (A(r)rv), r=lx|, v= . 5
2
du(y) = — = 1l
W) = G o+ 1)
So a random walk ifE” with independent steps of length, az, ..., ay has the

density

N
00 J )L J (A
P(ay,az,...,ay IX)=Const_/ a1 v(Ar) 1—[ v(Aai)
0 Gr)? 7 (Aa,)”

For the planét? this amounts to Kluyver’s formula [15]

1 o0
Pee(az,az, . an |0 = o / Mo(r ) Jo(rar) JoGuaz) - - - Jo(hay) di.,
0

and forn = 3 to that of Rayleigh [19]

1 [ 52 Sin(Ar) 1_[ sin(Aa;) d

o A (3.18)

Pg(ay, az,...,ay | x) =

N
- ra;

i=1

The general case is due to Watson [23].

4. The three symmetric domains

4.1. Positive Hermitian matrices

Let us begin with the symmetric spakk, of positive Hermitiam x n matrices.
The action of Sln, C)

H+— AHA', HeH,, AeSLn C)

gives rise to the Cartan presentatidp = SL(n, C)/SU(n). An orbit of the unitary
group SUn) onH, consists of unimodular Hermitian matricdswith fixed positive
spectrumi.(H) which we write in exponential formi(H) = e’, where

Sis1=82> 0 =S, s1+s2+ 45, =0. (4.1)
The corresponding double coset
%(S) c SL(n, ©)//SU(n) := SU(n)\SL(n, C)/SU(n)

consists of all matriceg € SL, (C) with givensingular spectruna (A) = A(v AAY).
Theorem 3.4.2, when applied i), , yields a distribution of the singular spectrum
of products

A=A1A2--- AN
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of independent random factors; uniformly distributed in the space of matrices
%(S;) with given singular spectrura (A;) = €%. To get an explicit formula we
need the spherical functions and the Plancherel measuié,fofrhey were found

by Gelfand and Naimark in 1950 (see [11, Chapter IV, Theorem 5.7] for Harish—
Chandra’s extension on arbitrary complex semisimple groups). The spherical func-
tions onH,, are SU-invariant and hence depend only on the spectfu(.&) of a
matrix H € H,. They may be written in the form

) ( >"<"1>/2 112! (n — 1)! det|&*»s% |

QD)L = e S 3
i [,y Cg =2 [1,-, (€79 — €*7)

wherei = (A1, A2, ..., A,) € R". One can easily see thaj is invariant with re-

spect to translations,, — A, + o and permutations of the componenis So the
spherical functions are parametrized by the cone

{k1>)»2>-~>?»n,

(4.2)

AMA+Ar2+--+ A, =0.
The Plancherel measure anis proportional to
[Tg —2p)%dn
P<q
where d. is Lebesgue measure ohc R" 1.

Example 4.1.1(Random walk in Lobachevskii spacd. Let us consider in detail the
group SL2, C), which is locally isomorphic to the Lorentz group 8)1). Hence,
in this case the symmetric space of positive unimodular Hermitian mafriges a
model for the Lobachevskii spadé = SQO(3, 1)/SO(3). Theorem 3.4.2 yields the
following formula for random walks in Lobachevskii space of curvature radiRs
with jumps of lengthy;:

Pt ) 1 / 32 sin di l_[ sina;
ai,az,...,ay | X) = —5—= ; i
13(a1, az N 4m2R3 J_.~ isinhd ; Asinha;

whered is the distance of from the initial point. Putting:g = d and leaving aside
the constants the integral reduces to the form

/ - sin A—dk
| | ag ,
R )LN—l

k=0
and may be evaluated as follows. First of all change the realRite the contour

Re passing around zero by a small semicircle in the upper halfplane, and then write
down sines via exponentials:

1 o , dx
W;(—l)( )fm expli(kao+ a1+ - £ an)h) -

dr,  (4.3)

If the sum(£ap + a1 £ --- £ ay) is positive, then the contour may be closed by a
big semicircle in the upper halfplane. Hence by the residue theorem the integral is
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zero. For the negative sum, one can close the contour in the lower halfplane, and in
this case

. dx

expli(ag+ai£---+an)i)
AN-1

= —-2ni Reg
M idaotar st tay) V2
TN o 2),[I( ap +ai an)I” .

As a result we get closed formulae for the integral

A;z 1_[ sin ak)\.

k=0

Y D aotar £ £ayV

N—-1 — 2!
2 (N 2) apgtart---tany<0

and for the density (4.3) of a random walk in Lobachevskii space of r&lius

Pis(ag,...,an | x)
1
TR32NHL(N — 2)! sinhd [, sinhax
x Y ) drartayV A (4.4)

d+ait--Fan<0

Remark 4.1.2.The last formula for Lobachevskii spat@ of radiusk = 1 differs
only by simple factors from those of Euclidean space (3.13) and the unit sphere (3.12):

sinhd 1% sinh ag
P, ,az, ..., d)=P, ,az, ..., d
a(ar,az, .. ay | d)=Piaaraz, ...ay | d)=—— [ o

=Pgs(ar,az,...,ay | d)—— , (4.5)

where the second equality holds only in the domain of injectivity of the exponential
mapping for the sphewg + a2 + - - - + ay < m. The origin of this striking similarity
lies in the identity

2 sin aym /’ 52 sin ax
_ 4.6
mZ>0 1_[mSInak 1_[)»Slnak (4.6)

valid for a; > 0 such thatiy + a2 + - - - + ay < m. In the following section, we ex-
tend both (4.5) and (4.6) to an arbltrary compact simply connected group.
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4.2. Some identities

Let X be the root system of a simply connected compact gé@wjith simple roots

a1, a2, ..., qa, and fundamental weightss, wo, ..., w,. We will use the standard
notation for the halfsum of the positive roots
1
p=3) a=ortwrt o ton,
a>0
and write Weyl's character formula in the form
A .
Yo = A—‘:, Ay =) signw)e"”, 4.7)
weW

wherew = @ + p is strictly inside the Weyl chambet(is a dominant weight). The
summation is over the Weyl groug = Wg.
We will represent the dimension of the character in a similar form

: d(w) v
dim y,, = T(:)’ d(w) = }:[0(0),01 ). (4.8)

The advantage of these not quite standard notations is that the chargcaed
its dimension may by extended to a skew-symmetric function of arbitrary weight
A € 4 ® Rinthe space spanned by the weight lattite
Xwx = sign(w) x», d(wk) = signw)d (),

andin additiord(A) is a product of linear forms iR.

Let now exp: 7 — T be the exponen’ual mapping for a maximal tofus- G,
normalized by the condition ke?/*—> T)=1{aeJ | (w,a) € ZNw € A}. Then
Ay (expa) B ZweW e2nl(ww,a)
Ap(expa)  [],-o(e@®) — emilea))’
Since the spherical functions @are normalized characters
d(p)4.(expa)
d(w)4,(expa)’
by Theorem 3.3.1 and Example 3.2.3 the random wal® inith jumps expa; has
the density

_ const. 2177 dw(€Xpai)
TR = L o sin e ao de()ﬂ) dw 9

Xo(€Xpa) = aed.

po(EXpa) =

where the constant depends onlyyrand to simplify the notations we puy = —a.
According to Gelfand—Naimark and Harish—Chandra [11, Chapter IV, Theorem

5.7] spherical functions on the dual symmetric spHge= G/ G are obtained from

those ofG by the formal substitutiop — i p, and taking the elemeite 4 ® Rin

the positive Weyl chamber instead of the integer weiglat A:
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d(ip)diexpa) dlip) ¥,y 10RO
dMdipexpa) — dR) [[,q (e ™@®) — grea)’

Since the Plancherel measure in this case is know@ o d(1)2dx, by Theorem
3.4.2 we get the density of the random walkAn= Hg with steps exp d:

pr(expia) =

Py (exp ia)
const.

T 10T a—o Sinh (e, a)

N A (expay)
d2TT 222252 gy, 4.10
X/(A a)>0 * ,g) d() (4.10)

where as before we pup = —
We are now ready to prove the analogue of identity (4.6).

Theorem 4.2.1. Leta; satisfy the inequalities
|(wi, woao + wia1 + - - + wyan)| < 1 (4.11)
for all fundamental weights)» andw; € Wg. Then the foIIowing identity holds

Ao (EXP ak) Az (expag)
d(@)* —/ d(1)? di. (4.12
(w;>0 «“ H d(w) (ha?)>0 @) H d(\) ( )

The sum in4.12)runs over integral weights inside the positive Weyl chambhile
the integral is taken over the chamber itself.

Remark 4.2.2.The left-hand side of (4.12) is a periodic functionapfwith simple
rootsw; as periods, while the right-hand side is manifestly a homogeneous function.
Hence equality (4.12) cannot be valid for ajl. We will see in the following section

that the sum in (4.12) is polynomialfunction of ag, a1, ..., ay in each chamber
defined by affine hyperplanes
(w, woao + wia1+ -+ wyay) =p e ”Z (4.13)

forw € A andw; € W. The theorem implies that the integral in (4.12) is polynomial
in each cone defined by hyperplanes (4.13) passing through zero.

Proof of Theorem 4.2.1 We start with the Poisson summation formula
Y fwy =) F (4.14)
weA lel

valid for any reasonable functidrin the spacet ® R spanned by the weight lattice
A. Here f is the Fourier transform

2/ f(p) exp(—2ri(p, q)) dp,
AQR
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andL = ker(y’ﬂ T) is the dual lattice to1. We apply (4.14) to th&V-invariant
function

A
FO) = d0y? H A(fz(f)ak)

vanishing on the mlrror(sk, af) = 0to get

2 w(expak)
Y dw) H @)

(@.a!)#0 k=0
-y / exp(—2ri(A, E))d(k)zl—[ W dr. (4.15)
lel

Theorem 4.2.1 just says that the sum on the right-hand side of (4.15) reduces to
the first term¢ = 0. For the proof let us begin with a slightly different integral

exp(2mi (A, £)) Ay (expag)
d(n)? da, 4.16
/AR (1) E) d() (419
which by W-symmetrization may be written in the form
1 A,.(exp€) 1 4rn(expax)
— | dx)? dx. 4.17
W] /A (v E) () (@47

The last integral enters into formula (4.10) for the dengiy(exp(—i £)) of the
random walk in the hyperbolic spadé;. Since the set expl) is discretein Hg,
the densityPy (exp(—i ¢)), and integrals (4.16) and (4.17) vanish identically for
¢ #+ 0 and sufficiently small steps,. Taking derivatives of integral (4.16) in the
directions of all positive roots” > 0, we Kill the extra factod (1) = [[,v-o(*, @)
in the denominator, and arrive to the vanishing of all terms in the right-hand side of
(4.15) with¢ # 0. This proves identity (4.12) for smal}.

The precise form (4.11) of the domain, in which the identity holds, follows from
piecewise polynomiality of its left-hand side, which will be proved in the following
section, and homogeneity of the right-hand sidel

Now we are in a position to establish relations between the dengites;,
and Py of random walks in the compact gro@ its Lie algebral g, and the dual
symmetric spacél; = G¢/G with steps expu, a, exp iag.

Theorem 4.2.3The densitie®s, Py, Py are related by the formulae

N .
Pr@)=Pyexpia) [ ] sinhn(@, a;) (4.18)

k—0as0 (@ ak)
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— Po(expa) 1—[ 1—[ sin nt(a, ak), (4.19)

k=0a>0 (e, ai)
whereag = —a and the last equality is valid under the restriction

|(wi, woag + wiar + - -+ wyapn)| < 1 (4.20)
for all fundamental weights; andw; € W.

Proof. We have to prove only the first identity (4.18), since the second one follows
from Theorem 4.2.1 and formulae (4.9) and (4.10) for the dengtieand Py .
To proceed we need a formula for the dengity We can readily get it by treating
a random walk in the Lie algebtawith stepsa; as a properly rescaled walk g
with very small steps expeay). This leads to the following calculation:

Pr(ai,az,...,ay | a)
= I|m 8d'mLPH(eXp ieay, exp ieay, ..., exp ieay | €xp iea)
410 CedimL 217 Aulexpear) |
lim / d(n) 1_[
=0 ]_[k olly=0 Sinh (e, ear) Jr,ai f2)>0 d())
MM/ / 2 Ay (expag) . £
= C d) di lim -
(ra?)>0 H d(\) 8—)0]!1}:[0 sinhn(a, ea)
4éOPH(exp iay, exp iag, ..., exp iay | exp ia)
sinh
1—[ 1—[ n(a, ak)_ 0
k=0a>0 (e, ar)

Corollary 4.2.4. The supports of the probability measurBg and Py for random
walks inLg and Hg with stepsy, andexp iay are related by the equation

suppPy = exp(isuppPr).

Proof. By (4.18) the measures differ only by nonvanishing facteish n(«, ax))/
(n(a, ag)). O

For the unitary group S&) this solves Thompson'’s conjecture [20].

Theorem4.2.5Leto;, i =1,2,..., N, ando be positive spectra. Then the follow-
ing statements are equivalent

1. There exist matriced; € GL(n, C) with singular spectras; = 0 (A;) ando =
0(A1A2--- ApN).

2. There exist Hermitiarnm x n matrices H; with spectrai(H;) = log o; and
AMH1+ Hy+---+ Hy) =logo.
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Proof. Solvability of the equations.(Hy1+ H>+---+ Hy) =logo and o =
o(A1A2--- Ay) in (Hermitian) matrices with given (singular) spectra means that
o and logo are in the supports of the corresponding measigesand P,. Hence
the claim follows from the previous corollary]

Remark 4.3.6.A similar result holds for other classical groups, say for the singu-
lar spectrum of a product of complex orthogonal matrides SO(n, C) and the
spectrum of a sum of real symmetricx n matricesH; .

5. Piecewise polynomiality

In this section, we prove piecewise polynomiality of sums like

Y dw )2]_[ do(EXpay) (5.1)

(w,a/)>0 d(a))

which enter in the density formula (4.9) for random walks in a compact g&@ur
exposition follows [17]. The summands akeinvariant functions, hence we may ex-
tend the sum over all nonsingular weighit®) # 0. Sinced,, = ), .y SgNw) e*®
the problem reduces to the sums of the form

e21ri(w,a)
N-1
d(w)#0 d(w)

for a = woay + wiaz + - - - + wyay, wr € W. In addition,d(w) = [[,v- (@, ")
is a product of linear forms, hence we finally arrive at the series

glw,x)

frxlen. ez, ..oan) = Y , (5.2)

we2ni A (,a1)(@, a2) - - - (0, an)

where the sum runs over thosec 2ni A for which (w, o) # 0. Herea; € L are
arbitrary elements in a lattide 4 is the dual lattice, and € L ® R.

Let us consider affine hyperplanesin of the formH + a, a € L, where the
subspace? C L ® R is spanned by some vectars They divideL ® R into con-
nected pieces callethamberof the systenmy.

Theorem 5.1.1. Function(5.2)is polynomial of degree N on each chamfzerd its
highest form does not depend on the chamber.

Remark 5.1.2.Function (5.2) is well defined asdastributioneven if the system;
does not spaiiy. For example, an empty system of vectors givesstifienction of
latticeL (it is just another way to write the Poisson summation formula (4.14)).
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Example 5.1.3(Root systems In the case of the density function (5.1) we deal
with the system of positive rootg’, each taken with multiplicityv — 1. It is well

known that any subspace spanned by a set of roots is parabolic, i.e., spanned by
a part of a basis [5, VI.1.7, Proposition 24]. Such a subspace of codimension 1
(@1, a2, ...,a;,...,q,)is orthogonal to the fundamental weight Hence the cham-

bers of function (5.1) are defined by affine hyperplatesa) = p € Z, with »
conjugate to a fundamental weight, ane= woag + wia1 + - - - + aywy. The sys-

tem of hyperplanegv, x) = p, as opposed to the mirrofs, x) = p, behaves highly
irregularly. Apparently neither the combinatorial structure of the chambers nor even
the number of the chambers modulo translations are known.

Both assertions of Theorem 5.1.1 become evident from the following combinato-
rial description of function (5.2).

Proposition 5.1.4 Let us defing : RY — L ® R by
@ (t1, 12, ... IN) > 1101 + 1202 + - - - + Iyay. (5.3)
Then

(5.4)

Fi(x |t @z, ... ay) = <mean value ofir1) (zp) - - - <,N>> |

on the fiberp=X(L — x)

where () = [t] — (1/2) = Bi1(?) is the periodic extension of the first Bernoulli
polynomial

Remark 5.1.5.The right-hand side of (5.4) should be understood in the following
way. Since the produéty)(r2) - - - (ti) is periodic, the mean value may be taken over
sections of the unit cube € #; < 1 by the affine subspaces(a — x),a € L. Eq.

(5.4) implies polynomiality off (x) near thosex for which the affine subspaces
are in general position to the unit cube, i.e., do not intersect its faces of dimen-
sionm < n = dim Lg. In other words the polynomiality fails only for = #;; o, +

ti, 0y + - - + 1,0, MOdL, m < n, i.e., on the walls of the chambers.

Proof of Proposition 5.1.4.In the following, we will understand the right-hand side
of formula (5.2) as the Fourier expansion ofjaneralisedunction. In particular,
fr(x|9) is the Fourier expansion étfunction of the lattice.. With this understand-
ing we have the recurrence relation

1 1
fr(x | ar,az,...,ay) = /0 (t — 5) fr(x + tag|az, a3, ..., ay) di, (5.5)

which may be proved as follows:

1 1
/ (1_§> frx +tar|az,a3,...,ay) dt
0
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= > e /1 (t - }> gl gy
(a27 (,())(C(S, w) e (C(N, (,()) 0 2

we2ni A
)3 G
weari g (o, w)(a2, w) - (N, w)
= fL(x | o, a2, ..., aN).

In this calculation we use

1 1 0 if (w, 1) =0,
/0 (t— §> exp((w, a1)t) dt = {1/(0)’ w1 if (@.01) 0. (5.6)

Applying (5.5)N times we get

Jrx oz, a2, ..., 0N)

o (572) (v =3)

X fr(x + 111 + -+ -+ tyay) dip dip - - - diy
_ (mean value oft1)(r2) - - - (tn)
- on the fiberp=1(L — x)
In the second lingf. (x) = f1(x | ¥) is thes-function of the latticd.. [J

In the density function (5.1) we deal with a system of positive raots 0, each
taken with multiplicity N — 1. In this case, the following version of the proposition
may be more relevant.

Corollary 5.1.6. The function

gl®.x)

we%:i L, (@, a)" (@, @2)"2 - - (0, ay)"N

fL(x | ole,oz'znz, .. .,a%N) =

is equal to the mean value of the produff,(—1)"*(B,, (t;))/m;! on
¢~ Y(L — x). Here B,, is the periodic extension of tm Bernoulli polynomial on
0, 1).

Proof. To getthe result one has to modify the proof of the proposition, using instead
of (5.6) the formula

(—v+t t (@.a1) 0 if (0, @1) =0,
v! /0 By(r) €@ dr = {1/(0), a1)”  if (w,a1) £ 0,
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which follows from the Fourier expansion of Bernoulli polynomials (see Example
3.3.2). O
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