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Abstract--The gray level distribution around a pixel of an image usually tends to be more coherent in some 
directions compared to other directions. The idea of adaptive directional filtering is to estimate the direction of 
higher coherence around each pixel location and then to employ a window which approximates a line segment in 
that direction. Hence, the details of the image may be preserved while maintaining a satisfactory level of noise 
suppression performance. In this paper we describe a class of adaptive directional image smoothing f'llters based 
on generalized Gaussian distributions. We propose a measure of spread for the pixel values based on the 
maximum likelihood estimate of a scale parameter involved in the generalized Gaussian distribution. Several 
experimental results indicate a significant improvement compared to some standard filters. Copyright © 1996 
Pattern Recognition Society. Published by Elsevier Science Ltd. 
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1. INTRODUCTION 

Various nonlinear filtering techniques are shown to be 
useful for image processing applications. This is a 
consequence of the nature of the structural and statistical 
properties encountered in most common image types. It 
is also observed that common images cannot be 
modeled as statistically stationary signals. These 
observations lead to processing with adaptive filters. 

What features of the adaptive filter will be changing 
as a consequence of the observed signal is, of course, the 
main issue. How these features will change by the 
observed signal is a very important problem, too. 
Usually the first problem is solved rather heuristically: 
the designer chooses those features which are most 
appropriate to the problem at hand, and while doing so, 
he tries to prefer those choices which have fewer 
number of  adaptation parameters, and where the 
adaptation is tractable. Once the fixed and adaptive 
features of the filter are set, an adaptation algorithm can 
be found using analytical techniques. The adaptation 
speed is also an important issue: it is desirable to match 
the adaptation speed to the speed of the statistical and/or 
structural changes in the signal. 

There are various adaptive nonlinear filters in the 
literature that are intended for image/video filtering 
applications. Some of these filters perform the adapta- 
tion by comparing the filter output with a reference 
signal, and then try to minimize a cost function of the 
difference of these two signals. ¢13-1s) In these applica- 
tions it is assumed that a good sample of a desired signal 
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is available to be used as the reference signal. Usually 
either the original uncorrupted image is used off-line 
during training or the corrupted signal itself is used 
hoping that the contamination will not change the 
adaptation process significantly. Furthermore, the filter 
structure is assumed to be convenient so that after the 
adaptation process it can perform the desired job. Many 
other applications collect signal statistics of some sort 
within a region, and then make decisions about the 
filtering procedure and/or the filter parameters based on 
these statistics. (3"16'~7'18) These type of filters usually 

require less computation. Here the assumption is that the 
desired behavior of the filter for a given statistics is 
known and such output is adequate for successful 
operation. Heuristics are used to select how and which 
statistics are going to be collected, and to decide about 
the consequent filter behavior. 

In this paper, a class of adaptive directional image 
smoothing filters is developed based on the generalized 
Gaussian distributions. These filters may be put into the 
second group of filters mentioned above. The corre- 
sponding adaptive median and linear filters are pre- 
sented as the special cases of this general class. 

An interpretation of the median operation is as 
follows. (12) Suppose the data values are independent 
samples from a given Laplacian (also known as bi- 
exponential) distribution. That is, they have the common 
probability density function given as 

f(x) = ~ e  -Ix-'U~, - < x ~ < x < c ~ .  (1) 

Then the median filter output is the maximum likelihood 
estimate of the mean 7/of the distribution based on the 
data values. A similar interpretation also holds for the 
standard linear filter. If the pixel values contained inside 
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the shifted window is modeled as independent samples 
from a given Gaussian distribution, that is 

_ 1 e_(ix_,l/3)2 f ( x ) - - ~  , - o o < x < c c .  (2) 

then the standard linear filter output is the maximum 
likelihood estimate of the mean ~ of the distribution 
based on the pixel values inside the window. 

The median filter usually gives better estimates of the 
distribution mean compared to the linear lowpass filter 
for images corrupted by impulsive noise. This is roughly 
because the Laplacian distribution has a larger tail 
weight compared to the Gaussian distribution. On the 
other hand the Ganssian distribution has a probability 
mass more concentrated around its mean value com- 
pared to the Laplacian distribution. Roughly speaking, 
this implies that the maximum likelihood estimate of the 
mean based on Gaussian distribution is less sensitive to 
relatively small noise components compared to the 
Laplacian distribution. 

Although median filters usually preserve edges, both 
filters generally fail in preserving high frequency 
components such as texture and thin lines. The class 
of adaptive filters described in this paper is based on 
generalized Gaussian distributions which include both 
the Laplacian and Gaussian distributions as its special 
cases. The aim of the proposed class of filters is mainly 
to preserve high frequency components such as texture 
and thin lines while preserving the noise suppression 
properties of standard filters. Edge preserving filters 
have been studied by many researchers and interesting 
results have been obtained especially in the context of 
Kalman filtering. {6-11) In reference (11), neural network 
structures have been proposed for edge-adaptive Kal- 
man filtering. Furthermore, approaches that are similar 
to the one presented in this paper have been proposed 
independently by other researchers [see (19) and the 
references therein]. The idea presented in this paper has 
partially appeared in reference (4). 

The organization of this paper is as follows. In 
Section 2, the generalized Gaussian distributions are 
described. In Section 3, a class of adaptive directional 
image smoothing filters is proposed. In Section 4, we 
present Monte Carlo simulations and experimental 
results. Finally, conclusions and comments are given 
in Section 5. 

2. G E N E R A L I Z E D  GAUSSIAN DISTRIBUTIONS 

The generalized Gaussian distribution is a family of 
symmetrical probability distributions defined as 

f~,3,v(x ) _ c~ e_(ix_,l/;~). - c ~  < x < exp. (3) 
23r(~) 

where F(.) is the gamma function, fl > 0 is the scale 
(spread) parameter, and c~ > 0 is the shape parameter. 
Also, ~/is the mean value of the distribution. This family 
of probability distributions has been used in detection 
theory and in deconvolution of seismic signals as 
models for non-Gaussian signals. (L2) 

A wide and useful range of probability distributions 
can be obtained from the generalized Gaussian distribu- 
tion by appropriately choosing the parameters. For 
c~ = 1, we have the bi-exponential distribution, also 
known as Laplacian distribution, 

fL3,o(x) = ~fl e Ixl/• -cx~ < x < c~. (4) 

For a = 2 we have the we l l -known Gauss ian  
distribution, 

f2,3,o(x) = l ~ e - ( r x l / 3 ) 2 ,  - o o  < x < oo. (5) 
x/~3 

As a tends to infinity, we have the uniform distribution. 
For a generalized Gaussian distribution with mean z/ 

and parameters a and/3, the rth (centralized) absolute 
moment, defined as 

f cx~ r X 
# r = g { 1 2 - o l r }  = I x - ~ l  fc,,3,n( )dx  (6) 

to 

is given in (2), 

r((r + 1)/c~) fir. 
# r  - -  F ( 1 / C ~ )  (7)  

It can be shown that, as a increases, the scale 
invariant kurtosis defined as the ratio of #4 to the square 
of #2 dec reases.(2) This implies that as a gets larger, the 
distribution becomes more concentrated around its mean 
and also the tail weight decreases. 

The variance 0 2 given by 0-2 = #2 is proportional to 
3 2 for a given a. Hence /3 (or equivalently, 3 '~) is a 
measure of spread of the generalized Gaussian distribu- 
tion. The joint maximum likelihood estimates of the 
mean ~ and the scale parameter 3 of these distributions 
can be easily computed: Given a set of independent 
observations { X l , . . . , X u }  from a given generalized 
Gaussian distribution with a given shape parameter a, 
the joint maximum likelihood estimates, ~ML and/3ML, 
of the mean r/and the parameter 3 are found as 

N 

~ML such that ~ [xi - ~)ML r is minimized, (8) 
i -1  

flML = o~ I xi -- ¢IML t '~ (9) 
N / = 1  

In this paper, we will be mainly interested in cases 
a = 1 and c~ = 2, that is, Laplacian and Gaussian 
distributions, respectively. For c~ = 1, the estimates 
given above become, 

~ML = MED{x~, . . . ,  XN }, (10) 

1 s 

flML = ~ .i~= 1 I Xi -- ~ML I " ( 1 1 )  

where MED denotes the median operation. For c~ = 2, 
we have 

1 re 
¢IML = ~ ~ _ X i ,  (12) 

i= l  
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Fig. I. A set of windows. 
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3. A CLASS OF ADAPTIVE DIRECTIONAL IMAGE 
SMOOTHING FILTERS 

The clarity of edges in images is very important. 
Smoothing is also desirable to eliminate disturbing 
noise. But usually, these requirements are contradictory. 
Any kind of smoothing must be based on a model 
behavior of groups of pixels. It is not a bad assumption 
if this grouping behavior is considered to be along lines. 
Under this assumption, it is expected that a pixel would 
be a part of a line of arbitrary gray level. The line is 
assumed to be straight at least for a few pixels, and its 
orientation is arbitrary. Such assumptions are used for 
lossy coding of images, and reported to be success- 
ful. (2°) The constant gray level requirement along a 
locally straight line is relaxed and it is assumed only that 
the pixels have a higher coherence in one direction 
compared to other directions. The outcome of these 
observations and assumptions is the adaptive directional 
smoothing filter presented in this paper. More specifi- 
cally, we have a set of directional windows. At each 
pixel location, we measure the coherence of pixel values 
by a suitable criterion for each of the available windows. 
Finally, at a given pixel location, filtering is performed 
using the window which contains the most coherent data 
values. 

For the mathematical development, we will denote 
the rectangular array of pixels by ~.  We will denote 

images as x or y. The value of a pixel i E 9 will be 
denoted by a notation such as x(i) or y(i). 

We will consider a set of nine windows indexed as 
m = 1 , . . . , 9  as shown in Fig. 1. The windows for 
m --- 2 , . . . ,  9 are chosen to approximate line segments 
in eight directions as shown in Fig. 2. The window with 
index m = 1 is a non-directional one to account for 
uniform regions. The non-shaded pixels are the window 
centers which may be shifted to an arbitrary pixel i E 9 .  
We will use the notation, Wm.i, m = 1 , . . . ,  9, to denote a 
window of index m with its center shifted to pixel i E 9 .  
Furthermore, we will use the notation " ~ i  to denote the 
set of all windows with their centers shifted to pixel i. 

Consider an image x to be filtered. We define X,,./, as 
the set of pixel values contained inside the window Wm,i, 
that is 

Xm, i = {x(i) I i E Wm,i}. (14) 

TO measure the coherence of pixel values in Xm.i, we 
will use a measure based on the maximum likelihood 
estimate/~rea, of the scale parameter/3. A simple method 
is to compute/~ML for each X,,,.i, m = 1 , . . . ,  9 at a given 
pixel i E 9 ,  and choose the window that yields the 
smallest /~ML value. Note that (/~¢a~) ~ may be equiva- 
lently used instead of/~ML to measure the spread of the 
pixel values, since taking a positive power does not 
change the rank ordering of/~rea~'s. 

In this paper, we will define a slightly more general 
measure of the spread of pixel values. This general- 
ization is based on the observation that the coherence 
direction in a given image is usually the same in 
spatially close pixels. In other words, if ~ i c 9  is 
neighborhood of pixel i, then we may expect that the 
coherence direction will be approximately the same at 
each pixel location in ~i.  Based on this assumption, we 
define a spread parameter (m,i for the set of pixel values 
Xm. i as 

1 ~ ^ 
_ (/3ML)m,j, (15) 

where # / i ,  denotes the number of pixels in the set t i  
i). Also (/3rcm)~j, denotes the ath (including pixel power 

of/~r~ given by (9) based on the observation of the data 

m ~  ~ 7  n~=6 ~ =5 m - - 4 t  

m 9  N }k I I I  / V ]  m=3 
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Fig. 2. Eight directions that are used in selecting the directional 
windows. 
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values in the set Xmj. So we have the following 
definition. 
Definition 1: Assume that the model parameter a is 
chosen, and the image to be filtered is x. The value of 
the filtered image y at a given pixel i E ~ is given by 

y(i) = (OML)rh,i , (16) 

where rh{1, . . . ,  9} is such that 

~Fn,i ~ ~m,i gm E {1 , . . .  ,9} (17) 

and (~ML)~,i is the maximum likelihood estimate of ~/ 
given by (8) based on the observation of the data values 
in the set X~,i. 
Remark. For ~ i  = {i}, the filter output y(i) at pixel i 
(assuming a is fixed) minimizes the cost function 
g(y(i)) given by 

g(y(i)) = m i n  / Z I x ( j ) -  y(i)1~1 m - - 1 , . . . , 9 } .  
kjEWm,i 

(18) 

For other choices of ~ ,  a compact form of the cost 
function may be more complicated. 

If the model parameter a is chosen as 1, then we 
obtain an adaptive directional median filter for which 
Definition 1 is restated as follows. 

3.1. The adaptive directional median filter 

For a given input image x, the filter output at a pixel 
i E ~ is given as 

y(i) = MEDX,~,i (19) 

where rh is as def'med in (17) and the spread parameter 
~m,i given by (15) can be written as 

~m,i -- Z I x ( k ) -  (~L)m,j I • 
i kEWm,j 

(20) 

Note that if the set ~ i  includes the pixel i only, that is if 
~ i  = {i}, then ~m,i given by (20) reduces to 

1 
~ra,i -- #Wm, i Z Ix(k) - (~]ML)m,i I " (21) 

k6Wm,i 

Remark. If the image is corrupted by very spiky noise 
components, then some of the terms in the inner 
summation in (20) may be very large which will 
increase the value of ~m.i. In this case, omitting a 
number of largest terms in the inner summation in (20) 
may increase the filter performance. The modified form 
of ~m,i will be 

1 ~ /  1 
~m,~ - ~ j ~ ,  l # W m j  -- A 

#W~,j-A } 
Eth smallest{[ x(k) - (¢haL)m~ [I k ~ Wmj} • 

gel 

(22) 

where A is the number of discarded terms in the inner 

summation. Note that for A = 0, the def'mition in (22) 
reduces to (20). 

If the model parameter a is chosen as 2, then we obtain 
the adaptive directional linear filter defined as follows. 

3.2. The adaptive directional linear filter 

For a given input image x, the filter output at a pixel 
i E ~ is given as 

1 
y(i) -- Z x(j) (23) 

#w~,,, jEW~n,i 

where rh is as defined in (17) and the spread parameter 
(m.i given by (15) can be written as 

# ~ i  1 jet ,  i{  1 #Wm,j - 2}  ~m,i -- ~ (X(t) -- (~ML)m,j) 
kEWm, j 

(24) 

Note that if ~ i  = {i}, then ~m.i given by (24) reduces to 

1 ~ 2 
--  -- ((~)ML)m,i} (,,,i Z {x(k) . (25) 

#Wm,i kEW~.~ 

The choice of a is roughly a compromise between three 
major criteria: computational concerns, noise suppres- 
sion properties, and pattern preserving properties. 
Among the computational concerns is the minimization 
of the function in (8) to obtain OML" For a < 1, the 
function is not convex, however its minimum always 
occurs at one of the data values. For a >_ 1, it is convex 
and can be minimized by a gradient descent method. For 
a = 1 and a = 2, closed form expressions are given by 
(10) and (12), respectively. For discrete valued images 
(which is the case in practical applications), the 
minimization is carried out over a finite domain which 
may reduce complexity. Noise suppression properties 
are also an important factor in the choice of a. As cz gets 
larger, the generalized Gaussian distribution becomes 
more concentrated around its mean value and its tail 
weight decreases. This phenomena may be observed 
from the scale invariant kurtosis (= (#4/(#2)2). (2) 
Roughly speaking, this implies that as a gets larger, 
¢tML becomes more sensitive to large noise components 
in the data and less sensitive to small noise components. 
For this reason, for impulsive noise, choosing a small 
value for a is suitable, whereas for Ganssian noise with 
small variance, a larger value of a is generally better. 
Note that in practice, median filters are preferred to 
linear lowpass filters for impulsive noise cancellation. 
Finally, an important criterion may be the pattern 
preserving properties. It is well known that median 
filters are superior to linear filters in preserving sharp 
edges. For the adaptive directional filter proposed in this 
paper, pattern preserving is enhanced both for the 
median and linear filters. 

3.3. Salt-and-pepper noise 

Up to now, it was assumed that noise components 
were distributed by generalized Gaussian distribution. 
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Here we will define a specific form of salt-and-pepper 
noise [this model is in part inspired by Problem 12, 
Section 3.3 of (21)]. Assume that a pixel value is 
contaminated by an independent noise component with 
probability p, otherwise it is noisefree. Then the 
distribution of the pixel value will be (by allowing 
impulse functions) 

g~,g,,,,p(X) = p . fa,g,o(x) + (1 - p) . 6(x - r/), (26) 

where fagm(x)  is the generalized Gaussian distribution. 
In this distribution, ~7 represents the underlying noiseless 
pixel value. Given a set of data values {Xl , . . . ,  xu} from 
the above distribution, the ML estimate ~ML of the mean 
77 maximizes the likelihood function 

~e(~, x i , . . . ,  XN) 
N 

= H (  p .fa,Ao(xi) + (1 - p ) .  ~(x i - -  71)) 
i=1 

N 

= PN" H io,j,.(x,) 
i=1 

N N 

_~_pN-l. (1 --p)" Z ~ ( X i -  '/7)' H f°~'g'r#(X~#) 
i=1 ~ '=1,~i  

N N 

+ p N - 2 .  (1 _ p ) 2 .  Z Z 6(xi -- rl) • 6(Xj -- rl) 
i=1 j= i+ l  

N 

H 
,f=l,~TLij 

N 

+ . . .  + (1 - p)N. H e(xi - -  77)"  

d=l  

(27) 

From the above equation, the following results may be 
obtained for salt-and-pepper type of noise distributed 
according to (26). If none of the data values are equal, 
then the terms containing two or more 6-functions will 
vanish, hence ~o will be dominated by the terms 
containing a single 6-function. Therefore, if xi ¢ x;Vi, j  
such that i ¢ j ,  then 

N 

7 ) M L m i n i m i z e s  Z I X i  - -  7]ML I cx 
i : I  ( 2 8 )  

such that 7)i L E { x i , . . . , x u } .  

That is, ~Im minimizes the same function given in (9), 
except that, now it is constrained to be minimized over 
the set { x l , . . .  ,XN}. Note that, for c~ < 1, the minimum 
already occurs at one of the data values, hence for a < 1 
and with the assumption that all data values are different 
from each other, it is concluded that for all 0 < p < 1, 
the ML estimate OML is given by (8). Another result that 
can be obtained from (27) is that if two or more data 
values are equal and the others are all different, then 
~ML is equal to that value that is observed more than 
once. 

Note also that, for p = 1 we obtain a pure generalized 
Gaussian distributed noise, hence the above model is a 
more general one. 

4. SIMULATIONS AND RESULTS 

The class of adaptive directional filters described in 
Section 3 consists of two steps: First, the directivity is 
estimated, then filtering is performed. The estimation of 
directivity is a multiple hypothesis testing problem, the 
best window is selected from a given set of directional 
windows. In this section, the performance of directivity 
detection will be studied, and the experimental results 
will be given for real images. 

4.1. Directivity detection 

In this section, the probability of correctly detecting 
the directivity will be studied through Monte Carlo tests 
performed over synthetically generated data. 

The set-up for the image model is as follows. The 
image is defined on a two-dimensional (continuous) 
coordinate system where the horizontal and vertical 
coordinates are labeled by u and v, respectively. We 
consider the directivity in the neighborhood of the origin 
as shown in Fig. 3. The eight directions shown in Fig. 3 
are the hypotheses to be tested. Without loss of 
generality, the true directivity is chosen to be along 
the horizontal axis (that is, direction 1 in Fig. 3). The 
image is described locally as a zero-mean, unity 
variance Gaussian random field which is constant along 
the horizontal axis, and has the covariance function 

C ( Y l ~ V 2 )  = e Ivl v21/0.4 (29) 

where vl and v2 are the vertical coordinates of two 
arbitrary points (as a reference for distance, the radius of 
the outermost circle in Fig. 3 is chosen to be unity). 
Each of the eight windows contain nine points as 
indicated in Fig. 3. 

The image is contaminated by additive, independent, 
identically distributed salt-and-pepper type of noise 
described by (26) with the mean ~7 set to zero. In order 
not to confuse the parameters involved in the noise 
distribution by those involved in the spread parameter, 
we adopt the following notation: The symbols & and/3 

V 

6\_. 5 

. . . . . .  , I X  "~.,_ .... 8/. 

4 / i  

.......... J- .... 3 ...... 
......... . /  . S  / 

...... / " : / ;  ............... 2 ......... 

........ :;I'"':T i i l 
91 . i . , , ~ ~ , 

......... U "  "..."" { ' - "~ ' .  " ' ~  ....... i . . . . . .  : 

) U 

Fig. 3. Coordinate system used in the Monte Carlo simulations. 
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Fig. 4. Probability of correctly detecting the directivity [P (correct)] versus noise scale parameter, # Columns: 
(A) p = 0.2, (B) p = 0.5, (C) p = 0.8, (D) p = 1.0. Rows: (a) & = 0.5, (b) ~ = 0.75, (c) ~ = 1.0, (d) 

= 2.0. In all plots, the vertical axis denotes P(correct) and ranges from 0 to 1. The horizontal axis represents # 
and ranges from 0 to 4. 

will  denote the true values of  the shape and scale 
parameters of  the noise distribution. The variables a and 

wil l  denote the assumed shape and scale parameters 
used in computing the spread parameter and ~ML. 

Because of  the way the image field is described, the 
true hypothesis is direction 1 in Fig. 3. Several Monte 

Carlo test results wil l  be presented for various 
parameters of  the noise distribution and various choices 
of  the spread parameter. The curves of  the probability of  
correctly detecting the directivity versus noise level 
are presented in Fig. 4. Each plot i s  obtained by 
averaging over 10,000 pseudorandom realizations of 
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the above described image model for each different 
choice of the model parameters. In Fig. 4, each plot 
represents the probability of correctly detecting the 
directivity as a function of the scale parameter/~ of the 
additive salt-and-pepper noise distribution given by 
(26). The plots in columns (A), (B), (C), and (D) of 
Fig. 4 correspond to p = 0.2, 0.5, 0.8, 1.0, respectively. 
The plots in rows (a), (b), (c), and (d) correspond to 
& = 0.5,0.75, 1,2, respectively. Each plot contains six 
curves corresponding to six different methods of 
estimating directivity. These methods are as follows: 
In Methods 1-5, the spread parameter given by (15) is 
used with ~ i  = {i} with c~ = 0.3,0.5,0.8, 1,2, respec- 
tively. That is, the spread parameter is given by 

N 
Xm,i = ~ [ Xi -- OML [c~, OZ = 0.3, 0.5, 0.8, 1.0, 2.0 

i=1 

(30) 

and N = 9 in this case. In Method 6, the spread 
parameter is chosen as in (22) with ~ i  = {i} and A = 2. 

It is observed in Fig. 4 that smaller values of a in the 
spread parameter yields a higher probability for 
correctly detecting directivity. Note that Method 6 
yields a performance comparable to that of Methods 1 
and 2 in which relatively small values of ct were used. 
Furthermore, Method 6 involves only absolute value and 
rank ordering operations, whereas the other methods 
involve computation of powers. For this reason, Method 
6 seems to be more suitable for hardware implementa- 
tion. Another fact to note is that, as p ~ 1, all methods 
yield approximately the same performance. 

An intuitive explanation for the performance of 
Method 6 for p < 1 may be as follows. Since some of 
the largest terms in (22) are omitted, the corresponding 
spread parameter roughly chooses the direction in which 
all, except for a few, pixel values take on very close 

i 

values. Note that this coincides with the fact that if two 
or more data values are the same in a salt-and-pepper 
type of noise, then the common value of those data will 
be the estimate for the mean. 

4.2. Experimental results 

In this section, some experimental results will be 
given to demonstrate the performances of the adaptive 
directional median and linear filters based on both 
subjective and objective criteria. Subjective testing 
involves visually analysing the features of the obtained 
images. Objective testing is based on computing the 
mean squared error (MSE) between the original image x 
and the filtered image y. The MSE is defined as 

MSE = ~ - ~  ~-~(y(i) - x(i)) 2 . (31) 

(a) 

Fig. 5. Original "baboon" image. 

(b) 

Fig. 6. (a) Standard median filter output using 3 x 3 window, 
(b) the adaptive directional median filter output. 
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Fig. 7. MSE curves for various choices of ~i and A plotted as a function of probability of error p. 

For the test results given in this section, we used the 
"baboon" image shown in Fig. 5. The pixels are 
represented by eight bits. 

4.2.1. The adaptive directional median filter. To see 
the distortion introduced by the filtering operation, the 
(noiseless) image is filtered both by the adaptive 
directional median filter (ADMF) which uses the 9 
windows shown in Fig. 1, and by the standard median 
filter (SMF) which uses a 3 x 3 window. The SMF 
output and the ADMF output are shown in Fig. 6(a) and 
(b), respectively. A considerable improvement in the 
textured regions and thin lines is observed in the ADMF 
output. The ~ i  in (2) is chosen to be 9 x 9 pixel array 
centered at pixel i. 

The MSE values for several noise levels and several 
choices of the variables involved in (22) are shown in 
Fig. 7. The horizontal axis is the probability p that a 
pixel value is erroneous. More specifically, pixels of the 
original image are chosen with probability p and the 
value of the chosen pixel is converted to either 0 or 255 
with equal probabilities of 0.5. In Fig. 6, the SMF curve 
corresponds to the standard median filtering with a 
3 × 3 window. The other curves are the ADMF results 
for several different choices of ~ i  and A. Remember 
that for A = 0, the spread parameter given by (22) 
reduces to the one given in (20). Observe that for 
smaller values of p, suitably larger choices for ~ i  reduce 
the MSE. For larger values of p, the MSE is still reduced 

by choosing A suitably larger than zero. This latter 
effect is intuitively due to the fact that the noise process 
being used is too spiky to be modeled by Laplacian 
distribution (a = 1). A smaller value of a might be 
more suitable. As an alternative, the modification of the 
spread parameter given in (22) may be used. Omission 
of some of the largest terms in (20) suitably modifies the 
value of the spread parameter ~m,i which eventually 
results in a better estimation of the coherence direction. 
Since the median operation is quite robust for isolated 
large errors in data values, the overall MSE decreases. 
Therefore, modification of ~,,,i in (20) by omitting some 
large terms as in (22) may be an alternative to choosing 
a < 0 which might bring a great deal of computational 
complexity. 

4.2.2. The adaptive directional linear filter. The 
testing of the adaptive directional linear filter (ADLF) 
proceeds in a manner similar to that of ADMF. In 
Fig. 8(a) and (b), the outputs of standard linear filter 
(SLF) which employs averaging over a 3x3 window 
and ADLF are shown. Again ,  a cons iderable  
improvement in the texture and thin lines is obtained 
by using ADLF. 

In Fig. 9, four MSE curves are plotted. As the noise 
process, we used an additive white Gaussian process 
(suitably approximated to take on integer values) with 
standard deviation ~r n. As seen in Fig. 8(a), the SLF has 
a higher MSE compared to ADLE As the size of ~ i  is 
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Fig. 8. (a) Standard linear filter output using 3 x 3 window, (b) the adaptive directional linear filter output. 
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Fig. 9. MSE curves for various choices of ~i plotted as a function of noise standard deviation a n. 

increased, the MSE gets even smaller. Since the noise 
process is approximately Gaussian, we do not use an 
approximation of the spread parameter ~m,i by omitting 
large error terms. 

5. C O N C L U S I O N  

In this paper, a class of adaptive directional image 
smoothing filters is described. In particular, the 

implications of the proposed model on median and 
linear filtering are emphasized. Both subjective (based 
on visually comparing the images) and objective (based 
on MSE criterion) testing of the adaptive directional 
median and linear filters revealed considerable enhance- 
ment compared to the standard median and linear filters. 

Another interesting observation is that the heuristic 
approach described by (22) performs very well under 
salt-and-pepper type of noise. 



2004 M.i. GORELLi and L. ONURAL 

REFERENCES 

1. J. H. Miller and J. B. Thomas, Detectors for discrete-time 
signals in non-Gaussian noise, IEEE Trans. Inf. Theory IT- 
18(2), 241-250 (March 1972). 

2. W. C. Gray, Variable norm deconvolution, Ph.D. Disserta- 
tion, Stanford University (August 1979). 

3. G. R. Arce and M. P. McLoughlin, Theoretical analysis of 
the max/median filter, IEEE Trans. Acoust. Speech Signal 
Process. 35(1), 60-69 (January 1987). 

4. M.i. Gtirelli and L. Onural, The adaptive directional median 
filter, Proc. Sixth Int. Symp. Comput. Inf. Sciences, Side, 
Antalya, Turkey, 973-979 (October 30-November 1991). 

5. M. P. McLoughlin and G. R. Arce, Deterministic properties 
of the recursive separable median filter, IEEE Trans. Acousr 
Speech Signal Process. 35(1), 98-106 (January 1987). 

6. J. W. Woods and C. H. Radewan, Kalman filtering in two 
dimensions, IEEE Trans. Inf. Theory 23(4), 473-482 (July 
1977). 

7. M. S. Murphy and L. M. Silverman, Image model 
representation and line-by-line recursive restoration, IEEE 
Trans. Automatic Control 23(5), 809-816 (October 1978). 

8. J. W. Woods and V. K. Ingle, Kalman filtering in two 
dimensions: Further results, IEEE Trans. Acousr Speech 
Signal Process. 29(2), 188-197 (April 1981). 

9. A. M. Tekalp, H. Kaufman and J. W. Woods, Edge-adaptive 
Kalman filtering for image restoration with ringing 
suppression, IEEE Trans. Acousr Speech Signal Process 
37(6), 892-899 (June 1989). 

10. M. R. Azimi-Sadjadl and S. Bannour, Two-dimensional 
recursive parameter identification for adaptive Kalman 
filtering, IEEE Trans. Circuits Syst. 38(9), 1077-1081 
(September 1991). 

11. R. Xiao and M. R. Azimi-Sadadl, Neural network decision 
directed edge-adaptive Kalman filter, IEEE Int. Conf. 
Neural Net. 4084--4089 (1994). 

12. J. Astola, P. Haavisto and Y. Neuvo, Vector median filters, 
Proc. IEEE 78(4), 6784589 (1990). 

13. L. Yin, J. T. Astola and Y. A. Neuvo, Adaptive stack 
filtering with application to image processing, IEEE Trans. 
Signal Process. 41(I), 162-184 (January 1993). 

14. P. Salembier, Adaptive rank order based filters, Signal 
Process. 27, 1-25 (1992). 

15. J.-H. Lin, T. M. Sellke and E. J. Coyle, Adaptive stack 
filtering under the mean absolute error criterion, IEEE 
Trans. ASSP 38(6), 938-954 (June 1990). 

16. A. Restrepo and A. C. Bovik, Adaptive trimmed mean 
filters for image restoration, IEEE Trans. ASSP, 36(8), 
1326-1337 (August 1988). 

17. H.-M. Lin and A. N. Jr. Wilson, Median filters with 
adaptive length, IEEE Trans. Circuits Syst. 35, 675-690 
(June 1988). 

18. L. Onural and M. B. Alp, Weight selection for the 2-D 
Adaptive Weighted Median Filter Based on the Gibbs 
Random Field Model, 1993 IEEE Winter Workshop on 
Nonlinear Digital Signal Processing, Tampere, Finland, 
5.1-1.1-5.1-1.6 (January 1993). 

19. P. Bolon, A Family of NL-Filters, 1993 IEEE Winter 
Workshop on Nonlinear Digital Signal Processing, Tam- 
pere, Finland, 1.2-1.1-1.2-1.5 (January 1993). 

20. Y. Wang and S. K. Mitra, Image representation using block 
pattern models and its image processing applications, 1EEE 
Trans. Pattern AnaL Mach. lntell. 15, 321-326 (April 
1993). 

21. Bickel and Doksum, Mathematical Statistics. Prentice- 
Hall, New Jersey (1977). 

About the Author - -  MEHMET ]ZZET Gf]RELLI received the B.S. degree in Electrical and Electronics 
Engineering from Middle East Technical University, Ankara, Turkey in 1987 and the M.S. degree in Electrical 
and Electronics Engineering from Bilkent University, Ankara, Turkey in 1990. From 1987 to 1991 he was a 
Research Assistant at Bilkent University. He is currently working toward the Ph.D. degree in Electrical 
Engineering at the University of Southern California, Los Angeles where he is a research assistant. His research 
interests include statistical signal processing, multichaunel system identification and blind deconvolution, 
communication theory, image processing, and image modeling using random fields. 

About the Author - -  LEVENT ONURAL received the B.S. and M.S. degrees in Electrical Engineering from 
Middle East Technical University, Ankara, Turkey in 1979 and 1981, respectively and the Ph.D. degree in 
Electrical and Computer Engineering from State University of New York at Buffalo in 1985. He was a Fulbright 
scholar between 1981 and 1985. After a Research Assistant Professor position at the Electrical and Computer 
Engineering Department of State University of New York at Buffalo, he joined the Electrical and Electronics 
Engineering Department of Bilkent University, Ankara, Turkey, where he is a Professor at present. He visited the 
Electrical and Computer Engineering department of University of Toronto on sabbatical leave in 1994. His 
current research interests are in the area of image and video processing with emphasis on very low bit rate video 
coding, texture modeling, non-linear filtering, holographic TV and signal processing aspects of optical wave 
propagation. Dr Onural is a senior member of IEEE. He was the organizer and the first chairman of IEEE Turkey 
Section. He is now the chairman of IEEE Region 8 Student Activities Committee. 


