
Specifications Are Necessarily Informal or: Some
More Myths of Formal Methods*

Baudouin Le Charlier
Znstitut d’lnfomtatique, University of Namur, B-5000 Namur, Belgium

Pierre Flener
Department of Computer Engineering and Information Science, Bilkent University, 06533 Bilkent, Ankara, Turkey

We reconsider the concept of specification in order to
bring new insights into the debate of formal versus
non-formal methods in computer science. In our view,
the correctness of a useful program corresponds to an
objective fact, which must have a simple, precise, and
understandable formulation. As a consequence, a
specification can (and must) only make precise the link
existing between the program (formality) and its pur-
pose (informality). Moreover, program correctness can
be argued only by means of non-formal reasonings,
which should be as explicit as possible. This allows us
to explain why specifications cannot be written in a
strictly formal language. Our view of specifications
does not imply a rejection of all ideas put forward in
the literature on formal methods. On the contrary, we
agree with the proponents of formal methods on most
of their arguments, except on those following from the
assumption that specifications could (or should) be
formal. Finally, we examine why the role and nature
of specifications are so often misunderstood. 0 1998
Elsevier Science Inc.

1. INTRODUCTION

Gist specifications were near& as hard to read as those in
other formal specification languages. We soon realized

Address correspondence to Dr. Pierre Flener, Bilkent University,
Department of Computer Engineering 06533 Bilkent, Ankara, Turkey.
E-mail: pf@cs.bilkent.edu.tr

*Contrary to previous papers of the ‘myths series” [4,19], we do
not discuss industy-level myths on the uselessness of formal meth-
ods, but rather ana&ze some academic myths on their usefitlness.

that the problem was not particular to Gist, but extant
across the entire class of formal specification languages.
In their effort to be formal, all these languages have
scrubbed out the mechanisms which make informal lan-
guages understandable, such as summaries and overviews,
alternative points of view, diagrams, and examples.

-R. Baker (19851.

Recently, there have been numerous papers advo-
cating the use of formal methods in software devel-
opment (e.g., [Bowen and Hinchey, 1995a, 1995b;
Craigen et al., 1995; Fraser et al., 1994; Gerhart et
al., 1994; Gibbs, 1994; Hall, 1990; Larsen et al.,
19961, plus some of the opinions in Saiedian [1996]).
Similar opinions were sporadically published before
(e.g., [Fraser et al., 1991; Guttag et al., 1982; Hoare,
1987; Meyer, 1985; Wing, 1990]), plus some of the
opinions in Denning (1989). In these papers, mem-
bers of academe and industry describe formal meth-
ods as a key contribution to overcoming the chronic
software crisis. Indeed, formal specification lan-
guages force specifiers to be absolutely precise about
their intentions, since (internal) inconsistency and
incompleteness can be mechanically detected. More-
over, formal specifications can be used during vali-
dation by the customer through animation or proto-
typing, and can guide the actual development of the
software, or at least be used in the formal verifica-
tion of the developed software. All this is proposed
at various degrees of formality, from fully formal to
“formal light.”

However, fallacies in some assumptions underly-
ing formal methods have been exposed, such as by

J. SYSTEMS SOFTWARE 1998; 40~275-296
0 1998 Elsevier Science Inc. All rights reserved.
655 Avenue of the Americas, New York, NY 10010

0164-1212/98/$19.00
PI1 80164-1212(98)00172-6

276 J. SYSTEMS SOFTWARE
1998; 0275-296

B. Le Charlier and P. Flener

pointing out essential differences between engineer-
ing and mathematics in general, and between com-
puting and mathematics in particular (see other
opinions in [Denning, 1989; Saiedian, 1996]), or by
shedding some light onto the real nature of require-
ments and specifications, so as to identify minimum
standards for languages allowing their representa-
tion (Jackson, 1995; Zave and Jackson, 1997). Some
authors have been begging for caution about formal
methods, by mentioning fundamental theoretical and
practical problems, e.g., DeMillo, Lipton, and Perlis
(1979), Fetzer (1989), Karp (in [Denning, 1989]),
Parnas (119941, and in [Saiedian, 1996]), and Wino-
grad (in [Denning, 19891).

A similar debate is going on about the teaching of
computer science (Denning, 1989) should the cur-
riculum include formal methods or not? To what
extent?

Simultaneously, there is a debate on whether for-
mal specification languages ought to be executable
or not (Fuchs, 1992; Gravel1 and Henderson, 1996;
Hayes and Jones, 1989). However, some researchers
challenge the contention that specifications ought to
be (fully) formal in the first place, e.g., Balzer et al.
(Balzer, 1985; Balzer et al., 1986), Karp (in [De-
nning, 1989]), and Pamas ([Pamas, 1994; Pamas and
Madey, 19951, and in [Saiedian, 19961).

Our objective is to shed some further light onto
these debates. We propose to go back to the very
reasons that make the running of a program useful,
i.e., the fact that its results can be straightforwardly
interpreted as a statement about the real world.
Starting from this simple observation, we draw the
conclusion that the specification of a program only
consists of (the statement of) the link relating the
program (formality) and its purpose (informality).
Since, as we will argue, the purpose of a program
must be something directly understandable, specifi-
cations also are the essential tool for constructing, in
practice, correct real-world programs through ex-
plicit but non-formal reasonings. Additionally, our
discussion of specifications allows us to explain why
formal specifications (i.e., specifications written in a
formal specification language) are not really specifi-
cations, since this would be a contradiction in terms.
Several researchers in formal methods have recently
reported insights related to ours, namely that infor-
mal “comments” are inevitable adjuncts to formal
specifications (Hoare, 1996; Jackson, 1995; Words-
worth, 1992; Zave and Jackson, 1997), or the fact
that the knowledge of the environment in which the
program will be embedded is essential to the under-
standing and the writing of specifications (Johnson,
1988). But our reflection goes, in a sense, beyond

their conclusions, since we claim that specifications
are, or ought to be, informal by their very role.

Our view of specifications does not imply a rejec-
tion of all ideas put forward in the literature on
formal methods. On the contrary, we agree with the
proponents of formal methods on most of their
arguments, except on the fact that specifications had
better be written in a formal, i.e., completely prede-
fined and syntactically checkable, language. And,
inevitably, we also disagree with other arguments
that are a consequence of this assumption that for-
mal specification languages are desirable.

Formal methods are in general introduced as be-
ing the use of mathematics in the process of con-
structing computer software (including the elabora-
tion of specifications). We agree that mathematics
are extremely useful in this context, but we disagree
on reducing the concept of mathematics for com-
puter science to the restricted framework of any
formal specification language.

Program verification is advocated by most distin-
guished computer scientists as the only way to
improve the quality of software. We agree that pro-
gram verification or, better, systematic program con-
struction is the only way to build satisfactory com-
puter software, but we disagree on the fact that
program proofs must be automated, since, as we try
to demonstrate, this would imply a vicious circle.

Requirements engineering is viewed by most au-
thors as the most crucial stage in the development of
a large software system. We agree on this viewpoint
and especially on the importance of the elicitation
process, but we disagree with the opinion that writ-
ing formal specifications is the best basis for the
elicitation process: such a process is best achieved in
a language as expressive as possible, i.e., a natural
language enhanced with any desired notational con-
ventions.

Finally, it is generally accepted that formal meth-
ods should be supported by corresponding software
tools. We argue that formal descriptions of any kind
(programs, finite-state automata, “declarative” de-
scriptions, and the like) can be useful only because
they can be the input of an automated process
whose output provides directly understandable infor-
mation that could not be realistically discovered by
manual calculation. Nevertheless, the elaboration of
any formal description (of whatever nature) requires
a careful construction process that cannot be formal-
ized in any way since this would entail a regressurn
ad infinitum. Note that we do not say that such tools
are useless, but only that the crafting of their inputs
already is a programming activity whose mastering
definitely requires explicit informal reasoning.

Specifications Are Necessarily Informal J. SYSTEMS SOFTWARE 277
1998; 40~2755296

We conclude this introduction by summarizing the
articulation of our argumentation along the three
main sections of the paper.

Section 2. Our main thesis, i.e., the fact that ex-
plicit informal reasoning is the essential pivot of any
well-conducted programming activity, is the subject
of Section 2. Such reasonings are best based on clear
specifications of all sub-problems that are identified
during the program construction process (including
the requirements engineering phase).

Most of Section 2 (i.e., Sections 2.1 to 2.4) is
devoted to demonstrating that such specifications
should (and in fact can) be made extremely simple
by clearly separating the statement of the purpose of
the program (which should boil down to citing a
well-known concept) and a set of representation
conventions (whose role in informal reasonings
is subordinate yet necessary since the concepts of
the programming language are totally alien to the
problem that the program must [help to] solve).
Section 2.1 motivates our notion of specification by
showing through some example problems that the
results of a program are meaningless by themselves
and should be interpreted in some way to allow the
resolution of the problem that the program helps to
solve. We also show that this interpretation neces-
sarily takes place at an intuitive (problem-related)
level. Finally, if the program is really convenient to
use, it is necessary that the interpretation of the
results be extremely simple. Section 2.2 draws an
important conclusion from these observations, i.e.,
that a specification should only 1) state the purpose
of the program (in a straightforwardly understand-
able way> and 2) state the representation conven-
tions that one needs to know to use it properly.
Section 2.3 explains why such specifications are es-
sential to articulate the programming activity, while
Section 2.4 argues that it is actually possible to craft
such specifications even for “real-world” problems.

The intuitive knowledge necessary either to prop-
erly use a program or to construct it is generally not
available at the beginning. In order to write good
specifications of the program and of all its parts, one
thus needs to build a “theory of the problem” that
provides this necessary knowledge. Section 2.5 is
devoted to this topic: we revisit a few classical prob-
lems in order to show that the main role of this
theory is to identify useful properties of the actual,
real-world problem, not of a more or less arbitrary
and unreasoned redefinition of it; since the objective
is to understand the problem as it is, we also dispute
the idea that it is necessarily better to define con-

cepts as abstract data types or in nonexecutable
style.

Section 2.6 summarizes our ideas by discussing the
“general form” of specifications, while Section 2.7
draws a parallel between requirements specifications
and our notion of “theory of the problem.”

Section 3 applies the ideas of Section 2 to a
critique of the concept of formal specification. Since
the concepts of a formal specification language are
totally alien to those of any practical “real-world”
problem, specifications in our sense cannot be writ-
ten in such formal languages. Moreover, the correct
construction of (what is usually called) formal speci-
fications requires the use of (informal) specifications
in our sense. In fact, all our argumentation of Sec-
tion 2 applies as well to formal specification lan-
guages and to programming languages. This thesis is
developed in Section 3.1. It allows us to discuss
seven frequently asked questions about formal speci-
fications, in Section 3.2.

Section 4. Finally, we try to explain why our view
of specifications has not been largely accepted by
computer scientists. The belief that all practical’
mathematics can be embodied in a single formal
system is-we guess-a main reason of the impor-
tance given to formal specifications. Another impor-
tant reason is the desire to find methods to measure
the value of a program and the programmer’s pro-
ductivity. In our opinion, such a goal is largely
unreasonable.

This paper is based on the Ph.D. dissertation of
the first author (Le Charlier, 1985) (and includes
translations of tracts of this thesis). The first author
has successfully used these ideas in several
medium-sized projects (Le Charlier and Flener,
1997). The second author has used them for debunk-
ing some of the myths on deduction-based and in-
duction-based approaches to the (semi-jautomatic
synthesis of (logic) programs (Flener and Popelinslj,
1994).

2. THE ROLE AND NATURE OF
SPECIFICATIONS

In this section, we more closely examine specifica-
tions of programs. Such specifications are the essen-

‘From a theoretical standpoint, this belief has been ruined by
Giidel’s incompleteness theorem, but formalist mathematicians
argue that the limitations pointed out by GGdel have no impact
on mathematicians’ practice.

278 J. SYSTEMS SOFTWARE
1998; 40~275-296

B. Le Charlier and P. Flener

tial pivot of the whole programming activity: without
good specifications, it is impossible to understand
what the correctness of a program means and hence
to reason rigorously while constructing it or con-
structing another program using it. In the software
engineering literature, the word “specification” is
used to designate many different kinds of things
(such as requirements specifications, for an entire
software, and detailed-design specifications, for its
modules), and yet there is something in common to
all of them. For the moment, we deliberately do not
make precise the kind of specification that we con-
sider, but we will come back to this issue in Sec-
tion 2.7.

2.1 Why and How can a Program be Useful?

Despite all the doubts one might have about the
purpose of computers for the resolution of real
problems such as the creation of a more just and
harmonious society, if one writes and uses programs
then it is because one believes they are useful. This
fact is so evident that one never wonders why and
how a program can be useful. However, it is the
answer to that question that leads to an understand-
ing of what programming is and why specifications
play a fundamental role in it.

If a program is useful, it is not because its execu-
tion results in displaying certain strings on the screen
or in changing the contents of the computer memory
in a certain way. It is because this execution yields
useful information or provides substantial help in
the realization of a task. But, to take advantage of
the program, other things than its text and the
format of its data need to be known. Even observing
its behavior for some time does not suffice. It must
be possible to interpret the produced results, but the
knowledge necessary for this cannot be part of the
program text nor of its results. It is relative to
concepts totally alien to the objects manipulated by
the program, and to the conventions according to
which these objects represent these concepts.

Example: The Belgian National Lottery. Suppose
all we know about a certain program is how to
launch it on a certain computer and that its execu-
tion only results in displaying the string:

5,11,15,22,29,46

No information can be drawn from this; our lives are
unaffected by the knowledge that the execution of a
certain program gives exactly this result. Now sup-
pose, to the contrary, that we know from an in-
formed source that the execution results in display-

ing the next draw of the Belgian national lottery.
This changes everything: everybody now sees how
such a program can be used advantageously.. . .

This single example shows why a program is “not
useful” by itself, but only in conjunction with some
knowledge that is totally outside of it, of which
neither its text nor its results can give the slightest
clue. Some will now object that it is easy to change
that program so that it exhibits its own purpose, say
by displaying the following string instead:

5,11,15,22,29,46

is the next draw of the Belgian national lottery.

But this objection is flawed for two reasons. First, it
is not the simple observation of the result that
allows us to understand it. The act of “seeing” the
string above cannot possibly give the knowledge
necessary to the understanding of the sentence it
represents. This knowledge must be available before
or must be acquired by other means. Second, it is
not enough to be able to interpret the result of a
program by an assertion in order to deduce from it
whether it is true. To do so, there should be other
good reasons to believe that an execution of a pro-
gram can only produce outputs that represent true
assertions.

Finally, if a program can be useful, even though
its manipulated objects have by themselves no mean-
ing, it is because it is possible to use these objects to
represent useful information so as to be able, first,
to write the program so that it computes the repre-
sentations in a correct way (according to chosen
conventions), and, second, to “easily finish the job”
by interpreting the results.

Example: A payroll program. Let us now consider
the payroll program of a company. It is useful to the
extent that it is easier to (correctly) solve the payroll
problem with it than without it. In any case, it is not
the running of the program that solves the problem.
The problem is solved if and only if the whole
personnel gets their due salary at the deadline. This
happens or does not happen independently of the
existence of a payroll program and its results. The
responsibility of the solving of the payroll problem
belongs to the corresponding accountant. The pro-
gram can only help her as an intermediary and is
only really useful if it noticeably reduces the amount
of work the accountant has to do to solve the
problem. The accountant’s task is, on the one hand,
to prepare the inputs to the program, and on the
other hand, to exploit its results so that all employ-
ees get their salary. So she must know how to use
the program. This also means that she must be able

Specifications Are Necessarily Informal J. SYSTEMS SOFTWARE 279
1998; 40~275-296

to make a reasoning by which, knowing the inputs,
knowing the usage she made of the outputs, and
knowing “sufficiently many things” about the pro-
gram itself, she can conclude that everybody’s exact
salary is paid at the deadline. Nowadays, the accoun-
tant may have almost nothing to do to complete her
task, but some verification (of whether the program
performs its task) has to be done nevertheless.

Example: A search sub-program. Let us finally
consider a sub-program that locates a value in an
array. It is useful because one can use it as a
primitive for writing a larger program, and this with-
out worrying about how the search is done. How-
ever, to use it properly, some supplementary infor-
mation must be available: how to call the sub-pro-
gram and how the results are represented. One
might think this example is fundamentally different
from the first one. In this case, some will say, to
understand the purpose of the program it suffices to
know the programming language and to have the
text of the program. Indeed, the latter would be so
simple that one will “immediately see” what the
program does. The text would define the purpose of
the program. This opinion is incorrect: to under-
stand the purpose of the program, the concept of
membership in an array must be known in advance,
but it is not a concept of the programming language
because otherwise it would not have been necessary
to write a sub-program representing it. The opinion
above stems from the fact that one might recognize
quite easily an array search in the program text
provided one has already done some programming
beforehand, hence one already knows what an array
search is, for what it can be used, and what form one
generally gives to programs performing it. But this
does not mean that this knowledge can be derived
from the program text.

This example has been chosen on purpose among
the most simple and “classical” ones, It is clear,
however, that in general one does not write pro-
grams solving known problems. Therefore, the
knowledge of some programming concepts and
methods is totally insufficient for understanding not
only the purpose of a “large” program but also the
one of most of its components. To understand the
use of a program computing sin(x) according to
given representation conventions and a given preci-
sion, trigonometry and analysis notions must be
known. Pretending that the program defines the
corresponding approximation is only a pleasant joke,
because it is not the scrutiny of this text that can
give the slightest idea about trigonometry to some-
body who does not already have it.

Finally, it often happens that the concepts neces-
sary to understanding the purpose of a (sub-)pro-
gram cannot be found in our “preliminary knowl-
edge” but must be invented ad hoc. It is well-known
that the resolution of a simple problem may necessi-
tate the introduction of completely new ideas. Such
invention is done via definitions. But there would be
a vicious circle to try and explain the purpose of a
program by referring to concepts only known by
their definitions: this would almost amount to saying
that this purpose can be understood by examining
another program. To leave this vicious circle, it is
necessary to give these newly defined concepts an
intuitive and objective “substance,” by shaping them
into a theory allowing their understanding without
any definitions. These ideas will be further devel-
oped in Section 2.5.

Note that there is an important difference be-
tween our notion of specification and the notion of
requirements specification, which consists of a de-
scription of the problem to be solved. In our view,
this notion should essentially coincide with what we
call the “theory of the problem.” Again, we refer to
Section 2.7 for more details on this issue.

2.2 What is a Specification?

“Definition.” A program specification is a statement
whose role is to say (1) what purpose the program
serves and (2) how the program can be correctly
used.
This “definition” is not a mathematical one, but

the previous discussion will help us to understand it
in detail. The definition means that the specification
of a program is the necessary link between what the
program computes and the information that we can
deduce from its results. This link is exactly what we
need to use the program or to construct it.

A specification must be simple and directly under-
standable. The objective of a specification is to
transmit information. So there is a parallel between
the notions of specification and program output. The
output is meaningless by itself: it must be inter-
preted in order to extract the information it carries.
This does not mean the particular form of the out-
puts is irrelevant as long as the representation con-
ventions are known. For instance, if the task of a
teller machine in Belgium is to display the balance
of a bank account, then not all representations are
equivalent: a decimal representation of the amount
expressed in Belgian Francs is acceptable, but a

280 J. SYSTEMS SOFTWARE
1998; 40:215-296

B. Le Charlier and P. Flener

binary representation of the square root of the
amount expressed in Turkish Lira is not. The good
representation is the one that minimizes the work
that remains to be done to transform the output into
the desired information. In the example above, the
first representation is the only acceptable one be-
cause the customer immediately knows how much
money can be withdrawn from the account, whereas
a long and tedious computation would be necessary
from the second representation. Similarly, the
“good” specification of a program is the text that can
be transformed as directly as possible into a correct
understanding of the purpose of the program and of the
way of using it.

Besides this analogy, there also is a fundamental
difference between a specification and the results of
a program. The principal role of the specification
precisely is to state how to interpret the results, but
there is no need for a text explaining how to inter-
pret the specification, as otherwise one would need a
specification of the specification, and a specification
of the specification of the specification, ad infinitum.
Therefore, unless one completely denies the pertinence
of this notion, one has to admit that a specification is a
text that must be comprehensible by itself. Hence it
must be written in the only language adapted to this
end: natural language. We do not say that specifica-
tions ought to be written in pure natural language. It
can be a technical language including problem-specific
concepts and notations. But it cannot be a formal
language, in the strict sense of the word (i.e., whose
syntax and semantics are defined a priori). Indeed,
statements in a formal language are incomprehensi-
ble by themselves (also see Section 3.11, because the
problem concepts are always totally alien to those of
the formal language. Hence, formal statements al-
ways need to be accompanied by explicit representa-
tion conventions, i.e., informal specifications. To the
contrary, informal (natural language) statements are
comprehensible by themselves because they directly
refer to the problem concepts.

A specification need not be correct, but only cor-
rectly understandable. Since the role of a specifica-
tion is to communicate the purpose of a program,
the only correct means of judging the quality of a
specification is to ask whether it allows every poten-
tial reader to understand conveniently and in the
most direct possible way the purpose of the pro-
gram.

The notion of “correctness” of a specification is
thus less important than the one of “being correctly
understandable.” A specification can perfectly play
its role, even if it lacks style, or has unorthodox

phrases, if not even mistakes and contradictions.* A
reader may well have understood it even though she
estimates it to be “incorrect” or poorly written,
because it does not follow her own stylistic criteria
or contains some obvious mistakes. But how is it
possible to correctly understand a specification while
judging it incorrect? The answer lies in the observa-
tion that the role of a specification is not to define
everything that ought to be known to understand the
purpose of the program, but only to state this pur-
pose. Where is the difference? According to the first
viewpoint, one would suppose that the knowledge
necessary to use the program is entirely inside the
specification (i.e., would be derivable from the speci-
fication). It would, then, be evident that an incorrect,
specification cannot be satisfactorily understood by
itself because it would be the only reference. Ac-
cording to the second viewpoint, one supposes that
the reader already knows almost everything on what
makes the program interesting, the role of the speci-
fication being somehow to say “this is the program
that you needed.” In this case, the presence of some
errors or quirks in the specification would not really
be an insurmountable obstacle to its understanding,
because the enormous quantity of things already
known allows the reader to fill the gaps.

All this does not imply that specifications can be
written carelessly, but only that the quality of speci-
fications cannot be judged according to hypothetical
correctness criteria. The key issue is that they com-
municate “the message” in the most direct way. This
entire argument holds of course for all consumers of
specifications, be they end-users, or programmers, or
whoever. Correctness is relative to an external truth
criterion, and the objective is to make a software
correct with respect to a fact, but not with respect to
a statement in a formal theory.

2.3 Why are Adequate Specifications Necessary?

The specification of a program is an indispensable
aid for remembering details. After close considera-
tion, it is even only such an aid, as it only has to

‘In our view, whenever a program addresses a meaningful
problem, there is a model in the real world for any “correct”
theory of the problem. If we fail to build this correct theory, this
does not mean in any way that the model does not exist, since it is
preexisting (unless we deny that the world exists). That is why we
dispute the importance of self-contradiction in a theory. A theory
can be self-contradictory because of a single fortuitous mistake
and yet one can be able to “see” the intended model underlying
it. Self-contradiction can be problematic for technical reasons in
formal theories, but of course we also dispute the idea that the
theory of the problem must be a formal one.

Specifications Are Necessarily Informal J. SYSTEMS SOFIWARE 281
1998: 40:275-296

state the purpose of the program but not all the
knowledge necessary to understand its meaning. The
customer must thus already know, before reading
the specification of a program for the first time,
everything that makes the program useful to her.
She will then know that a program with this purpose
exists and how it can be used. Later, she can occa-
sionally re-read the specification, not because she
has forgotten its purpose, but because she does not
recall with certainty some representation details that
are too arbitrary to be possible (or useful) to re-
member.

Specifications are not only absolutely necessary
for documentation of already existing programs, but
also before and during construction of programs, for
three reasons.

First, one can only construct small programs at a
time. The difficulty observed in the rigorous con-
struction (a la Dijkstra, Gries, etc.) of small pro-
grams is inherent to programming (and there is no
way such techniques can ever be scaled up to con-
structing “real” programs), so small programs ex-
actly represent the limit that should not be crossed if
the programming activity is ever to be mastered. The
only realistic approach is thus to build “large” pro-
grams from “small” ones that are constructed inde-
pendently of each other, and recursively so on (no
matter whether one proceeds top-down or bottom-
up). This is possible only because the specifications
attached to programs allow us to consider them as
new primitives of the programming language, no
matter how large these programs are.3 All specifca-
tions should be of the same level of complexity, namely
of the utmost simplicity.

Second, intermediate specifications, i.e., specifica-
tions of sub-problems perceived as potentially useful
during the design of the system’s architecture, are
necessary as a basis for the discussion between the
computer scientist and the customer, because they
are, in general, of too different backgrounds for
coming up with the good specification the first time.
Starting from the specification, the computer scien-
tist must be able to make a reasoning to convince
herself that she can construct the required program,
whereas the customer must be able to make a rea-
soning to make sure the program will provide the
expected service. The specification thus takes the
role of a contract.

3Note that we do not assume a pure hierarchical organization
of programs. For concurrent programs, for instance, a specifica-
tion could (essentially) consist of a global invariant and some
fairness properties.

Third, intermediate specifications are necessary
during the design of an architecture for the pro-
gram. Strictly linear top-down design is difficult, and
the implementation of certain sub-problems may
reveal inadequacies in earlier choices, forcing back-
tracking in the design, if not the deletion of already
written code. Since programming is costly, there is a
risk of trying to preserve at all cost what has already
been done, even if this means going into blind alleys.
A more reasonable approach is thus to write all
specifications of all sub-programs before writing the
first line of code. This requires mental persuasion
that the program can be written using all and only
the specified sub-problems. Designing such an archi-
tecture may still require backtracking, but it is less
tedious to rewrite specifications than programs, and
easier to persuade oneself that a program can be
written than actually writing it.

2.4 Can there be Adequate Specifications (for
Real-World Problems)?

We think that adequate specifications, according to
our criteria, can be written, even for real-world prob-
lems. We know that most examples in this paper are
small-scale-and space reasons prevent us from cov-
ering real-world problems-but our considerations
do scale up, by their very nature. The first author
has successfully applied them to rather complex
medium-scale problems, as reported in (Le Charlier
and Flener, 19971, and he believes that he was
successful precisely because of this mind-set.

A specification is not meant for everybody. Only a
program with a precise purpose should have a speci-
fication. Saying that a program has a precise purpose
amounts to saying that somebody is able to exactly
understand this purpose. So the specification of a
“useful” program will always exist because some-
body must be able to say what its purpose is. But
this does not mean that everybody can understand
this specification. It is only comprehensible by some-
body having the “same background” as its author, at
least as far as the application domain is concerned.
The existence of satisfactory specifications is thus
only possible because they are only meant to be read
and understood by people already knowing almost
everything of the application domain in which the
program has its purpose. This does not imply that
only the specifier will be able to understand it or
that this privilege is reserved for a select few. It
simply means that every user of the program must

282 J. SYSTEMS SOFTWARE
1998; 40~275-296

B. Le Charlier and P. Flener

first make a careful and sufficiently long study of its
application domain.

Remark. In practice, it is unfortunately rare that a
person understanding the purpose of a program
can express it simply. Programmers, for instance,
tend to give incomprehensible technical gibberish
about the implementation technique and run-time
behavior when prompted to explain what their
programs do, instead of talking about the essen-
tials. The absence of specifications for many actu-
ally used programs stems from an inability of
many people to express themselves clearly. (As
already said by others before:) Instead of includ-
ing specification rules or formalisms in computer
science curricula, it would be much better to teach
students how to correctly use their natiue language
(or natural language, in general).
Another reason for the absence of convenient
specifications is that programs are often con-
structed by successive approximations, by trial
and error, so that there cannot possibly be a
convenient specification, because nobody is able
to understand how to use it. But it is precisely
because the programmer was unable, or thought
it useless, to write a specification that she, not
knowing what to do and hoping to find it out
progressively, constructed a mysterious program
to which no specification can be attached.

A specification should have an objective meaning.
Some will object to our notion of specification by
saying that two different people never understand
things in exactly the same way, so that we can never
be sure whether a specification is correctly under-
stood by all concerned people. However, it is not
necessary that the programmer and all users of a
program understand its specification in the same
way. Note that such a condition is insufficient any-
way, because it does not matter whether all people
have understood exactly the same thing, but rather
whether everybody has understood what is needed
to do their job. And this new condition can be
fulfilled because the specification of a program must
express a property that has an objective meaning. It
is true that nobody understands this meaning com-
pletely and in the same way as their neighbor, but
everybody should understand that the question of
correctness of the program with respect to its speci-
fication corresponds to a fact, and not to personal
interpretation. The programmer must be able to
construct the program by making a reasoning to
persuade herself that it has the desired property;

whereas the users must be able to derive other facts
from it, such as the possibility of doing their job
using the program.

For instance, consider a program computing the
sine function under certain precise conventions. The
programmer need not completely know the “es-
sence” of this function, but only sufficient properties
for constructing a correct program. The users need
not understand the function in the same way as the
programmer, but only other properties allowing them
to solve their problems. So it is because of its
objective nature that the specification of this pro-
gram will be satisfactory: it expresses a fact, the
same for everybody, even though they may under-
stand it differently. Hence the specification should
act as the “ultimate” reference, i.e., the last thing to
be doubted about and hence the central pivot of any
reasoning about the program.

A not completely unfounded objection to the pre-
vious example is that it is not realistic because the
sine concept has been studied for such a long time
that it would be foolish to deny its objective nature,
but that not all specifications can be expressed in
terms of such well-established concepts. Indeed, this
objection pinpoints one of the fundamental diffi-
culties of programming compared to, say, mathemat-
ics: one never has the time to polish all the needed
concepts for a specification, because the program is
needed urgently.

Nevertheless, the objectivity condition for specifi-
cations seems absolutely necessary for the correct
communication of the purpose of programs, and,
hence, for mastering the programming activity. Ac-
cording to us, without this condition, one would have
to admit that the usage of programs for achieving a
certain activity amounts to redefining that activity as
being the exploitation of the results of the program
without giving a satisfactory link between this redef-
inition and the initial concrete problem. Moreover,
to us, this condition seems largely achievable, if one
admits that the objectivity of the concepts necessary
to the writing of good specifications can be founded
on the creation of a “theory” of these concepts, with
more or less detail according to the imperatives of
the problem, a theory that can be studied by all
concerned people until each of them has convinced
themselves personally that it really corresponds to
the intended object.

This perception of course has the “disadvantage”
of founding the mastery of programming and its
usage on the competence and responsibility of peo-
ple, whereas some would prefer to found them on
rules that are easy to apply and verify.

Specifications Are Necessarily Informal J. SYSTEMS SOFTWARE 283
1998; 40:275-296

2.5 Role and Content of the “Theory of the
Problem”

The intuitive knowledge necessary either to properly
use a program or to construct it is generally not
available at the beginning. In order to write good
specifications of the program and of all its parts, one
thus needs to build a “theory of the problem” that
provides this necessary knowledge. In this section,
we revisit a few classical problems in order to show
that the main role of this theory is to identify useful
properties of the actual, real-world problem, not of a
more or less arbitrary and unreasoned redefinition
of it; since the objective is to understand the prob-
lem as it is, we also dispute the idea that it is
necessarily better to define concepts in an abstract
data type or in non-executable style.

Since a program is normally constructed in order
to help solve a practical preexisting problem, the
concepts and objects of such a theory can be classi-
fied into two main categories: those whose identity
was determined before and independently of the
program, and those that are defined (or, better,
identified) especially for the construction of the pro-
gram. They should all have the same final status,
namely to be known not by their definitions but by a
sufficiently rich set of properties linking them to
numerous other concepts. They thus have their own
individuality, equivalent to an objective status. The
theoretical development necessary for achieving this
status is different and more or less long and difficult
according to the category of concept. We elaborate
on these issues in Sections 2.51 and 2.5.2. In Sec-
tions 2.5.3 and 2.5.4, we discuss some aspects of
definition construction, stressing that there is no
purely abstract way to define a concept and that the
non-executability of definitions is not necessarily a
desirable objective.

2.5.1 On the Study of “Long-Established” Con-
cepts. Defining once again preexisting concepts is
common practice in formal methods of program
design. It is however unwise to start the study of a
predetermined concept by defining it. Indeed, what
is necessary is to study the concept as it is, but not
another concept given the same name through a
definition. Even if a “predetermined” concept can
be considered completely determined by a certain
property (i.e., all other properties useful to the prob-
lem at hand can be derived from that property), one
cannot consider it a definition of the concept. On
the contrary, one would have to ensure that the
concept really has that property. The objective of
the theory to be built is to ensure that things are

sufficiently well-understood by all involved people. If
one started redefining all the fundamental concepts
of the problem, nothing would be known about the
relationship between the (preexisting) problem and
what has been done. In any case, all involved people
have a preliminary understanding of the problem.
The role of the theory is to make things precise, if
not to correct them, but not to reconstruct every-
thing from nothing. It is thus more important to
stress the difficult or delicate issues than to try and
found everything already known.

The case of mathematical concepts. Suppose the
concept of “greatest common divisor” is needed in
the resolution of a programming problem. It is not
the following redefinition of this concept that makes
its role in the problem more precise:

Definition 2.1. The greatest common divisor of two
natural numbers m and n is a natural number p,
denoted by gcd(m, n), such that p divides m and
IZ, and, for every natural number i, if i divides m
and n, then i divides p.

Indeed, if one does not already know the concept of
greatest common divisor (gcd) and its applications,
this definition will not, by itself, help one understand
its purpose. But let us consider a person who already
has a good idea about it. The only information she
can draw from this definition is that it probably is
the definition of the notion of greatest common
divisor that she already knows. Therefore, the only
immediately useful part of this definition is the only
word that is theoretically arbitrary! Indeed, one could
define the same concept by naming it “foo” or
“Nabuchodonosor.” Two things are possible from
here. Either this person is satisfied with her conclu-
sion, and then the definition has not brought any
new information, or she wants to verify this first
impression by examining whether the definition is
compatible with her existing knowledge of the con-
cept of gtd. In this case, she might not be able to do
so immediately, because her definition rather says
that gcd(m, n) is the greatest of the divisors of m
and n, according to the usual ordering relation. To
show that the two concepts coincide, she actually has
to make a long reasoning, which should by the way
conclude negatively, because they do not coincide
when m = n = 0 (where the greatest common divi-
sor is usually considered undefined, but the defini-
tion above gives gcd(O,O) = 0). Anyway, at the end
of this superb intellectual effort, she will still not
know whether this definition was introduced for the
fun of scrambling the message or for some better

284 J. SYSTEMS SOFTWARE
1998; 40:275-296

B. Le Charlier and P. Flener

reason. To conclude, it would have been better to
admit that the concept of gcd is predetermined
beyond all definitions and to show why the very close
concept of greatest common divisor according to the
“divides” ordering relation was substituted for it.
For instance, it could have been because one wanted
to be able to apply, in all cases, the formula
gcd(m, g&z, p>) = gcd(gcd(m, n>, p). (For m = n
= 0 and p # 0, only the left-hand side of this equal-
ity is defined according to the usual definition.)

The case of “non-mathematical” concepts. The
preceding precept applies unchanged to any kind of
problem. It is not because the program to be written
has its purpose in, say, an accounting setting, that
one has to start by defining all involved concepts in
order to understand its purpose.

For instance, in the payroll program, the “theory”
of the problem should not start with definitions of
employees, salaries, companies, etc. What is neces-
sary is to arrive at a sufficient understanding of
these concepts (which are perfectly determined, even
if they might be poorly understood at the beginning)
in order to solve the problem. It would not be
acceptable either to define the effect of the program
by the rules of computing the salaries in terms of the
employee database. One should study the legisla-
tion, the structure of the company, etc., in sufficient
detail so as to be able to deduce (i.e., to justify, by a
rigorous reasoning) an adequate structure for said
database as well as valid computation rules. The
user of the program (i.e., the accountant) need not
have studied all the details of the “theory” that the
programmers have had to elaborate, but she should
understand it sufficiently for correctly using the pro-
gram. It would be hard to say where the limit is: it is
her responsibility to decide herself how far to go in
order to reach a sufficient understanding.

2.5.2 On the Study of Concepts “Tailored for the
Problem”. The writing and understanding of “good”
specifications of programs nearly always requires
using concepts especially tailored for the problem,
discovered or created especially for constructing the
program. Such concepts can only be introduced by
definitions, but those definitions must be validated
explicitly against our perception of the problem in
order to ensure that the concepts adequately relate
to the “real” problem.

The case of simple concepts that are close to
known ones. One often has to deal with concepts
that can be considered already implicitly known and

understood by all people who have to use them, but
whose relevancy is insufficient for having been given
a name that is universally admitted. It is then neces-
sary to have recourse to a definition for naming the
concept and making everybody agree on some im-
portant details whose identification is necessary for
correctly using it. When reading such definitions, it
should be possible to “immediately see what they
are about.” The concept-specific theory then reduces
to only a few things, because the concept “naturally
takes its place” among already known ones.

Let us illustrate this with a specification of the
classical plateau problem.

Definition 2.2. Let S = (sl, s2,. . . , s,J be a finite
non-empty sequence of integers. A plateau of S
is an interval4 (i : j) such that:

1. lliljln
2. si = si+l = **- = Sj

3. (i : j) is not strictly included in any other
interval with properties (1) and (2).

Problem: Given a non-empty initialized array
a[1 . . n] of integers, construct a program that as-
signs to integer variable np the number of
plateaus of the sequence (a[11, a[2], . . . , a[nl>, and
to integer variable maxZp the maximum of their
lengths (the length of a plateau is the number of
its elements).

The definition in the specification above is sufficient
for a satisfactory problem statement, for two rea-
sons. First, the “technical” concept of plateau is not
brand-new, but rather a particular and precise oc-
currence of a more general concept that we already
know (the choice of the name “plateau” is thus not
arbitrary). Second, this definition is sufficiently sim-
ple for linking this particular concept to the general
one, that is for verifying whether the chosen termi-
nology really corresponds to something intuitive.
Moreover, the definition is necessary, because the
intuitive notion of plateau is too vague for being
able to rule out, in its absence, a misunderstanding
of the notions of number and length of the plateaus
of a sequence.

On the usefulness of examples. Specifications may
be accompanied by carefully chosen examples, so as
to facilitate their understanding. Since the role of a

4We assume the concept of interval is already known:
(i: j) = (n Ix is an integer and i s n I j}, where i, j are integers.

Specifications Are Necessarily Informal J. SYSTEMS SOFTWARE 285
1998; 40:275-296

definition, as considered here, is not to be formally
irreproachable (i.e., non-contradictory, for instance),
but to help understand something, there is no rea-
son to reject other means of communication that
might have other qualities. Some well-chosen exam-
ples often provide an intuitive understanding that no
definition could achieve. The latter then only makes
more precise the exact contours of the concept.
Other examples could help eliminate certain risks of
ambiguity in the definition by illustrating delicate
issues that are likely to be misunderstood for what-
ever reason.

As far as the risk of contradiction between defini-
tion and examples is concerned, note that this kind
of contradiction would only be a real disaster if it
were the non-contradiction of a definition that would
lend value to a concept. There is a confusion here
between truth and non-contradiction. What is im-
portant is to make known what one wants to say, not
to escape contradiction. One could even argue that
the discovery of a contradiction between an example
and a definition is the best thing that can happen in
some cases, because it carries an undeniable mes-
sage: something is wrong somewhere!

Personal experience5 shows that a “poorly de-
fined” concept can be perfectly understood thanks
to examples, especially when the concept can be
considered already implicitly known. Definition and
examples are thus complementary means of desig-
nating the concept. And one may well conclude that
there is only one concept corresponding to both the
definition and the examples, even if one has spotted
an apparent contradiction between them. What one
already knows helps understand the error. Finally,
note that the error risk is much higher in a defini-
tion than in an example, because it has to cover all
cases. Examples are more reliable, because more
“local,” and are thus an ideal means of getting
things straight.

Let us illustrate this on the plateau problem.
Assume condition (3) was omitted from the defini-
tion above, but that the following example was added:

Example 2.1. If S = (1, 1,3,3,3,2,3,5,5), then there
are 5 plateaus of S, namely (1: 2>, (3 : 5), (6: 6),

5A few examples: as a student, the lirst author had to use the
PL/I language and found it completely impossible to understand
the manuals except from the examples. As teachers in program
proving, both authors always give examples to support program
specifications. In a few cases, we eventually discovered errors in
our specifications, although the students had understood them
perfectly well.

(7 : 7), and (8 : 9). Also, its longest plateau is
(3 : 5), its length being 3.

Starting from the definition and the example, one
easily understands that plateaus are the longest
non-empty intervals (i : j) included in (1: n > such
that (2) holds. One could even have understood this
without noticing that the definition is incomplete.

On the usefulness of remarks, or, better, of a
“reasoned” presentation of definitions. All this
shows that it is difficult to correctly define a concept
in order to explain it to somebody else. In a sense,
writing the definition is already a programming act. A
definition is thus always the product of a more or
less explicit reasoning process. So if one wants to
facilitate the correct understanding of a definition,
one could point out delicate issues in remarks, or,
better, one could make explicit this reasoning pro-
cess.

For the plateau problem, one might want to point
out that the notion of plateau only makes sense with
respect to a sequence S, that a plateau of S is
always a non-empty interval, and that the set of
plateaus of S partitions the interval (1: n), where II
is the number of elements of S.

To do even better, one might show how the given
definition was reached from a “reasonable” intuition
of the concept of plateau of a sequence. This could
go as follows.

Let s = (s1,s2,..., s,J be a finite non-empty se-
quence of integers. Let us draw a coordinate
system, and mark the points at coordinates (i, si),
for 1 I i I II. Let us now draw, from each of
these points, a horizontal segment of unit length.
Some of these segments can be merged, giving
rise to disjoint segments of integer length, called
plateaus of the sequence:

6

i

I

I I I I I,,,,,,
1 I 3 4 5 6 7 8 9 10 II

The plateaus of the sequence (1, 1,3,3,3,2,3,5,5).

286 J. SYSTEMS SOFTWARE
1998; 40~275-296

B. Le Charlier and P. Flener

The objective is to write a program for computing
the number of plateaus of a sequence and the
maximum of their lengths. It is obvious that to
each plateau corresponds an interval verifying
conditions (1) to (3) [included here’as above], and
vice-versa. Moreover, the length of a plateau is
the number of elements of such an interval. This
leads us to the following redefinition of the
plateau concept, for our problem: [here follows
the definition above].

This presentation clearly allows one not only to
understand the definition more quickly, but also to
“verify” it according to one’s own criteria. We even
claim that such an intuitive presentation is self-suf-
ficient and even preferable to the definition, as the
latter is only a property of plateaus that one might
discover by oneself.

A final remark: in practice, it is not always useful,
nor possible (for “financial” reasons), to discuss all
introduced “simple” concepts in this much detail.
An acceptable compromise between the quality of
the presentation and the time invested to its tuning
must be found. Only experience shows where to
situate this compromise. The most important thing is
to understand that the objective is always the same:
to capture the posed problem as well as possible, as
it is.

The case of more complicated or “new” concepts.
Sometimes, the solving of a programming problem
requires the invention of relatively original concepts
that one cannot pretend having known before tack-
ling the problem. They can thus not be imagined
from nothing, but only constructed in small steps
after comparing the problem to what is already
known. The role of a definition is then to anchor
some ideas for further investigation: one must be
able to deduce many other properties from it, estab-
lishing thus the usefulness of the concept for solving
the problem at hand. The concept thus offers
economies of thought and reveals ways of solving
the problem. The choice of a definition is guided by
an intuition, i.e., the impression of having perceived
an analogy with something already known, This def-
inition is, in general, not the good one, because it
may later turn out that not all the “desirable” prop-
erties can be derived from it, so that it does not play
an efficient role in the problem solving process. The
definition then has to be modified, in the light of
these first conclusions, and so on, until the “good”
concept has been obtained, namely the one that
holds the key to the solution, or part of it. At the

end of this process, whose essential steps must be
reconstituted by all “clients” of the concept, the
latter is known beyond the finally adopted definition.
It is known by numerous properties linking it to
other concepts. It has become “intuitive and well-
known” and its definition is only one of its proper-
ties, among many others.

Remark. The distinction made here between “sim-
ple, implicitly known concepts” and “complex,
new concepts” is of course too crude. They are
only the extremes between which intermediates
can be found, corresponding to a gradation of the
effort to be done in order to construct a theory.

2.5.3 Only Representations of Concepts Can Be
Defined, not the Concepts Themselves. To justify
even more that the definitions introduced during the
analysis of a problem are not the ultimate reference
point for judging the value of a “solution,” but only
(imperfect) means of communication or “transient”
starting points that can be (or actually should be)
forgotten once the concept is well-understood, it is
interesting to remark that a definition never really
defines a concept, but only a certain representation
thereof. This remark ruins, by itself, the “absolute”
character of definitions by showing why they can be
“wrong”: whereas a concept cannot be something
else than itself, its representations can be incorrect,
i.e., can fail to respect the (implicit or explicit) rules
according to which they are supposed to represent
the concept.

In our opinion, a concept worthy of this name
must have a real and original identity that makes it
indivisible, distinct from every more or less complex
combination of “simpler” concepts. A concept is an
atom of thought. Therefore, an interesting concept
will always escape any particular definition, because
one can define, from given concepts, only combina-
tions thereof, i.e., nothing really new.

All this is particularly clear for “old,” universally
known concepts: for instance, whatever effort is
undertaken to define natural numbers must be arbi-
trary. A natural number is what it is and cannot be
reduced to anything else. Any definition thereof
rests on representation conventions that had better
be fixed very explicitly if one wants to wind up with a
satisfactory definition.

But all this is still true for “new,” problem-tailored
concepts. For instance, the concept of plateau of a
sequence introduced above by a definition corre-
sponds, in fact, to an intuitive concept that is very
precise, but impossible to communicate as it is. This

Specifications Are Necessarily Informal

is why that definition of a plateau only defines a
representation of this concept, namely as an interval
of integers. Other representation choices would have
led to different definitions. For example, one could
have decided to represent the intuitive notion of
plateau by couples of integers instead, as follows:

Definition 2.3. Let S = (si, s2,, . . , s,) be a finite
non-empty sequence of integers. A plateau of S
is a couple (i, j> such that:

l.l<i<j<n
2. si = Sit, = *** = Sj

3. i=lor(i>lands,_i~s~)
4. j=nor(j<nandsj#ssi+i>

This definition seems (to us) less good than the
previous one, because it handles differently the
plateaus at the extremities of the sequence. This is
due to the fact that one cannot talk about the
inclusion of a couple in another one. The reasoning
to be made for constructing and understanding this
second definition is thus slightly more tedious and
error-prone. The plateau concept is thus more easily
assimilated from the first definition. In any case, in
both approaches one has only defined a representa-
tion of the intuitive concept of plateau, which is the
only really important thing to understand. One
should not believe however that an axiomatic defini-
tion (e.g., an abstract datatype definition) would be
immune from this. Consider, for example, the fol-
lowing definition:

Definition 2.4. Let S = (sl, s2,. . . , s,> be a finite
non-empty sequence of integers. A plateau struc-
ture on S is defined by choosing a set P and two
functions lb, rb: P + N such that the following
conditions hold:

1. Vp E P: 1 I Zb(p) I rb(p) I n
2. Vp E P, Vi: lb(p) I i -< rb(p): si = slbCpj
3. Vi, j: (1 < i I j s n and si = s~+~ = .*a

= sj), 3!p E P: lb(p) s i and j I rb(p)

But this definition certainly says no more than the
previous two about the essentials of the plateau
concept. Refusing to say what plateaus are “made
of’ (be it intervals, couples, or beer bottles) is not
sufficient for guaranteeing that the reader immedi-
ately understands the concept.

A concept is abstract not because it was intro-
duced in a certain way, but because it has acquired
an importance and identity in our thoughts. There-
fore, the important issue is not to try and discover
the good way of defining things, but to choose the

J. SYSTEMS SOFTWARE
1998; 40:275-296

adequate concepts, namely those that help
cause we understand them the way they are.

287

us be-

2.5.4 On the Usage of Executable Definitions.
Nevertheless, not all ways of defining a concept are
equally good. The “style” of a good definition should
be adapted to the problem at hand in order to allow
one both to validate the definition and to derive
useful properties of the concept. Rather than giving
rules for writing definitions, we will criticize a com-
monly given one, i.e., that a good definition ought to
be written in a non-executable language [Hayes and
Jones, 19891. To illustrate our point, we choose the
very text formatting problem that was selected to
show the virtues of declarative (and formal) specifi-
cations, and that was already discussed so much in
the literature (see [Meyer, 19851 for an overview).

Most people involved with this problem sought to
specify it well, because, according to them, the cor-
rectness of a program can only be judged against its
specification. According to us, the correctness of a
program corresponds above all to an objective fact,
independently of the way the problem is posed.
Indeed, posing a problem means first of all admit-
ting that there is a problem, and, next, trying to
understand it in order to be, finally, able to solve it.

Posing the text formatting problem requires first
of ail the definition of the input and output texts.
This can only be done here after making some
hypotheses on the “environment” of the user. If we
had to solve this problem for a real environment
rather than for the sake of this article, then we could
not make any such hypotheses but should learn
about the environment of the user so as to replace
these hypotheses by facts, which would be substan-
tially more complicated than those used here. We
thus suppose the user “sees” texts as sequences of
lines (corresponding, in general, to lines on the
screen or on paper), each line being a sequence of
characters. This leads to the following definition of
the input text:

Definition 2.5. A word is a finite, non-empty se-
quence of non-blank characters.: A line is a fi-
nite, possibly empty sequence of characters and
blanks. Every line 1 can thus be uniquely decom-
posed as follows: b, w1 b, w2 b, . . . w, b,,
where n r 0, the wi are words, and the bi are
sequences of blanks that are non-empty ex-

6We consider an alphabet with a single blank character, de-
noted by LJ, and no layout characters, such as for tabulation and
end-of-line.

288 J. SYSTEMS SOFlWARE
1998; 40~275-296

B. Le Charlier and P. Flener

cept possibly for b, and b,,. The sequence of
words (wi, w2,. . . , w,) is the sequence of words
represented b>l 1, which we denote by 1 repr

(w1, w2, * * *, w,). A text is a finite, possibly empty
sequence of lines. Let t = (I,, I,, . . . , I,> be the
input text. The sequence of words represented by t
is the sequence of words S such that S =
s1*s2. *** .SP’ where the Si are the sequences
of words represented by the li (and l denotes
sequence concatenation). We denote this by t repr
S. Two texts are equivalent if they represent the
same sequence of words.

Now we must define the output text corresponding
to a given input text. Therefore, we first have to
capture this concept from an intuitive point of view.
So, to what does it correspond? The answer is: to the
result of applying an algorithm! The best way to
understand this concept is to imagine a human typist
having a listing of the input text and a terminal
where every line has a length of maxpos characters.
The job of the typist is to type the input text into the
terminal by filling every line as much as possible,
without trespassing the limit of the screen nor
breaking words. This clearly amounts to the applica-
tion of an algorithm whose execution uniquely de-
termines the output text. Therefore, if one abso-
lutely wants to “mathematically” define the output
text in terms of the input text (i.e., if the previous
explanations are deemed insufficient), then the best
one can do is to give a definition paraphrasing as
closely as possible the typist’s algorithm, because
such a definition has the best chances of being
correct and comprehensible. We thus propose the
following definition:

Definition 2.6. Let S = (wl, w2,. . ., w,) be a finite,
possibly empty sequence of words that are each at
most maxpos characters long. The compact repre-
sentation of S, denoted by compact(S), is the text
defined as follows:

1. if S = (), then compact(S) = (>;
2. else (i.e., if n z l), let i be the largest integer

such that 1 I i I n and the line w1 U w2 *** U
wi has no more than maxpos characters, and
let 1 = w1 U w2 -a* u wi and S’ =

so that compact(S) =

Given an input text t and the sequence of words S
represented by t, the output text corresponding to t
is defined if and only if no word in S is longer
than maxpos characters. It is then equal to com-
pact(S).

Although it is not expressed in a strictly formal
language and especially not in a programming lan-
guage, the definition of compact(S) can be viewed as
executable since it strongly suggests a way of com-
puting compact(S). However, it can also be argued
that the definition is declarative, because it does not
prescribe an order for the computation. (The value
of compact(S) can be computed either top-down or
bottom-up.) Nevertheless, the definition can be en-
coded relatively straightforwardly in any program-
ming language embodying recursion. More impor-
tantly, the definition expresses the effect of an algo-
rithm executed by hand, which constitutes our funda-
mental intuition of the problem. Hence the defini-
tion of compact(S) is not really a definition of the
problem but rather an essentialproperty that we can,
on the one hand, validate against our intuition, and,
on the other hand, use to construct a correct pro-
gram to solve the problem.7

Note that our definition of compact(S) contains
an over-specification, according to Meyer (1985),
because we constrain the lines to be filled as much
as possible in top-down order, rather than in non-
determinate order.’ We do not see the utility of
preferring a non-deterministic specification in this
case.

In conclusion, we agree on the value of declara-
tive specifications if “declarative” means “as natural
and close to the intuition as possible.” But we dis-
pute the idea that such specifications necessarily are
“non-executable” or “non-deterministic.” In our
view, the specification in (Meyer, 1985) is unnatural,
i.e., difficult to validate and difficult to use, because
too much emphasis is put on non-executability and
non-determinism, at the price of losing intelligibility.

2.6 The “General Form” of Specifications

We now try to capture the “general form” of speci-
fications: without however giving systematic rules
for writing “good” specifications, as such is too prob-
lem-specific.

‘An explicit proof of the correctness of a Pascal program
solving the text processing problem, based on the definition of
compact(s), has been given by the first author in (Le Charlier,
1985).

‘Notice that, although this constraint is a clear consequence of
our basic intuition, the definition of compact(S) does not impose
a unique order of computation to the program.

‘According to a suggestion by one of the anonymous reviewers,
we can reexpress this in terms of the concepts of problem and
solution, as follows: first, the specification of a program cites the
(name of the) problem that it helps to solve; second, it provides
the interpretation rules (or whatever other necessary representa-
tion conventions) allowing the user to solve the problem thanks to
the results of the program.

Specifications Are Necessarily Informal

The specification of a program should always have
two parts that play very distinct roles:

1.

2.

a statement indicating the purpose of the pro-
gram, i.e., the information that can be drawn
from the results of its execution;
a list of representation conventions -that are to be
satisfied for using the program correctly and for
interpreting its results correctly.

Statement (1) must always be very simple because
the information produced by a program (after inter-
pretation of its results) must have a simple meaning
to the user. Without it, she would be unable to use
the program to her advantage. The role of the
“theory” of the problem is to make sure that this
meaning exists and that it can be clearly and simply
formulated. The list (2) must also be sufficiently
simple to understand for the purpose of the program
not to be completely annulled by the difficulty of its
usage and the difficulty of interpretation of its re-
sults. This is not always easy to achieve due to the
formal character of programming languages. It is
thus sometimes necessary to construct another the-
ory before being able to simply state the representa-
tion conventions.

We now state what the specifications of the three
problems in Section 2.1 should contain.

Example: The Belgian National Lottery. The
specification reduces to the indication of how to
start the program and to the statement that it results
in displaying the next draw of the Belgian national
lottery. (It is practically useless to state the exact
format of the produced character string and the
rules for decoding this information, because every-
body immediately understands how to interpret the
message when it appears.)

Example: A payroll program. The accountant user
of the payroll program must know the necessary
information as well as the rules of its representation
by the input data. She must be able to verify the
correctness of these data. She also must know
enough about the rules of representation of the
results in order to be able to finish the payroll task
(this is actually the responsibility of a bank, nowa-
days). The specification thus reduces to the indica-
tion of how to start the program and to the state-
ment that, from correct input data, the program
produces correct results according to the used repre-
sentation rules.

Example: A search sub-program. Depending on
the desired generality, the programming language
used, and the general context of the problem at

J. SYSTEMS SOFTWARE 289
1998; 40~215-296

hand, there is a tremendous variety of possible spec-
ifications for a program performing a search in an
array. A satisfactory specification, in some cases,
could be the following:

Specification 2.1

The procedure search is a Pascal procedure declared
as follows:

function search(x : integer) : boolean

Its declaration must figure within the scopes of
the declarations of an integer constant n (such
that n r 1) and an array a of type anuy[l . . nl of
integer, which also is in the scope of the former.
When calling the procedure, the elements of array
a must be in non-decreasing order. Let u be the
actual value of the formal parameter x. If at least
one of the elements of a is equal to u, then the
call returns the value true, otherwise it returns
false. (The contents of a will be unchanged.)

The bulk of this specification is dedicated to the
statement of the representation conventions and to
technical details. These details are tedious but un-
avoidable because the used programming language
is a formalism. They do not, however, render the
specification unusable because the problem of know-
ing where to put the various declarations and how to
write them can be solved separately as well as once
and for all. When reasoning about it in the future, it
suffices to remember how to call the procedure, that
it answers the question “does u belong to a?,” and
that the answer is given as a boolean value.

However, it is important to note that the introduc-
tion of general representation conventions that are
specific to a particular problem (i.e., that are chosen
for an application and used for the specifications of
all the sub-programs of this application) can con-
tribute to making much more manageable the
amount of representation details specific to each
specification.

2.7 Requirements Specifications and the Theory
of the Problem (Are the Same Thing)

The process of elaborating requirements specifica-
tions is nowadays considered by many computer
scientists as the most crucial stage of software devel-
opment. Requirements engineering is thus emerging
as a new and major branch of the software engineer-
ing discipline. It is primarily concerned with the
identification of the user’s needs, i.e., the so-called
requirements elicitation process. As soon as the
user’s requirements are explicitly stated, they can
(and must) be checked with respect to consistency

290 J. SYSTEMS SOFTWARE
1998; 40:275-296

B. Le Charlier and P. Flener

and completeness. In fact, this is what we call
“elaboration of the theory of the problem.” Thus,
requirements specifications are not specifications (in
our sense), but rather an exposition of the very
theory making it possible to specify the software
system.

Formal specification languages are advocated by
many researchers as the distinguished methodologi-
cal tool for requirements engineers, because they
allow them to make the user’s informal statement
precise, to check the requirements specification for
consistency and completeness, and to ease the dis-
cussion with the user by means of prototyping, to
name but a few advantages. In our opinion, the
mechanical treatment of (formal translations of) the
user’s requirements can indeed possibly provide in-
formation that could not be easily inferred by hand.
However, the formal translation process is com-
pletely similar to the writing of a program in that it
necessitates giving precise specifications (in our
sense) to most symbols and constructs of the formal
text, in order to ensure that the formalization cap-
tures exactly what the user meant. Thus, the writing
of (so-called) formal requirements specifications
presupposes the existence of an already fully under-
stood theory of the problem, in our sense. Finally, as
seen in Section 2.5, even the elaboration of. the
theory of the problem may benefit from the use of
specifications in our sense, in order to make explicit
the rationales underlying the concepts introduced by
means of definitions.

3. SPECIFICATIONS NECESSARILY
ARE INFORMAL

3.1 Why Can’t There Be Any Formal
Specifications?

A “formal specification” is a statement in a formal
specification language. lo Such a statement is unintel-
ligible “by itself,” primarily because the concepts of
the problem are not primitive concepts of the used
formal language. Therefore, a formula can only be
“understood” as a representation of an intuitive
statement, according to explicitly given conventions.
These conventions are in general that the formula is
true, in the chosen interpretation of the language, if

and only if the intuitive statement is true. The
enunciation of such conventions is precisely what we
call a specification, in the sense that we discussed in
Section 2, although not the specification of a pro-
gram but rather of a formula. Its role is to give a
meaning and thus a purpose to something (the for-
mula in this case) that would otherwise not have
one. Whether a formula is true or false is of no
interest whatsoever if this is the only thing we know
about it. In general thus, a specification is necessary
each time one wants to represent a known property
or concept by a text written in an artificial language.
This also shows that any “formal specification” of a
(formal) program is much closer to the program
itself than to a specification in our sense. A notice-
able difference may be that it is not “executable”
because it is written in a “non-executable” language.
In our opinion, it is not important whether the
chosen language is executable or not, but whether it
allows us to say in the most direct way what the
purpose of the program is. Such a condition cannot
be fulfilled by any formal language, given the ex-
tremely low expressiveness of such languages. A
formal language is always almost as bad as a pro-
gramming language for communicating the purpose
of a program. In other words: providing a formal
specification of a program amounts almost to consid-
ering that the text of the program (or of another
program) allows one to understand its purpose.

Some would now charge that our thesis is mainly
definitional, and that we redefine the concept of
specification in a way that rules out formality. How-
ever, we do not think that we actually redefine this
concept, since it is generally agreed that the specifi-
cation of a program is the statement with respect to
which the correctness of the program becomes
meaningful. Indeed, the crux of the question is not
whether we have redefined the concept of specifica-
tion in a way that rules out formality, but whether
our view of the concept correctly captures the notion
and makes it useful. Here we believe that our defi-
nition puts a better emphasis on the role of this
notion and thus makes it more useful. So the possi-
ble charge can-and actually should-be reversed:
it is the formalists who have incorrectly redefined the
notion of specification, namely in a way that justifies
the need for formal methods!

“Note that a statement in the “usual” mathematical language,
such as ex = 1 +x +x2/2!+ ..* +x’/i!+ *.., is not a formal
statement, but an informal one because that language is not
predehned, nor syntactically checkable, and, more importantly,
because its meaning rests on general human knowledge, not on
the (obscure) semantics of a formal specification language. Hence
such a statement essentially is part of the fohdore.

3.2 Seven Frequently Asked Questions about
Formal Specifications

Are informal specifications and formal ones com-
plementary? Many authors suggest that it is neces-

Specifications Are Necessarily Informal J. SYSTEMS SOFTWARE 291
1998: 40:275-296

sary to add an “informal comment” to a program
that helps communicate the purpose of the program
and that corresponds to our notion of specification.
Similarly, many researchers argue that formal speci-
fications ought to be complemented by informal
statements [Hoare, 1996; Wordsworth, 1992; Zave
and Jackson, 19961. Nevertheless, such comments
are considered insufficient to ensure that the effect
of the program has been precisely defined. This
corresponds to the frequent opposition of intuition
and rigor, which considers that a fruitful intellectual
activity should be driven by intuition (which is com-
prehensible but vague) so as to produce rigorous
results (which are formal but incomprehensible). In
our opinion, the correct usage of a program necessi-
tates having understood intuitively and rigorously its
purpose. There is no need to distinguish two notions
of specification, one comprehensible and vague, the
other one precise and unintelligible. If a specifica-
tion features delicate issues that are likely to be
misunderstood, it is only necessary to give more
details about them. There is no reason to believe
such difficulties are best resolved, in all cases, by
using a formal language chosen once and for all.

If one thinks it is not safe to directly and simply
explain the purpose of a program, i.e., in the way
one understands it oneself, and that one had better
define with absolute precision the “effect” of the
program, even under the risk of incomprehensibility,
by giving the readers “indications” on how to recon-
struct a comprehensible specification for themselves,
then one is confronted with the following difficulties.
It is almost as difJicult to write without errors a formal
speci’cation as the program itself, and it is bare&
easier to “decipher the message,” in the opposite direc-
tion. To write a correct formal specification, one has
to make an explicit detailed reasoning that is very
different from a vague informal comment. In order
to convince oneself of having understood the formal
specification, another reasoning has to be done,
which is extremely tedious if the formal specification
is not accompanied by such comments. So, for a
couple (formal specification, informal specification)
to suitably play its intended role, it would have to be
accompanied by a detailed reasoning fixing their
representation relationships. However, this is only
meaningful if the informal specification has been
explicitly and precisely stated. The role of the formal
specification and the reasoning is then reduced to
lifting the last doubts and ambiguities. But this can
be achieved at lower cost by other means, such as
the inclusion of significant examples, the provision
of the reasoning process leading to the definitions in
the specification, etc.

Are formal specifications a means of dividing the
difficulty of programming? Other people would
rather say that the recourse to formal specifications
is, if not a panacea, at least a means of division of
the difficulty. Indeed, it would allow, on the one
hand, the formal and mechanical proof of correct-
ness of programs, and, on the other hand, the intu-
itive justification that the formal specifications cor-
rectly represent the problem to be solved. One could
thus give much more confidence to programs, since
everything reduces to the problem of validity of the
formal specifications, formal correctness being es-
tablished beyond all doubt.

This viewpoint rests on two forms of exaggerated
optimism on formal methods. First, it is in general
not significantly easier or safer to prove intuitively
the correctness of formal specifications than that of
programs. Second, formal proofs of program correct-
ness are almost always infeasible in practice, what-
ever the available mechanical aid (proof verifier or
theorem prover). For example, note that a formal
proof of program correctness amounts to proving a
formula whose length is at least the sum of the
lengths of the formal specification and the program.
So what will be the length of the proof?! This also
assumes a complete formalization of the semantics
of the programming language, which is already by
itself an almost unrealizable task. If one considers
that the time and budget allocated to the verification
of program correctness is necessarily limited, it can
be easily seen that one had better spend a bit more
time justifying intuitively the correctness of the pro-
gram and carefully choosing test cases, rather than
making use of such formal methods.

More pragmatically and without aiming at com-
plete correctness proofs, software tools could be
used to check some “desirable” properties of pro-
grams. It is not our purpose to discuss the value and
usefulness of such tools in this paper, since they are
often more related to documentation and organiza-
tional issues than to correctness issues. The former
issues are extremely important in practice, but their
discussion is completely out of the scope of this
paper. Nevertheless, we think that such tools can
possibly become harmful, because the value of pro-
grams could be judged only with respect to the
properties that are checkable. Hence we insist that
correctness rests on largely unformalizable issues
and should thus be addressed by making explicit
informal reasonings and by keeping a record thereof.

Remark. In spite of the previous argumentation, we
do not dismiss current research on automated
program verification, provided it is understood as

292 J. SYSTEMS SOFTWARE
1998; 40:275-296

B. Le Charlier and P. Flener

very long term research whose final outcome is
still largely unclear. In fact, both authors of this
paper are doing research related to program veri-
fication (Flener and Deville 1993; Flener et al.,
1998; Le Charlier, 1994). Existing techniques, such
as model-checking or abstract interpretation, can
be applied to verify specific properties of program
and systems. It is however unclear at the time of
writing how this research will affect future prac-
tice. Moreover, the authors of this paper do think
that their view on informal specifications remains
of paramount importance to understand and mas-
ter systems based on those emerging techniques
(Le Charlier and Flener, 1997).

Is it necessary to formalize specifications to prove
their consistency and completeness? Some people
say that formal specifications allow systematic veri-
fication of their consistency and completeness. This
deserves several remarks.

If it is desirable that a statement be consistent
and complete, the precise meaning of these notions
always strongly depends on the context of the state-
ment, that is on a lot of things that are known about
the subject of the statement before even examining
it. If a statement defines a problem that has no
solution, it is sometimes judged inconsistent, but, at
other times, it is considered a perfectly consistent
statement of a problem that just happens to have no
solution; similarly for completeness, when the prob-
lem has many solutions. Since a formal statement
only is, in general, a representation of a non-formal
statement, which is the only one to be comprehensi-
ble, the consistency and completeness of a formal
statement can only receive a precise meaning
through this representation relation. As this relation
is always chosen ad hoc, it is impossible to satisfacto-
rily define (i.e., in a manner always corresponding to
the intuitive concepts) consistency and completeness
of formal specifications. Since this relation is thus
totally exterior to the used formalism, consistency
and completeness cannot be verified mechanically.

However, there is some belief and hope among
many computer scientists that the “real world” can
be modeled in some canonical way, provided that an
adequate formalism is used. Such belief and hope
rests on the assumption that such a formalism could
reflect the structure of reality. Hence, incomplete-
ness or inconsistency of a description of the world
written in this formalism would be interpreted very
naturally as incompleteness or inconsistency of our
understanding of the world. This view is related to
Hilbert’s program for proving the non-contradiction

of mathematics. His intuition was that all mathemat-
ics could be embodied in a uniform formal system
whose non-contradiction could be proved by ele-
mentary arithmetic reasonings. Godel’s incomplete-
ness theorem has definitely ruined this program.
Hence, there is no natural formal structure to all of
mathematics. A fortiori, there is no formalism allow-
ing one to model the world in a natural way. Thus,
consistency and completeness of specifications only
are a by-product of the specifier’s correct under-
standing and there is no a priori way to check that
her understanding is correct.

Are formal specifications more concise than infor-
mal ones? A common argument is that formal spec-
ifications are more concise than informal ones. How-
ever, some people argue to the contrary. Strictly
speaking, the raised question is meaningless for
specifications in our sense, since they are only the
way to link the (formal) program to its (informal)
purpose. So the question in fact only applies to
requirements specifications, or, in other words, to
the theory of the problem.

During the elaboration of this theory, the usage
and introduction of mathematical notations is cer-
tainly useful, but, in our view, usual mathematics are
part of the folklore and hence mathematical nota-
tions are part of the natural language. Indeed, math-
ematical notations mainly are a way to make natural
language more concise. Note however that an expla-
nation of the link between these mathematical con-
cepts and the concepts of the problem is generally
needed, and this part of the “theory of the problem”
necessarily requires using plain natural language.
(Thus, it cannot be made concise by means of math-
ematical notations.)

Finally, what can be done with usual mathematics
can be done to some extent within a formal specifi-
cation language. However, the notations available in
such a language are extremely less convenient than
the usual mathematical notations, notably because
such languages are syntactically checkable and have
(or should have) a fixed (and often complicated)
semantics. As a consequence, many more explana-
tions are needed to link a formal requirements spec-
ification to what it stands for in the real world than
to understand the “theory of the problem,” in our
sense.

Are formal specifxations more pragmatic than
informal ones? Some advocates of formal methods
readily agree on the inevitability of informal specifi-

Specifications Are Necessarily Informal J. SYSTEMS SOFIWARE 293
1998; 40~215-296

cations and informal verification, but they also point
out that formal and informal specifications have
different purposes and qualities. Indeed, formal
specifications, whether executable or not, would offer
a means of early feedback from the customer-
through execution of the specification (early proto-
typing) or through demonstration of desired proper-
ties-and hence could allow significant cost savings.
Otherwise, discrepancies between the specification
and the customer’s intentions might only be de-
tected when the customer runs (an increment of) the
final software. Indeed, one may certainly construct
intermediate formal descriptions before constructing
the final software, as they can help during the pro-
cess of elaborating the theory of the problem. But
one cannot call such a description a “formal speci-
fication” (and writing it is more of a programming
activity than a specification activity), as it is not a
specification at all (in our sense) and as it is incom-
prehensible by itself and must thus be explained to
the customer (which explanation process provides
the very part that is missing in the formalization), be
it as a document or as an executable or demonstra-
ble prototype.

Can formal specifications be automatically gener-
ated from informal ones? Some researchers advo-
cate writing informal specifications in so-called
“semi-formal” notation (such as SA/SD) or in some
form of “controlled natural language” (in the sense
that the vocabulary and grammar are restricted so as
to give sentences a “clear” semantics), expecting
that they can be (semi-)automatically translated into
(executable) formal specifications. The problem with
the former approach is that these languages essen-
tially are informal ones (because they do not feature
a predefined syntax and semantics), and are thus
subject to our comments above on the complemen-
tarity of informal and formal specification frag-
ments. There are no such things as “semi-formal
languages.” The problem with the latter approach is
that these languages essentially are formal ones, and
thus subject to the comments in this entire paper.
There are no such things as “informal controlled
natural languages.” Since the descriptions are thus
actually formal, it is only obvious that they can be
automatically translated into some other formal lan-
guages. And, as formal statements, they cannot pos-
sibly be specifications, in our sense. For such speci-
fications (in our sense), there is of course no way
that they can be automatically formalized, as the
link between the formal concepts and the real-life
ones is not formalizable and as one would have to

prove that the translation process is equivalent to
the mechanisms of human knowledge acquisition.

Are formal specifications necessary for safety-crit-
ical systems? It is often argued that formal methods
are necessary for the design of safety-critical sys-
tems, and some standards organizations even start
imposing/recommending their usage for such pro-
jects. The rationale is that systems satisfying
“specifications” in the form of, say, finite-state ma-
chines (that are deemed trivially correct after in-
spection) can be shown, say, to be free of deadlock
and lifelock risks. Our objection to this formalist
viewpoint is essentially the same as to the pragma-
tism issue above, because, once again, it is a delu-
sion to believe that there can be “obviously correct
formal specifications.”

Note that we do support the idea that extra care
and rigor are needed in the design of safety-critical
systems: it can certainly be worthwhile to check via
model-checking whether some hardware component
complies with some formalized property. Neverthe-
less, the elaboration of such formalized properties
requires substantial informal reasoning and specifi-
cations in our sense. We even believe that, in most
cases, making completely explicit the informal rea-
soning leading to the design of a safety-critical sys-
tem is more reliable than a formal verification. Of
course, the formal verification can bring extra con-
fidence or detect shortcomings in the informal rea-
soning, but, in our opinion, such benefits have been
too much overvalued in the literature on formal
methods.

4. CONCLUSION: WHY ARE THE ROLE AND
NATURE OF SPECIFICATIONS SO OFTEN
MISUNDERSTOOD?

We now explain why our notion of specifications is
difficult to understand and to admit by many piacti-
tioners and theoreticians of computer science. But
let us first summarize our viewpoint:

1. A program is useful because its results can help
to solve a problem. There is no limit to the class
of problems that we can imagine in the “real”
world. Therefore, the understanding of the pur-
pose of a program may necessitate the knowledge
of notions as distant as desired from program-
ming concepts (or from concepts used in formal
specification languages).

2. The specification of a program essentially is the
statement of its purpose.

294 J. SYSTEMS SOFTWARE
1998; 401275-296

B. Le Charlier and P. Flener

3. A specification should not, nor can it provide all
the knowledge necessary to the understanding of
the purpose of the program. It must just try to
state it in the most satisfactory possible way, that
is in the most simple and direct way. That is why
a specification is not meant for everybody, but
only for those who can understand it.

4. For the specification to be comprehensible by
sufficiently many people, it is, in general, neces-
sary to “construct” a theory that can be studied
and understood by all. Such a theory cannot be
constructed from nothing, but assumes a consid-
erable preliminary knowledge that is partly shared
by all the considered people.

Now, there are at least two reasons why our view of
specifications is very uncommon nowadays.

First, there is the influence of the currently domi-
nating ideas on the nature of mathematics. Mathe-
matical theories are supposed to be founded on
formal axiomatized theories. This means that every
intuitive statement of the theory is supposed to be
only an “abbreviation” of a formal statement that is
itself mechanically deducible from the axioms. From
there to infer that every interesting result of a
theory can be discovered relatively quickly as soon
as the axioms of its theory are known is only a small
step. And this is the “step” made, consciously or not,
when asserting that the specification of a program
should, above all, define with absolute precision the
effect of the executions of this program. Indeed, it is
clear that from the input/output relation deter-
mined by the executions of a program, one can
theoretically deduce all other interesting properties
of this program. Therefrom, some conclude that a
specification reduces to such a definition, assuming
that every reader is sufficiently intelligent to derive
from it all other “interesting” properties of the
program. (This means the reader is assumed to be
omniscient, because if a program outputs the string
“380,000”, she would, for instance, have to derive
from this observation that one of the properties of
the program is to give the distance between the
Earth and the Moon, expressed as a decimal amount
of kilometers.)

Therefore, the idea that the specification of a
program must be and can only be the definition of
an input/output relation is a simple transposition of
the idea that there is nothing more in a mathemati-
cal theory than in its axioms. But, in order to under-
stand the exact role of specifications, one should
realize that, to the contrary, there is infinitely more
than that in an intuitive theory: every new concept,
notation, or result adds value to it that is not at all

contained in the statement of its axioms. The intu-
itive statement of an important theorem certainly is
not a mechanical consequence of the axioms of a
formal system, no more than the assertion of the
“truth” equivalence between this statement and a
formula. And this even holds for statements of the
form “that formula is a theorem,” because the
meaning of the notions of formula and theorem is
not derivable from the mechanical rules of the for-
mal system.

In conclusion, a correct understanding of the notion
of specification necessitates, in our opinion, a return to
a more intuitive and “transcendent” perception of
mathematics.

Second, there is the opinion according to which
the mastery of the programming problem can only
be achieved by recourse to effective and automat-
able methods. It seems (sadly) evident that few peo-
ple are ready to admit that the mastery of program-
ming will always depend, above all, on the compe-
tence of the involved people. The manager wants
effective criteria evaluating the quality of the work
done by the programmers. The programmer expects
the “theoreticians” to provide rules that can be
followed blindly. Nobody wants to admit that the
best way to realize whatever task is to do one’s best,
by trying to stick to utmost intellectual honesty.

If, regarding specifications, we say that the best
thing to do is to understand the exact role of this
notion so as to be able to “see,” in most cases, how
to state them best, it will be considered that we have
not brought anything interesting to the debate, be-
cause we have not given any rule or criterion for
writing good specifications or for evaluating them.
However, some people say that, as it is better to do
something rather than nothing at all, it is better, all
things considered, to give rules that are arbitrary but
measurable.

For us, it is certain that little progress can be
expected in programming as long as the opinion is so
widespread that the value of a criterion is deter-
mined by its being measurable and computer read-
able. We think so because this idea can only prolong
the illusions and avoid the real problems: thanks to
such criteria, the manager can take decisions with-
out having to get involved in the project, and this
changes nothing to the quality of the programmers’
work, except that they have to adjust themselves so
as to respect these rules even when they do not
bring any practical help, or, worse, when they com-
plicate the construction of the program.

These remarks apply not only to software project
managers, but also to the managers of research
funding agencies. Academicians are almost “forced”

Specifications Are Necessarily Informal J. SYSTEMS SOFTWARE 295
1998; 40~275-296

by them to claim that their formal methods research
will increase productivity and competitiveness.

Finally, let us stress once again that formal meth-
ods research is not sterile, especially in the long
term, because it will allow us to understand better
how to design convenient computer languages and
systems. However, we do think that our view of
informal reasoning and specifications will remain
relevant in the long term, since no formal language
can possibly refer to real-world concepts as conve-
niently as natural language can.

ACKNOWLEDGMENTS

The authors are indebted to Prof. Henri Leroy for his spiritual
patronage. The central ideas of this paper have been deeply
influenced by his teaching and the numerous nightly discus-
sions with the first author. We would also like to acknowl-
edge valuable feedback from Prof. C. A. R. Hoare, Prof. T.
Winograd, and Dr. A. Hall, as well as the useful comments of
the anonymous reviewers.

REFERENCES

Balzer, R., A 15 year perspective on automatic program-
ming. IEEE Trans. on Software Engineering
11(11):1257-1268 (1985).

Balzer, R., Goldman, N., and Wile, D., Informality in
program specifications. IEEE Trans. on Software Engi-
neering 4(2):94-102 (1978). Also in C. Rich and R. C.
Waters (eds.), Readings in Art@cial Intelligence and Soft-
ware Engineering, pp. 223-232. Morgan Kaufmann, 1986.

Bowen, J. P., and Hinchey, M. G., Ten commandments of
formal methods. IEEE Computer 28(4):56-63 (1995a).

Bowen, J. P., and Hinchey, M. G., Seven more myths of
formal methods. IEEE Software 12(3):34-41 (1995b).

Craigen, D., Gerhart, S. L., and Ralston, T., Formal meth-
ods reality check: Industrial usage. IEEE Trans. on
Software Engineering 21(2):90-98 (1995).

De Millo, R. A., Lipton, R. J., and Perlis, A. J., Social
processes and proofs of theorems and programs. Comm.
of the ACM 22(5):271-280 (1979). Reactions in Comm.
of the ACM 22(11):621-630 (1979).

Denning, P. J. (ed.), A debate on teaching computing
science. Comm. of the ACM 32(12):1397-1414 (1989).

Fetzer, J. H., Program verification: The very idea. Comm.
of theACM 31(9):1048-1063 (1988). Reactions in Comm.
of the ACM 32(3):374-381 (1989).

Flener, P., and Deville, Y., Logic program synthesis from
incomplete specifications. Journal of Symbolic Computa-
tion: Special Issue on Automatic Programming
5(5-6):775-805 (1993).

Flener, P., Lau, K.-K, and Ornaghi, M., On correct pro-
gram schemas. In N. Fuchs (ed.), Proc. of LOPSTR’97.
LNCS, Springer-Verlag, 1998.

Flener, P., and Popelinslj, L., On the use of inductive
reasoning in program synthesis: Prejudice and prospects.
In L. Fribourg and F. Turini (eds.), Proc. of META’
and LOPSTR’94, pp. 69-87. LNCS 883, Springer-Verlag,
1994.

Fraser, M. D., Kumar, K., and Vaishnavi, V. K., Informal
and formal requirements specification languages: Bridg-
ing the gap. IEEE Trans. on Software Engineering
17(5):454-466 (1991).

Fraser, M. D., Kumar, K., and Vaishnavi, V. K., Strategies
for incorporating formal specifications in software de-
velopment. Comm. of the ACM 37(10):74-86 (1994).

Fuchs, N. E., Specifications are (preferably) executable.
Software Engineering Journal 71323-334 (1992).

Gerhart, S. L., Craigen, D., and Ralston, T., Experience
with formal methods in critical systems. IEEE Software
11(1):21-28 (1994).

Gibbs, W. W., Software’s chronic crisis. Scientific American
271(3):86-95 (1994).

Gravell, A., and Henderson, P., Executing formal specifi-
cations need not be harmful. Software Engineering Jour-
nal 11:104-110 (1996).

Guttag, J., Horning, J., and Wing, J., Some notes on
putting formal specifications to productive use. Science
of Computer Programming 2(1):53-68 (1982).

Hall, A., Seven myths of formal methods. IEEE Software
7(5):11-19 (1990).

Hayes, I. J., and Jones, C. B., Specifications are not
(necessarily) executable. Software Engineering Journal
4(6):330-338 (1989).

Hoare, C. A. R., An overview of some formal methods for
program design. IEEE Computer 20(9):85-91 (1987).

Hoare, C. A. R., How did software get so reliable without
proof? In M.-C. Gaudel and J. Woodcock (eds.), Proc.
of FME’96, Industrial Benefit and Advances in Formal
Methods. LNCS 1051, Springer-Verlag, 1996.

Jackson, M., Software Requirements and Specifications: A
Lexicon of Practice, Principles, and Prejudice, Addison-
Wesley, 1995.

Johnson, W. L., Deriving specifications from require-
ments. In Proc. of ICSE’88. IEEE Computer Science
Press, 1988.

Larsen, P. G., Fitzgerald, J., and Brookes, T., Applying
formal specification in industry. IEEE Software
13(7):48-56 (1996).

Le Charlier, B., R$k_xions sur le probk?me de la correction
des programmes. Ph.D. Thesis, University of Namur
(Belgium), 1985.

Le Charlier, B. (ed.), Proc. of the First International Static
Analysis Symposium. LNCS 864, Springer-Verlag, 1994.

Le Charlier, B., and Flener, P., On the desirable link
between theory and practice in abstract interpretation.
In P. Van Hentenryck (ed.), Proc. of SAS’97, pp.
379-387. LNCS, Springer-Verlag, 1997.

Meyer, B., On formalism in specifications. IEEE Software
2(1):6-26 (1985).

296 J. SYSTEMS SOFTWARE
1998; 4@215-2%

Pamas, D. L., Mathematical description and specification
of software. In B. Pehrson and I. Simon (eds.1, Proc. of
IFIP’94, pp. 354-359. Elsevier Science, 1994.

Pamas, D. L., and Madey, J., Functional documentation
for computer systems engineering. Science of Computer
Programming 25:41-61 (1995).

Saiedian, H. (ea.), An invitation to formal methods. IEEE
Computer 29(4):16-30 (1996).

B. Le Charlier and P. Flener

Wing, J. M., A specifier’s introduction to formal methods.
IEEE Computer 7(5):8-24 (1990).

Wordsworth, J. B., Software Development with Z: A Practi-
cal Approach to Formal Methods in Software Engineering.
Addison-Wesley, 1992.

Zave, P., and Jackson, M., Four dark comers of require-
ments engineering. ACM Trans. on Software Engineering
and Methodology 7(1):1-30 (1997).

