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We reconsider the concept of specification in order to 
bring new insights into the debate of formal versus 
non-formal methods in computer science. In our view, 
the correctness of a useful program corresponds to an 
objective fact, which must have a simple, precise, and 
understandable formulation. As a consequence, a 
specification can (and must) only make precise the link 
existing between the program (formality) and its pur- 
pose (informality). Moreover, program correctness can 
be argued only by means of non-formal reasonings, 
which should be as explicit as possible. This allows us 
to explain why specifications cannot be written in a 
strictly formal language. Our view of specifications 
does not imply a rejection of all ideas put forward in 
the literature on formal methods. On the contrary, we 
agree with the proponents of formal methods on most 
of their arguments, except on those following from the 
assumption that specifications could (or should) be 
formal. Finally, we examine why the role and nature 
of specifications are so often misunderstood. 0 1998 
Elsevier Science Inc. 

1. INTRODUCTION 

Gist specifications were near& as hard to read as those in 
other formal specification languages. We soon realized 
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*Contrary to previous papers of the ‘myths series” [4,19], we do 
not discuss industy-level myths on the uselessness of formal meth- 
ods, but rather ana&ze some academic myths on their usefitlness. 

that the problem was not particular to Gist, but extant 
across the entire class of formal specification languages. 
In their effort to be formal, all these languages have 
scrubbed out the mechanisms which make informal lan- 
guages understandable, such as summaries and overviews, 
alternative points of view, diagrams, and examples. 

-R. Baker (19851. 

Recently, there have been numerous papers advo- 
cating the use of formal methods in software devel- 
opment (e.g., [Bowen and Hinchey, 1995a, 1995b; 
Craigen et al., 1995; Fraser et al., 1994; Gerhart et 
al., 1994; Gibbs, 1994; Hall, 1990; Larsen et al., 
19961, plus some of the opinions in Saiedian [1996]). 
Similar opinions were sporadically published before 
(e.g., [Fraser et al., 1991; Guttag et al., 1982; Hoare, 
1987; Meyer, 1985; Wing, 1990]), plus some of the 
opinions in Denning (1989). In these papers, mem- 
bers of academe and industry describe formal meth- 
ods as a key contribution to overcoming the chronic 
software crisis. Indeed, formal specification lan- 
guages force specifiers to be absolutely precise about 
their intentions, since (internal) inconsistency and 
incompleteness can be mechanically detected. More- 
over, formal specifications can be used during vali- 
dation by the customer through animation or proto- 
typing, and can guide the actual development of the 
software, or at least be used in the formal verifica- 
tion of the developed software. All this is proposed 
at various degrees of formality, from fully formal to 
“formal light.” 

However, fallacies in some assumptions underly- 
ing formal methods have been exposed, such as by 
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pointing out essential differences between engineer- 
ing and mathematics in general, and between com- 
puting and mathematics in particular (see other 
opinions in [Denning, 1989; Saiedian, 1996]), or by 
shedding some light onto the real nature of require- 
ments and specifications, so as to identify minimum 
standards for languages allowing their representa- 
tion (Jackson, 1995; Zave and Jackson, 1997). Some 
authors have been begging for caution about formal 
methods, by mentioning fundamental theoretical and 
practical problems, e.g., DeMillo, Lipton, and Perlis 
(1979), Fetzer (1989), Karp (in [Denning, 1989]), 
Parnas (119941, and in [Saiedian, 1996]), and Wino- 
grad (in [Denning, 19891). 

A similar debate is going on about the teaching of 
computer science (Denning, 1989) should the cur- 
riculum include formal methods or not? To what 
extent? 

Simultaneously, there is a debate on whether for- 
mal specification languages ought to be executable 
or not (Fuchs, 1992; Gravel1 and Henderson, 1996; 
Hayes and Jones, 1989). However, some researchers 
challenge the contention that specifications ought to 
be (fully) formal in the first place, e.g., Balzer et al. 
(Balzer, 1985; Balzer et al., 1986), Karp (in [De- 
nning, 1989]), and Pamas ([Pamas, 1994; Pamas and 
Madey, 19951, and in [Saiedian, 19961). 

Our objective is to shed some further light onto 
these debates. We propose to go back to the very 
reasons that make the running of a program useful, 
i.e., the fact that its results can be straightforwardly 
interpreted as a statement about the real world. 
Starting from this simple observation, we draw the 
conclusion that the specification of a program only 
consists of (the statement of) the link relating the 
program (formality) and its purpose (informality). 
Since, as we will argue, the purpose of a program 
must be something directly understandable, specifi- 
cations also are the essential tool for constructing, in 
practice, correct real-world programs through ex- 
plicit but non-formal reasonings. Additionally, our 
discussion of specifications allows us to explain why 
formal specifications (i.e., specifications written in a 
formal specification language) are not really specifi- 
cations, since this would be a contradiction in terms. 
Several researchers in formal methods have recently 
reported insights related to ours, namely that infor- 
mal “comments” are inevitable adjuncts to formal 
specifications (Hoare, 1996; Jackson, 1995; Words- 
worth, 1992; Zave and Jackson, 1997), or the fact 
that the knowledge of the environment in which the 
program will be embedded is essential to the under- 
standing and the writing of specifications (Johnson, 
1988). But our reflection goes, in a sense, beyond 

their conclusions, since we claim that specifications 
are, or ought to be, informal by their very role. 

Our view of specifications does not imply a rejec- 
tion of all ideas put forward in the literature on 
formal methods. On the contrary, we agree with the 
proponents of formal methods on most of their 
arguments, except on the fact that specifications had 
better be written in a formal, i.e., completely prede- 
fined and syntactically checkable, language. And, 
inevitably, we also disagree with other arguments 
that are a consequence of this assumption that for- 
mal specification languages are desirable. 

Formal methods are in general introduced as be- 
ing the use of mathematics in the process of con- 
structing computer software (including the elabora- 
tion of specifications). We agree that mathematics 
are extremely useful in this context, but we disagree 
on reducing the concept of mathematics for com- 
puter science to the restricted framework of any 
formal specification language. 

Program verification is advocated by most distin- 
guished computer scientists as the only way to 
improve the quality of software. We agree that pro- 
gram verification or, better, systematic program con- 
struction is the only way to build satisfactory com- 
puter software, but we disagree on the fact that 
program proofs must be automated, since, as we try 
to demonstrate, this would imply a vicious circle. 

Requirements engineering is viewed by most au- 
thors as the most crucial stage in the development of 
a large software system. We agree on this viewpoint 
and especially on the importance of the elicitation 
process, but we disagree with the opinion that writ- 
ing formal specifications is the best basis for the 
elicitation process: such a process is best achieved in 
a language as expressive as possible, i.e., a natural 
language enhanced with any desired notational con- 
ventions. 

Finally, it is generally accepted that formal meth- 
ods should be supported by corresponding software 
tools. We argue that formal descriptions of any kind 
(programs, finite-state automata, “declarative” de- 
scriptions, and the like) can be useful only because 
they can be the input of an automated process 
whose output provides directly understandable infor- 
mation that could not be realistically discovered by 
manual calculation. Nevertheless, the elaboration of 
any formal description (of whatever nature) requires 
a careful construction process that cannot be formal- 
ized in any way since this would entail a regressurn 
ad infinitum. Note that we do not say that such tools 
are useless, but only that the crafting of their inputs 
already is a programming activity whose mastering 
definitely requires explicit informal reasoning. 
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We conclude this introduction by summarizing the 
articulation of our argumentation along the three 
main sections of the paper. 

Section 2. Our main thesis, i.e., the fact that ex- 
plicit informal reasoning is the essential pivot of any 
well-conducted programming activity, is the subject 
of Section 2. Such reasonings are best based on clear 
specifications of all sub-problems that are identified 
during the program construction process (including 
the requirements engineering phase). 

Most of Section 2 (i.e., Sections 2.1 to 2.4) is 
devoted to demonstrating that such specifications 
should (and in fact can) be made extremely simple 
by clearly separating the statement of the purpose of 
the program (which should boil down to citing a 
well-known concept) and a set of representation 
conventions (whose role in informal reasonings 
is subordinate yet necessary since the concepts of 
the programming language are totally alien to the 
problem that the program must [help to] solve). 
Section 2.1 motivates our notion of specification by 
showing through some example problems that the 
results of a program are meaningless by themselves 
and should be interpreted in some way to allow the 
resolution of the problem that the program helps to 
solve. We also show that this interpretation neces- 
sarily takes place at an intuitive (problem-related) 
level. Finally, if the program is really convenient to 
use, it is necessary that the interpretation of the 
results be extremely simple. Section 2.2 draws an 
important conclusion from these observations, i.e., 
that a specification should only 1) state the purpose 
of the program (in a straightforwardly understand- 
able way> and 2) state the representation conven- 
tions that one needs to know to use it properly. 
Section 2.3 explains why such specifications are es- 
sential to articulate the programming activity, while 
Section 2.4 argues that it is actually possible to craft 
such specifications even for “real-world” problems. 

The intuitive knowledge necessary either to prop- 
erly use a program or to construct it is generally not 
available at the beginning. In order to write good 
specifications of the program and of all its parts, one 
thus needs to build a “theory of the problem” that 
provides this necessary knowledge. Section 2.5 is 
devoted to this topic: we revisit a few classical prob- 
lems in order to show that the main role of this 
theory is to identify useful properties of the actual, 
real-world problem, not of a more or less arbitrary 
and unreasoned redefinition of it; since the objective 
is to understand the problem as it is, we also dispute 
the idea that it is necessarily better to define con- 

cepts as abstract data types or in nonexecutable 
style. 

Section 2.6 summarizes our ideas by discussing the 
“general form” of specifications, while Section 2.7 
draws a parallel between requirements specifications 
and our notion of “theory of the problem.” 

Section 3 applies the ideas of Section 2 to a 
critique of the concept of formal specification. Since 
the concepts of a formal specification language are 
totally alien to those of any practical “real-world” 
problem, specifications in our sense cannot be writ- 
ten in such formal languages. Moreover, the correct 
construction of (what is usually called) formal speci- 
fications requires the use of (informal) specifications 
in our sense. In fact, all our argumentation of Sec- 
tion 2 applies as well to formal specification lan- 
guages and to programming languages. This thesis is 
developed in Section 3.1. It allows us to discuss 
seven frequently asked questions about formal speci- 
fications, in Section 3.2. 

Section 4. Finally, we try to explain why our view 
of specifications has not been largely accepted by 
computer scientists. The belief that all practical’ 
mathematics can be embodied in a single formal 
system is-we guess-a main reason of the impor- 
tance given to formal specifications. Another impor- 
tant reason is the desire to find methods to measure 
the value of a program and the programmer’s pro- 
ductivity. In our opinion, such a goal is largely 
unreasonable. 

This paper is based on the Ph.D. dissertation of 
the first author (Le Charlier, 1985) (and includes 
translations of tracts of this thesis). The first author 
has successfully used these ideas in several 
medium-sized projects (Le Charlier and Flener, 
1997). The second author has used them for debunk- 
ing some of the myths on deduction-based and in- 
duction-based approaches to the (semi-jautomatic 
synthesis of (logic) programs (Flener and Popelinslj, 
1994). 

2. THE ROLE AND NATURE OF 
SPECIFICATIONS 

In this section, we more closely examine specifica- 
tions of programs. Such specifications are the essen- 

‘From a theoretical standpoint, this belief has been ruined by 
Giidel’s incompleteness theorem, but formalist mathematicians 
argue that the limitations pointed out by GGdel have no impact 
on mathematicians’ practice. 
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tial pivot of the whole programming activity: without 
good specifications, it is impossible to understand 
what the correctness of a program means and hence 
to reason rigorously while constructing it or con- 
structing another program using it. In the software 
engineering literature, the word “specification” is 
used to designate many different kinds of things 
(such as requirements specifications, for an entire 
software, and detailed-design specifications, for its 
modules), and yet there is something in common to 
all of them. For the moment, we deliberately do not 
make precise the kind of specification that we con- 
sider, but we will come back to this issue in Sec- 
tion 2.7. 

2.1 Why and How can a Program be Useful? 

Despite all the doubts one might have about the 
purpose of computers for the resolution of real 
problems such as the creation of a more just and 
harmonious society, if one writes and uses programs 
then it is because one believes they are useful. This 
fact is so evident that one never wonders why and 
how a program can be useful. However, it is the 
answer to that question that leads to an understand- 
ing of what programming is and why specifications 
play a fundamental role in it. 

If a program is useful, it is not because its execu- 
tion results in displaying certain strings on the screen 
or in changing the contents of the computer memory 
in a certain way. It is because this execution yields 
useful information or provides substantial help in 
the realization of a task. But, to take advantage of 
the program, other things than its text and the 
format of its data need to be known. Even observing 
its behavior for some time does not suffice. It must 
be possible to interpret the produced results, but the 
knowledge necessary for this cannot be part of the 
program text nor of its results. It is relative to 
concepts totally alien to the objects manipulated by 
the program, and to the conventions according to 
which these objects represent these concepts. 

Example: The Belgian National Lottery. Suppose 
all we know about a certain program is how to 
launch it on a certain computer and that its execu- 
tion only results in displaying the string: 

5,11,15,22,29,46 

No information can be drawn from this; our lives are 
unaffected by the knowledge that the execution of a 
certain program gives exactly this result. Now sup- 
pose, to the contrary, that we know from an in- 
formed source that the execution results in display- 

ing the next draw of the Belgian national lottery. 
This changes everything: everybody now sees how 
such a program can be used advantageously.. . . 

This single example shows why a program is “not 
useful” by itself, but only in conjunction with some 
knowledge that is totally outside of it, of which 
neither its text nor its results can give the slightest 
clue. Some will now object that it is easy to change 
that program so that it exhibits its own purpose, say 
by displaying the following string instead: 

5,11,15,22,29,46 

is the next draw of the Belgian national lottery. 

But this objection is flawed for two reasons. First, it 
is not the simple observation of the result that 
allows us to understand it. The act of “seeing” the 
string above cannot possibly give the knowledge 
necessary to the understanding of the sentence it 
represents. This knowledge must be available before 
or must be acquired by other means. Second, it is 
not enough to be able to interpret the result of a 
program by an assertion in order to deduce from it 
whether it is true. To do so, there should be other 
good reasons to believe that an execution of a pro- 
gram can only produce outputs that represent true 
assertions. 

Finally, if a program can be useful, even though 
its manipulated objects have by themselves no mean- 
ing, it is because it is possible to use these objects to 
represent useful information so as to be able, first, 
to write the program so that it computes the repre- 
sentations in a correct way (according to chosen 
conventions), and, second, to “easily finish the job” 
by interpreting the results. 

Example: A payroll program. Let us now consider 
the payroll program of a company. It is useful to the 
extent that it is easier to (correctly) solve the payroll 
problem with it than without it. In any case, it is not 
the running of the program that solves the problem. 
The problem is solved if and only if the whole 
personnel gets their due salary at the deadline. This 
happens or does not happen independently of the 
existence of a payroll program and its results. The 
responsibility of the solving of the payroll problem 
belongs to the corresponding accountant. The pro- 
gram can only help her as an intermediary and is 
only really useful if it noticeably reduces the amount 
of work the accountant has to do to solve the 
problem. The accountant’s task is, on the one hand, 
to prepare the inputs to the program, and on the 
other hand, to exploit its results so that all employ- 
ees get their salary. So she must know how to use 
the program. This also means that she must be able 
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to make a reasoning by which, knowing the inputs, 
knowing the usage she made of the outputs, and 
knowing “sufficiently many things” about the pro- 
gram itself, she can conclude that everybody’s exact 
salary is paid at the deadline. Nowadays, the accoun- 
tant may have almost nothing to do to complete her 
task, but some verification (of whether the program 
performs its task) has to be done nevertheless. 

Example: A search sub-program. Let us finally 
consider a sub-program that locates a value in an 
array. It is useful because one can use it as a 
primitive for writing a larger program, and this with- 
out worrying about how the search is done. How- 
ever, to use it properly, some supplementary infor- 
mation must be available: how to call the sub-pro- 
gram and how the results are represented. One 
might think this example is fundamentally different 
from the first one. In this case, some will say, to 
understand the purpose of the program it suffices to 
know the programming language and to have the 
text of the program. Indeed, the latter would be so 
simple that one will “immediately see” what the 
program does. The text would define the purpose of 
the program. This opinion is incorrect: to under- 
stand the purpose of the program, the concept of 
membership in an array must be known in advance, 
but it is not a concept of the programming language 
because otherwise it would not have been necessary 
to write a sub-program representing it. The opinion 
above stems from the fact that one might recognize 
quite easily an array search in the program text 
provided one has already done some programming 
beforehand, hence one already knows what an array 
search is, for what it can be used, and what form one 
generally gives to programs performing it. But this 
does not mean that this knowledge can be derived 
from the program text. 

This example has been chosen on purpose among 
the most simple and “classical” ones, It is clear, 
however, that in general one does not write pro- 
grams solving known problems. Therefore, the 
knowledge of some programming concepts and 
methods is totally insufficient for understanding not 
only the purpose of a “large” program but also the 
one of most of its components. To understand the 
use of a program computing sin(x) according to 
given representation conventions and a given preci- 
sion, trigonometry and analysis notions must be 
known. Pretending that the program defines the 
corresponding approximation is only a pleasant joke, 
because it is not the scrutiny of this text that can 
give the slightest idea about trigonometry to some- 
body who does not already have it. 

Finally, it often happens that the concepts neces- 
sary to understanding the purpose of a (sub-)pro- 
gram cannot be found in our “preliminary knowl- 
edge” but must be invented ad hoc. It is well-known 
that the resolution of a simple problem may necessi- 
tate the introduction of completely new ideas. Such 
invention is done via definitions. But there would be 
a vicious circle to try and explain the purpose of a 
program by referring to concepts only known by 
their definitions: this would almost amount to saying 
that this purpose can be understood by examining 
another program. To leave this vicious circle, it is 
necessary to give these newly defined concepts an 
intuitive and objective “substance,” by shaping them 
into a theory allowing their understanding without 
any definitions. These ideas will be further devel- 
oped in Section 2.5. 

Note that there is an important difference be- 
tween our notion of specification and the notion of 
requirements specification, which consists of a de- 
scription of the problem to be solved. In our view, 
this notion should essentially coincide with what we 
call the “theory of the problem.” Again, we refer to 
Section 2.7 for more details on this issue. 

2.2 What is a Specification? 

“Definition.” A program specification is a statement 
whose role is to say (1) what purpose the program 
serves and (2) how the program can be correctly 
used. 
This “definition” is not a mathematical one, but 

the previous discussion will help us to understand it 
in detail. The definition means that the specification 
of a program is the necessary link between what the 
program computes and the information that we can 
deduce from its results. This link is exactly what we 
need to use the program or to construct it. 

A specification must be simple and directly under- 
standable. The objective of a specification is to 
transmit information. So there is a parallel between 
the notions of specification and program output. The 
output is meaningless by itself: it must be inter- 
preted in order to extract the information it carries. 
This does not mean the particular form of the out- 
puts is irrelevant as long as the representation con- 
ventions are known. For instance, if the task of a 
teller machine in Belgium is to display the balance 
of a bank account, then not all representations are 
equivalent: a decimal representation of the amount 
expressed in Belgian Francs is acceptable, but a 
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binary representation of the square root of the 
amount expressed in Turkish Lira is not. The good 
representation is the one that minimizes the work 
that remains to be done to transform the output into 
the desired information. In the example above, the 
first representation is the only acceptable one be- 
cause the customer immediately knows how much 
money can be withdrawn from the account, whereas 
a long and tedious computation would be necessary 
from the second representation. Similarly, the 
“good” specification of a program is the text that can 
be transformed as directly as possible into a correct 
understanding of the purpose of the program and of the 
way of using it. 

Besides this analogy, there also is a fundamental 
difference between a specification and the results of 
a program. The principal role of the specification 
precisely is to state how to interpret the results, but 
there is no need for a text explaining how to inter- 
pret the specification, as otherwise one would need a 
specification of the specification, and a specification 
of the specification of the specification, ad infinitum. 
Therefore, unless one completely denies the pertinence 
of this notion, one has to admit that a specification is a 
text that must be comprehensible by itself. Hence it 
must be written in the only language adapted to this 
end: natural language. We do not say that specifica- 
tions ought to be written in pure natural language. It 
can be a technical language including problem-specific 
concepts and notations. But it cannot be a formal 
language, in the strict sense of the word (i.e., whose 
syntax and semantics are defined a priori). Indeed, 
statements in a formal language are incomprehensi- 
ble by themselves (also see Section 3.11, because the 
problem concepts are always totally alien to those of 
the formal language. Hence, formal statements al- 
ways need to be accompanied by explicit representa- 
tion conventions, i.e., informal specifications. To the 
contrary, informal (natural language) statements are 
comprehensible by themselves because they directly 
refer to the problem concepts. 

A specification need not be correct, but only cor- 
rectly understandable. Since the role of a specifica- 
tion is to communicate the purpose of a program, 
the only correct means of judging the quality of a 
specification is to ask whether it allows every poten- 
tial reader to understand conveniently and in the 
most direct possible way the purpose of the pro- 
gram. 

The notion of “correctness” of a specification is 
thus less important than the one of “being correctly 
understandable.” A specification can perfectly play 
its role, even if it lacks style, or has unorthodox 

phrases, if not even mistakes and contradictions.* A 
reader may well have understood it even though she 
estimates it to be “incorrect” or poorly written, 
because it does not follow her own stylistic criteria 
or contains some obvious mistakes. But how is it 
possible to correctly understand a specification while 
judging it incorrect? The answer lies in the observa- 
tion that the role of a specification is not to define 
everything that ought to be known to understand the 
purpose of the program, but only to state this pur- 
pose. Where is the difference? According to the first 
viewpoint, one would suppose that the knowledge 
necessary to use the program is entirely inside the 
specification (i.e., would be derivable from the speci- 
fication). It would, then, be evident that an incorrect, 
specification cannot be satisfactorily understood by 
itself because it would be the only reference. Ac- 
cording to the second viewpoint, one supposes that 
the reader already knows almost everything on what 
makes the program interesting, the role of the speci- 
fication being somehow to say “this is the program 
that you needed.” In this case, the presence of some 
errors or quirks in the specification would not really 
be an insurmountable obstacle to its understanding, 
because the enormous quantity of things already 
known allows the reader to fill the gaps. 

All this does not imply that specifications can be 
written carelessly, but only that the quality of speci- 
fications cannot be judged according to hypothetical 
correctness criteria. The key issue is that they com- 
municate “the message” in the most direct way. This 
entire argument holds of course for all consumers of 
specifications, be they end-users, or programmers, or 
whoever. Correctness is relative to an external truth 
criterion, and the objective is to make a software 
correct with respect to a fact, but not with respect to 
a statement in a formal theory. 

2.3 Why are Adequate Specifications Necessary? 

The specification of a program is an indispensable 
aid for remembering details. After close considera- 
tion, it is even only such an aid, as it only has to 

‘In our view, whenever a program addresses a meaningful 
problem, there is a model in the real world for any “correct” 
theory of the problem. If we fail to build this correct theory, this 
does not mean in any way that the model does not exist, since it is 
preexisting (unless we deny that the world exists). That is why we 
dispute the importance of self-contradiction in a theory. A theory 
can be self-contradictory because of a single fortuitous mistake 
and yet one can be able to “see” the intended model underlying 
it. Self-contradiction can be problematic for technical reasons in 
formal theories, but of course we also dispute the idea that the 
theory of the problem must be a formal one. 
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state the purpose of the program but not all the 
knowledge necessary to understand its meaning. The 
customer must thus already know, before reading 
the specification of a program for the first time, 
everything that makes the program useful to her. 
She will then know that a program with this purpose 
exists and how it can be used. Later, she can occa- 
sionally re-read the specification, not because she 
has forgotten its purpose, but because she does not 
recall with certainty some representation details that 
are too arbitrary to be possible (or useful) to re- 
member. 

Specifications are not only absolutely necessary 
for documentation of already existing programs, but 
also before and during construction of programs, for 
three reasons. 

First, one can only construct small programs at a 
time. The difficulty observed in the rigorous con- 
struction (a la Dijkstra, Gries, etc.) of small pro- 
grams is inherent to programming (and there is no 
way such techniques can ever be scaled up to con- 
structing “real” programs), so small programs ex- 
actly represent the limit that should not be crossed if 
the programming activity is ever to be mastered. The 
only realistic approach is thus to build “large” pro- 
grams from “small” ones that are constructed inde- 
pendently of each other, and recursively so on (no 
matter whether one proceeds top-down or bottom- 
up). This is possible only because the specifications 
attached to programs allow us to consider them as 
new primitives of the programming language, no 
matter how large these programs are.3 All specifca- 
tions should be of the same level of complexity, namely 
of the utmost simplicity. 

Second, intermediate specifications, i.e., specifica- 
tions of sub-problems perceived as potentially useful 
during the design of the system’s architecture, are 
necessary as a basis for the discussion between the 
computer scientist and the customer, because they 
are, in general, of too different backgrounds for 
coming up with the good specification the first time. 
Starting from the specification, the computer scien- 
tist must be able to make a reasoning to convince 
herself that she can construct the required program, 
whereas the customer must be able to make a rea- 
soning to make sure the program will provide the 
expected service. The specification thus takes the 
role of a contract. 

3Note that we do not assume a pure hierarchical organization 
of programs. For concurrent programs, for instance, a specifica- 
tion could (essentially) consist of a global invariant and some 
fairness properties. 

Third, intermediate specifications are necessary 
during the design of an architecture for the pro- 
gram. Strictly linear top-down design is difficult, and 
the implementation of certain sub-problems may 
reveal inadequacies in earlier choices, forcing back- 
tracking in the design, if not the deletion of already 
written code. Since programming is costly, there is a 
risk of trying to preserve at all cost what has already 
been done, even if this means going into blind alleys. 
A more reasonable approach is thus to write all 
specifications of all sub-programs before writing the 
first line of code. This requires mental persuasion 
that the program can be written using all and only 
the specified sub-problems. Designing such an archi- 
tecture may still require backtracking, but it is less 
tedious to rewrite specifications than programs, and 
easier to persuade oneself that a program can be 
written than actually writing it. 

2.4 Can there be Adequate Specifications (for 
Real-World Problems)? 

We think that adequate specifications, according to 
our criteria, can be written, even for real-world prob- 
lems. We know that most examples in this paper are 
small-scale-and space reasons prevent us from cov- 
ering real-world problems-but our considerations 
do scale up, by their very nature. The first author 
has successfully applied them to rather complex 
medium-scale problems, as reported in (Le Charlier 
and Flener, 19971, and he believes that he was 
successful precisely because of this mind-set. 

A specification is not meant for everybody. Only a 
program with a precise purpose should have a speci- 
fication. Saying that a program has a precise purpose 
amounts to saying that somebody is able to exactly 
understand this purpose. So the specification of a 
“useful” program will always exist because some- 
body must be able to say what its purpose is. But 
this does not mean that everybody can understand 
this specification. It is only comprehensible by some- 
body having the “same background” as its author, at 
least as far as the application domain is concerned. 
The existence of satisfactory specifications is thus 
only possible because they are only meant to be read 
and understood by people already knowing almost 
everything of the application domain in which the 
program has its purpose. This does not imply that 
only the specifier will be able to understand it or 
that this privilege is reserved for a select few. It 
simply means that every user of the program must 
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first make a careful and sufficiently long study of its 
application domain. 

Remark. In practice, it is unfortunately rare that a 
person understanding the purpose of a program 
can express it simply. Programmers, for instance, 
tend to give incomprehensible technical gibberish 
about the implementation technique and run-time 
behavior when prompted to explain what their 
programs do, instead of talking about the essen- 
tials. The absence of specifications for many actu- 
ally used programs stems from an inability of 
many people to express themselves clearly. (As 
already said by others before:) Instead of includ- 
ing specification rules or formalisms in computer 
science curricula, it would be much better to teach 
students how to correctly use their natiue language 
(or natural language, in general). 
Another reason for the absence of convenient 
specifications is that programs are often con- 
structed by successive approximations, by trial 
and error, so that there cannot possibly be a 
convenient specification, because nobody is able 
to understand how to use it. But it is precisely 
because the programmer was unable, or thought 
it useless, to write a specification that she, not 
knowing what to do and hoping to find it out 
progressively, constructed a mysterious program 
to which no specification can be attached. 

A specification should have an objective meaning. 
Some will object to our notion of specification by 
saying that two different people never understand 
things in exactly the same way, so that we can never 
be sure whether a specification is correctly under- 
stood by all concerned people. However, it is not 
necessary that the programmer and all users of a 
program understand its specification in the same 
way. Note that such a condition is insufficient any- 
way, because it does not matter whether all people 
have understood exactly the same thing, but rather 
whether everybody has understood what is needed 
to do their job. And this new condition can be 
fulfilled because the specification of a program must 
express a property that has an objective meaning. It 
is true that nobody understands this meaning com- 
pletely and in the same way as their neighbor, but 
everybody should understand that the question of 
correctness of the program with respect to its speci- 
fication corresponds to a fact, and not to personal 
interpretation. The programmer must be able to 
construct the program by making a reasoning to 
persuade herself that it has the desired property; 

whereas the users must be able to derive other facts 
from it, such as the possibility of doing their job 
using the program. 

For instance, consider a program computing the 
sine function under certain precise conventions. The 
programmer need not completely know the “es- 
sence” of this function, but only sufficient properties 
for constructing a correct program. The users need 
not understand the function in the same way as the 
programmer, but only other properties allowing them 
to solve their problems. So it is because of its 
objective nature that the specification of this pro- 
gram will be satisfactory: it expresses a fact, the 
same for everybody, even though they may under- 
stand it differently. Hence the specification should 
act as the “ultimate” reference, i.e., the last thing to 
be doubted about and hence the central pivot of any 
reasoning about the program. 

A not completely unfounded objection to the pre- 
vious example is that it is not realistic because the 
sine concept has been studied for such a long time 
that it would be foolish to deny its objective nature, 
but that not all specifications can be expressed in 
terms of such well-established concepts. Indeed, this 
objection pinpoints one of the fundamental diffi- 
culties of programming compared to, say, mathemat- 
ics: one never has the time to polish all the needed 
concepts for a specification, because the program is 
needed urgently. 

Nevertheless, the objectivity condition for specifi- 
cations seems absolutely necessary for the correct 
communication of the purpose of programs, and, 
hence, for mastering the programming activity. Ac- 
cording to us, without this condition, one would have 
to admit that the usage of programs for achieving a 
certain activity amounts to redefining that activity as 
being the exploitation of the results of the program 
without giving a satisfactory link between this redef- 
inition and the initial concrete problem. Moreover, 
to us, this condition seems largely achievable, if one 
admits that the objectivity of the concepts necessary 
to the writing of good specifications can be founded 
on the creation of a “theory” of these concepts, with 
more or less detail according to the imperatives of 
the problem, a theory that can be studied by all 
concerned people until each of them has convinced 
themselves personally that it really corresponds to 
the intended object. 

This perception of course has the “disadvantage” 
of founding the mastery of programming and its 
usage on the competence and responsibility of peo- 
ple, whereas some would prefer to found them on 
rules that are easy to apply and verify. 
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2.5 Role and Content of the “Theory of the 
Problem” 

The intuitive knowledge necessary either to properly 
use a program or to construct it is generally not 
available at the beginning. In order to write good 
specifications of the program and of all its parts, one 
thus needs to build a “theory of the problem” that 
provides this necessary knowledge. In this section, 
we revisit a few classical problems in order to show 
that the main role of this theory is to identify useful 
properties of the actual, real-world problem, not of a 
more or less arbitrary and unreasoned redefinition 
of it; since the objective is to understand the prob- 
lem as it is, we also dispute the idea that it is 
necessarily better to define concepts in an abstract 
data type or in non-executable style. 

Since a program is normally constructed in order 
to help solve a practical preexisting problem, the 
concepts and objects of such a theory can be classi- 
fied into two main categories: those whose identity 
was determined before and independently of the 
program, and those that are defined (or, better, 
identified) especially for the construction of the pro- 
gram. They should all have the same final status, 
namely to be known not by their definitions but by a 
sufficiently rich set of properties linking them to 
numerous other concepts. They thus have their own 
individuality, equivalent to an objective status. The 
theoretical development necessary for achieving this 
status is different and more or less long and difficult 
according to the category of concept. We elaborate 
on these issues in Sections 2.51 and 2.5.2. In Sec- 
tions 2.5.3 and 2.5.4, we discuss some aspects of 
definition construction, stressing that there is no 
purely abstract way to define a concept and that the 
non-executability of definitions is not necessarily a 
desirable objective. 

2.5.1 On the Study of “Long-Established” Con- 
cepts. Defining once again preexisting concepts is 
common practice in formal methods of program 
design. It is however unwise to start the study of a 
predetermined concept by defining it. Indeed, what 
is necessary is to study the concept as it is, but not 
another concept given the same name through a 
definition. Even if a “predetermined” concept can 
be considered completely determined by a certain 
property (i.e., all other properties useful to the prob- 
lem at hand can be derived from that property), one 
cannot consider it a definition of the concept. On 
the contrary, one would have to ensure that the 
concept really has that property. The objective of 
the theory to be built is to ensure that things are 

sufficiently well-understood by all involved people. If 
one started redefining all the fundamental concepts 
of the problem, nothing would be known about the 
relationship between the (preexisting) problem and 
what has been done. In any case, all involved people 
have a preliminary understanding of the problem. 
The role of the theory is to make things precise, if 
not to correct them, but not to reconstruct every- 
thing from nothing. It is thus more important to 
stress the difficult or delicate issues than to try and 
found everything already known. 

The case of mathematical concepts. Suppose the 
concept of “greatest common divisor” is needed in 
the resolution of a programming problem. It is not 
the following redefinition of this concept that makes 
its role in the problem more precise: 

Definition 2.1. The greatest common divisor of two 
natural numbers m and n is a natural number p, 
denoted by gcd(m, n), such that p divides m and 
IZ, and, for every natural number i, if i divides m 
and n, then i divides p. 

Indeed, if one does not already know the concept of 
greatest common divisor (gcd) and its applications, 
this definition will not, by itself, help one understand 
its purpose. But let us consider a person who already 
has a good idea about it. The only information she 
can draw from this definition is that it probably is 
the definition of the notion of greatest common 
divisor that she already knows. Therefore, the only 
immediately useful part of this definition is the only 
word that is theoretically arbitrary! Indeed, one could 
define the same concept by naming it “foo” or 
“Nabuchodonosor.” Two things are possible from 
here. Either this person is satisfied with her conclu- 
sion, and then the definition has not brought any 
new information, or she wants to verify this first 
impression by examining whether the definition is 
compatible with her existing knowledge of the con- 
cept of gtd. In this case, she might not be able to do 
so immediately, because her definition rather says 
that gcd(m, n) is the greatest of the divisors of m 
and n, according to the usual ordering relation. To 
show that the two concepts coincide, she actually has 
to make a long reasoning, which should by the way 
conclude negatively, because they do not coincide 
when m = n = 0 (where the greatest common divi- 
sor is usually considered undefined, but the defini- 
tion above gives gcd(O,O) = 0). Anyway, at the end 
of this superb intellectual effort, she will still not 
know whether this definition was introduced for the 
fun of scrambling the message or for some better 
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reason. To conclude, it would have been better to 
admit that the concept of gcd is predetermined 
beyond all definitions and to show why the very close 
concept of greatest common divisor according to the 
“divides” ordering relation was substituted for it. 
For instance, it could have been because one wanted 
to be able to apply, in all cases, the formula 
gcd(m, g&z, p>) = gcd(gcd(m, n>, p). (For m = n 
= 0 and p # 0, only the left-hand side of this equal- 
ity is defined according to the usual definition.) 

The case of “non-mathematical” concepts. The 
preceding precept applies unchanged to any kind of 
problem. It is not because the program to be written 
has its purpose in, say, an accounting setting, that 
one has to start by defining all involved concepts in 
order to understand its purpose. 

For instance, in the payroll program, the “theory” 
of the problem should not start with definitions of 
employees, salaries, companies, etc. What is neces- 
sary is to arrive at a sufficient understanding of 
these concepts (which are perfectly determined, even 
if they might be poorly understood at the beginning) 
in order to solve the problem. It would not be 
acceptable either to define the effect of the program 
by the rules of computing the salaries in terms of the 
employee database. One should study the legisla- 
tion, the structure of the company, etc., in sufficient 
detail so as to be able to deduce (i.e., to justify, by a 
rigorous reasoning) an adequate structure for said 
database as well as valid computation rules. The 
user of the program (i.e., the accountant) need not 
have studied all the details of the “theory” that the 
programmers have had to elaborate, but she should 
understand it sufficiently for correctly using the pro- 
gram. It would be hard to say where the limit is: it is 
her responsibility to decide herself how far to go in 
order to reach a sufficient understanding. 

2.5.2 On the Study of Concepts “Tailored for the 
Problem”. The writing and understanding of “good” 
specifications of programs nearly always requires 
using concepts especially tailored for the problem, 
discovered or created especially for constructing the 
program. Such concepts can only be introduced by 
definitions, but those definitions must be validated 
explicitly against our perception of the problem in 
order to ensure that the concepts adequately relate 
to the “real” problem. 

The case of simple concepts that are close to 
known ones. One often has to deal with concepts 
that can be considered already implicitly known and 

understood by all people who have to use them, but 
whose relevancy is insufficient for having been given 
a name that is universally admitted. It is then neces- 
sary to have recourse to a definition for naming the 
concept and making everybody agree on some im- 
portant details whose identification is necessary for 
correctly using it. When reading such definitions, it 
should be possible to “immediately see what they 
are about.” The concept-specific theory then reduces 
to only a few things, because the concept “naturally 
takes its place” among already known ones. 

Let us illustrate this with a specification of the 
classical plateau problem. 

Definition 2.2. Let S = (sl, s2,. . . , s,J be a finite 
non-empty sequence of integers. A plateau of S 
is an interval4 (i : j) such that: 

1. lliljln 
2. si = si+l = **- = Sj 

3. (i : j) is not strictly included in any other 
interval with properties (1) and (2). 

Problem: Given a non-empty initialized array 
a[1 . . n] of integers, construct a program that as- 
signs to integer variable np the number of 
plateaus of the sequence (a[ 11, a[2], . . . , a[ nl>, and 
to integer variable maxZp the maximum of their 
lengths (the length of a plateau is the number of 
its elements). 

The definition in the specification above is sufficient 
for a satisfactory problem statement, for two rea- 
sons. First, the “technical” concept of plateau is not 
brand-new, but rather a particular and precise oc- 
currence of a more general concept that we already 
know (the choice of the name “plateau” is thus not 
arbitrary). Second, this definition is sufficiently sim- 
ple for linking this particular concept to the general 
one, that is for verifying whether the chosen termi- 
nology really corresponds to something intuitive. 
Moreover, the definition is necessary, because the 
intuitive notion of plateau is too vague for being 
able to rule out, in its absence, a misunderstanding 
of the notions of number and length of the plateaus 
of a sequence. 

On the usefulness of examples. Specifications may 
be accompanied by carefully chosen examples, so as 
to facilitate their understanding. Since the role of a 

4We assume the concept of interval is already known: 
(i: j) = (n Ix is an integer and i s n I j}, where i, j are integers. 
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definition, as considered here, is not to be formally 
irreproachable (i.e., non-contradictory, for instance), 
but to help understand something, there is no rea- 
son to reject other means of communication that 
might have other qualities. Some well-chosen exam- 
ples often provide an intuitive understanding that no 
definition could achieve. The latter then only makes 
more precise the exact contours of the concept. 
Other examples could help eliminate certain risks of 
ambiguity in the definition by illustrating delicate 
issues that are likely to be misunderstood for what- 
ever reason. 

As far as the risk of contradiction between defini- 
tion and examples is concerned, note that this kind 
of contradiction would only be a real disaster if it 
were the non-contradiction of a definition that would 
lend value to a concept. There is a confusion here 
between truth and non-contradiction. What is im- 
portant is to make known what one wants to say, not 
to escape contradiction. One could even argue that 
the discovery of a contradiction between an example 
and a definition is the best thing that can happen in 
some cases, because it carries an undeniable mes- 
sage: something is wrong somewhere! 

Personal experience5 shows that a “poorly de- 
fined” concept can be perfectly understood thanks 
to examples, especially when the concept can be 
considered already implicitly known. Definition and 
examples are thus complementary means of desig- 
nating the concept. And one may well conclude that 
there is only one concept corresponding to both the 
definition and the examples, even if one has spotted 
an apparent contradiction between them. What one 
already knows helps understand the error. Finally, 
note that the error risk is much higher in a defini- 
tion than in an example, because it has to cover all 
cases. Examples are more reliable, because more 
“local,” and are thus an ideal means of getting 
things straight. 

Let us illustrate this on the plateau problem. 
Assume condition (3) was omitted from the defini- 
tion above, but that the following example was added: 

Example 2.1. If S = (1, 1,3,3,3,2,3,5,5), then there 
are 5 plateaus of S, namely (1: 2>, (3 : 5), (6: 6), 

5A few examples: as a student, the lirst author had to use the 
PL/I language and found it completely impossible to understand 
the manuals except from the examples. As teachers in program 
proving, both authors always give examples to support program 
specifications. In a few cases, we eventually discovered errors in 
our specifications, although the students had understood them 
perfectly well. 

(7 : 7), and (8 : 9). Also, its longest plateau is 
(3 : 5), its length being 3. 

Starting from the definition and the example, one 
easily understands that plateaus are the longest 
non-empty intervals (i : j) included in (1: n > such 
that (2) holds. One could even have understood this 
without noticing that the definition is incomplete. 

On the usefulness of remarks, or, better, of a 
“reasoned” presentation of definitions. All this 
shows that it is difficult to correctly define a concept 
in order to explain it to somebody else. In a sense, 
writing the definition is already a programming act. A 
definition is thus always the product of a more or 
less explicit reasoning process. So if one wants to 
facilitate the correct understanding of a definition, 
one could point out delicate issues in remarks, or, 
better, one could make explicit this reasoning pro- 
cess. 

For the plateau problem, one might want to point 
out that the notion of plateau only makes sense with 
respect to a sequence S, that a plateau of S is 
always a non-empty interval, and that the set of 
plateaus of S partitions the interval (1: n), where II 
is the number of elements of S. 

To do even better, one might show how the given 
definition was reached from a “reasonable” intuition 
of the concept of plateau of a sequence. This could 
go as follows. 

Let s = (s1,s2,..., s,J be a finite non-empty se- 
quence of integers. Let us draw a coordinate 
system, and mark the points at coordinates (i, si), 
for 1 I i I II. Let us now draw, from each of 
these points, a horizontal segment of unit length. 
Some of these segments can be merged, giving 
rise to disjoint segments of integer length, called 
plateaus of the sequence: 

6 

i 

I 

I I I I I,,,,,, 
1 I 3 4 5 6 7 8 9 10 II 

The plateaus of the sequence (1, 1,3,3,3,2,3,5,5). 
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The objective is to write a program for computing 
the number of plateaus of a sequence and the 
maximum of their lengths. It is obvious that to 
each plateau corresponds an interval verifying 
conditions (1) to (3) [included here’as above], and 
vice-versa. Moreover, the length of a plateau is 
the number of elements of such an interval. This 
leads us to the following redefinition of the 
plateau concept, for our problem: [here follows 
the definition above]. 

This presentation clearly allows one not only to 
understand the definition more quickly, but also to 
“verify” it according to one’s own criteria. We even 
claim that such an intuitive presentation is self-suf- 
ficient and even preferable to the definition, as the 
latter is only a property of plateaus that one might 
discover by oneself. 

A final remark: in practice, it is not always useful, 
nor possible (for “financial” reasons), to discuss all 
introduced “simple” concepts in this much detail. 
An acceptable compromise between the quality of 
the presentation and the time invested to its tuning 
must be found. Only experience shows where to 
situate this compromise. The most important thing is 
to understand that the objective is always the same: 
to capture the posed problem as well as possible, as 
it is. 

The case of more complicated or “new” concepts. 
Sometimes, the solving of a programming problem 
requires the invention of relatively original concepts 
that one cannot pretend having known before tack- 
ling the problem. They can thus not be imagined 
from nothing, but only constructed in small steps 
after comparing the problem to what is already 
known. The role of a definition is then to anchor 
some ideas for further investigation: one must be 
able to deduce many other properties from it, estab- 
lishing thus the usefulness of the concept for solving 
the problem at hand. The concept thus offers 
economies of thought and reveals ways of solving 
the problem. The choice of a definition is guided by 
an intuition, i.e., the impression of having perceived 
an analogy with something already known, This def- 
inition is, in general, not the good one, because it 
may later turn out that not all the “desirable” prop- 
erties can be derived from it, so that it does not play 
an efficient role in the problem solving process. The 
definition then has to be modified, in the light of 
these first conclusions, and so on, until the “good” 
concept has been obtained, namely the one that 
holds the key to the solution, or part of it. At the 

end of this process, whose essential steps must be 
reconstituted by all “clients” of the concept, the 
latter is known beyond the finally adopted definition. 
It is known by numerous properties linking it to 
other concepts. It has become “intuitive and well- 
known” and its definition is only one of its proper- 
ties, among many others. 

Remark. The distinction made here between “sim- 
ple, implicitly known concepts” and “complex, 
new concepts” is of course too crude. They are 
only the extremes between which intermediates 
can be found, corresponding to a gradation of the 
effort to be done in order to construct a theory. 

2.5.3 Only Representations of Concepts Can Be 
Defined, not the Concepts Themselves. To justify 
even more that the definitions introduced during the 
analysis of a problem are not the ultimate reference 
point for judging the value of a “solution,” but only 
(imperfect) means of communication or “transient” 
starting points that can be (or actually should be) 
forgotten once the concept is well-understood, it is 
interesting to remark that a definition never really 
defines a concept, but only a certain representation 
thereof. This remark ruins, by itself, the “absolute” 
character of definitions by showing why they can be 
“wrong”: whereas a concept cannot be something 
else than itself, its representations can be incorrect, 
i.e., can fail to respect the (implicit or explicit) rules 
according to which they are supposed to represent 
the concept. 

In our opinion, a concept worthy of this name 
must have a real and original identity that makes it 
indivisible, distinct from every more or less complex 
combination of “simpler” concepts. A concept is an 
atom of thought. Therefore, an interesting concept 
will always escape any particular definition, because 
one can define, from given concepts, only combina- 
tions thereof, i.e., nothing really new. 

All this is particularly clear for “old,” universally 
known concepts: for instance, whatever effort is 
undertaken to define natural numbers must be arbi- 
trary. A natural number is what it is and cannot be 
reduced to anything else. Any definition thereof 
rests on representation conventions that had better 
be fixed very explicitly if one wants to wind up with a 
satisfactory definition. 

But all this is still true for “new,” problem-tailored 
concepts. For instance, the concept of plateau of a 
sequence introduced above by a definition corre- 
sponds, in fact, to an intuitive concept that is very 
precise, but impossible to communicate as it is. This 
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is why that definition of a plateau only defines a 
representation of this concept, namely as an interval 
of integers. Other representation choices would have 
led to different definitions. For example, one could 
have decided to represent the intuitive notion of 
plateau by couples of integers instead, as follows: 

Definition 2.3. Let S = (si, s2,, . . , s,) be a finite 
non-empty sequence of integers. A plateau of S 
is a couple (i, j> such that: 

l.l<i<j<n 
2. si = Sit, = *** = Sj 

3. i=lor(i>lands,_i~s~) 
4. j=nor(j<nandsj#ssi+i> 

This definition seems (to us) less good than the 
previous one, because it handles differently the 
plateaus at the extremities of the sequence. This is 
due to the fact that one cannot talk about the 
inclusion of a couple in another one. The reasoning 
to be made for constructing and understanding this 
second definition is thus slightly more tedious and 
error-prone. The plateau concept is thus more easily 
assimilated from the first definition. In any case, in 
both approaches one has only defined a representa- 
tion of the intuitive concept of plateau, which is the 
only really important thing to understand. One 
should not believe however that an axiomatic defini- 
tion (e.g., an abstract datatype definition) would be 
immune from this. Consider, for example, the fol- 
lowing definition: 

Definition 2.4. Let S = (sl, s2,. . . , s,> be a finite 
non-empty sequence of integers. A plateau struc- 
ture on S is defined by choosing a set P and two 
functions lb, rb: P + N such that the following 
conditions hold: 

1. Vp E P: 1 I Zb(p) I rb(p) I n 
2. Vp E P, Vi: lb(p) I i -< rb(p): si = slbCpj 
3. Vi, j: (1 < i I j s n and si = s~+~ = .*a 

= sj), 3!p E P: lb(p) s i and j I rb(p) 

But this definition certainly says no more than the 
previous two about the essentials of the plateau 
concept. Refusing to say what plateaus are “made 
of’ (be it intervals, couples, or beer bottles) is not 
sufficient for guaranteeing that the reader immedi- 
ately understands the concept. 

A concept is abstract not because it was intro- 
duced in a certain way, but because it has acquired 
an importance and identity in our thoughts. There- 
fore, the important issue is not to try and discover 
the good way of defining things, but to choose the 
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adequate concepts, namely those that help 
cause we understand them the way they are. 
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us be- 

2.5.4 On the Usage of Executable Definitions. 
Nevertheless, not all ways of defining a concept are 
equally good. The “style” of a good definition should 
be adapted to the problem at hand in order to allow 
one both to validate the definition and to derive 
useful properties of the concept. Rather than giving 
rules for writing definitions, we will criticize a com- 
monly given one, i.e., that a good definition ought to 
be written in a non-executable language [Hayes and 
Jones, 19891. To illustrate our point, we choose the 
very text formatting problem that was selected to 
show the virtues of declarative (and formal) specifi- 
cations, and that was already discussed so much in 
the literature (see [Meyer, 19851 for an overview). 

Most people involved with this problem sought to 
specify it well, because, according to them, the cor- 
rectness of a program can only be judged against its 
specification. According to us, the correctness of a 
program corresponds above all to an objective fact, 
independently of the way the problem is posed. 
Indeed, posing a problem means first of all admit- 
ting that there is a problem, and, next, trying to 
understand it in order to be, finally, able to solve it. 

Posing the text formatting problem requires first 
of ail the definition of the input and output texts. 
This can only be done here after making some 
hypotheses on the “environment” of the user. If we 
had to solve this problem for a real environment 
rather than for the sake of this article, then we could 
not make any such hypotheses but should learn 
about the environment of the user so as to replace 
these hypotheses by facts, which would be substan- 
tially more complicated than those used here. We 
thus suppose the user “sees” texts as sequences of 
lines (corresponding, in general, to lines on the 
screen or on paper), each line being a sequence of 
characters. This leads to the following definition of 
the input text: 

Definition 2.5. A word is a finite, non-empty se- 
quence of non-blank characters.: A line is a fi- 
nite, possibly empty sequence of characters and 
blanks. Every line 1 can thus be uniquely decom- 
posed as follows: b, w1 b, w2 b, . . . w, b,, 
where n r 0, the wi are words, and the bi are 
sequences of blanks that are non-empty ex- 

6We consider an alphabet with a single blank character, de- 
noted by LJ, and no layout characters, such as for tabulation and 
end-of-line. 
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cept possibly for b, and b,,. The sequence of 
words (wi, w2,. . . , w,) is the sequence of words 
represented b>l 1, which we denote by 1 repr 

(w1, w2, * * *, w,). A text is a finite, possibly empty 
sequence of lines. Let t = (I,, I,, . . . , I,> be the 
input text. The sequence of words represented by t 
is the sequence of words S such that S = 
s1*s2. *** .SP’ where the Si are the sequences 
of words represented by the li (and l denotes 
sequence concatenation). We denote this by t repr 
S. Two texts are equivalent if they represent the 
same sequence of words. 

Now we must define the output text corresponding 
to a given input text. Therefore, we first have to 
capture this concept from an intuitive point of view. 
So, to what does it correspond? The answer is: to the 
result of applying an algorithm! The best way to 
understand this concept is to imagine a human typist 
having a listing of the input text and a terminal 
where every line has a length of maxpos characters. 
The job of the typist is to type the input text into the 
terminal by filling every line as much as possible, 
without trespassing the limit of the screen nor 
breaking words. This clearly amounts to the applica- 
tion of an algorithm whose execution uniquely de- 
termines the output text. Therefore, if one abso- 
lutely wants to “mathematically” define the output 
text in terms of the input text (i.e., if the previous 
explanations are deemed insufficient), then the best 
one can do is to give a definition paraphrasing as 
closely as possible the typist’s algorithm, because 
such a definition has the best chances of being 
correct and comprehensible. We thus propose the 
following definition: 

Definition 2.6. Let S = (wl, w2,. . ., w,) be a finite, 
possibly empty sequence of words that are each at 
most maxpos characters long. The compact repre- 
sentation of S, denoted by compact(S), is the text 
defined as follows: 

1. if S = ( ), then compact(S) = ( >; 
2. else (i.e., if n z l), let i be the largest integer 

such that 1 I i I n and the line w1 U w2 *** U 
wi has no more than maxpos characters, and 
let 1 = w1 U w2 -a* u wi and S’ = 

so that compact(S) = 

Given an input text t and the sequence of words S 
represented by t, the output text corresponding to t 
is defined if and only if no word in S is longer 
than maxpos characters. It is then equal to com- 
pact(S). 

Although it is not expressed in a strictly formal 
language and especially not in a programming lan- 
guage, the definition of compact(S) can be viewed as 
executable since it strongly suggests a way of com- 
puting compact(S). However, it can also be argued 
that the definition is declarative, because it does not 
prescribe an order for the computation. (The value 
of compact(S) can be computed either top-down or 
bottom-up.) Nevertheless, the definition can be en- 
coded relatively straightforwardly in any program- 
ming language embodying recursion. More impor- 
tantly, the definition expresses the effect of an algo- 
rithm executed by hand, which constitutes our funda- 
mental intuition of the problem. Hence the defini- 
tion of compact(S) is not really a definition of the 
problem but rather an essentialproperty that we can, 
on the one hand, validate against our intuition, and, 
on the other hand, use to construct a correct pro- 
gram to solve the problem.7 

Note that our definition of compact(S) contains 
an over-specification, according to Meyer (1985), 
because we constrain the lines to be filled as much 
as possible in top-down order, rather than in non- 
determinate order.’ We do not see the utility of 
preferring a non-deterministic specification in this 
case. 

In conclusion, we agree on the value of declara- 
tive specifications if “declarative” means “as natural 
and close to the intuition as possible.” But we dis- 
pute the idea that such specifications necessarily are 
“non-executable” or “non-deterministic.” In our 
view, the specification in (Meyer, 1985) is unnatural, 
i.e., difficult to validate and difficult to use, because 
too much emphasis is put on non-executability and 
non-determinism, at the price of losing intelligibility. 

2.6 The “General Form” of Specifications 

We now try to capture the “general form” of speci- 
fications: without however giving systematic rules 
for writing “good” specifications, as such is too prob- 
lem-specific. 

‘An explicit proof of the correctness of a Pascal program 
solving the text processing problem, based on the definition of 
compact(s), has been given by the first author in (Le Charlier, 
1985). 

‘Notice that, although this constraint is a clear consequence of 
our basic intuition, the definition of compact(S) does not impose 
a unique order of computation to the program. 

‘According to a suggestion by one of the anonymous reviewers, 
we can reexpress this in terms of the concepts of problem and 
solution, as follows: first, the specification of a program cites the 
(name of the) problem that it helps to solve; second, it provides 
the interpretation rules (or whatever other necessary representa- 
tion conventions) allowing the user to solve the problem thanks to 
the results of the program. 



Specifications Are Necessarily Informal 

The specification of a program should always have 
two parts that play very distinct roles: 

1. 

2. 

a statement indicating the purpose of the pro- 
gram, i.e., the information that can be drawn 
from the results of its execution; 
a list of representation conventions -that are to be 
satisfied for using the program correctly and for 
interpreting its results correctly. 

Statement (1) must always be very simple because 
the information produced by a program (after inter- 
pretation of its results) must have a simple meaning 
to the user. Without it, she would be unable to use 
the program to her advantage. The role of the 
“theory” of the problem is to make sure that this 
meaning exists and that it can be clearly and simply 
formulated. The list (2) must also be sufficiently 
simple to understand for the purpose of the program 
not to be completely annulled by the difficulty of its 
usage and the difficulty of interpretation of its re- 
sults. This is not always easy to achieve due to the 
formal character of programming languages. It is 
thus sometimes necessary to construct another the- 
ory before being able to simply state the representa- 
tion conventions. 

We now state what the specifications of the three 
problems in Section 2.1 should contain. 

Example: The Belgian National Lottery. The 
specification reduces to the indication of how to 
start the program and to the statement that it results 
in displaying the next draw of the Belgian national 
lottery. (It is practically useless to state the exact 
format of the produced character string and the 
rules for decoding this information, because every- 
body immediately understands how to interpret the 
message when it appears.) 

Example: A payroll program. The accountant user 
of the payroll program must know the necessary 
information as well as the rules of its representation 
by the input data. She must be able to verify the 
correctness of these data. She also must know 
enough about the rules of representation of the 
results in order to be able to finish the payroll task 
(this is actually the responsibility of a bank, nowa- 
days). The specification thus reduces to the indica- 
tion of how to start the program and to the state- 
ment that, from correct input data, the program 
produces correct results according to the used repre- 
sentation rules. 

Example: A search sub-program. Depending on 
the desired generality, the programming language 
used, and the general context of the problem at 
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hand, there is a tremendous variety of possible spec- 
ifications for a program performing a search in an 
array. A satisfactory specification, in some cases, 
could be the following: 

Specification 2.1 

The procedure search is a Pascal procedure declared 
as follows: 

function search( x : integer) : boolean 

Its declaration must figure within the scopes of 
the declarations of an integer constant n (such 
that n r 1) and an array a of type anuy[l . . nl of 
integer, which also is in the scope of the former. 
When calling the procedure, the elements of array 
a must be in non-decreasing order. Let u be the 
actual value of the formal parameter x. If at least 
one of the elements of a is equal to u, then the 
call returns the value true, otherwise it returns 
false. (The contents of a will be unchanged.) 

The bulk of this specification is dedicated to the 
statement of the representation conventions and to 
technical details. These details are tedious but un- 
avoidable because the used programming language 
is a formalism. They do not, however, render the 
specification unusable because the problem of know- 
ing where to put the various declarations and how to 
write them can be solved separately as well as once 
and for all. When reasoning about it in the future, it 
suffices to remember how to call the procedure, that 
it answers the question “does u belong to a?,” and 
that the answer is given as a boolean value. 

However, it is important to note that the introduc- 
tion of general representation conventions that are 
specific to a particular problem (i.e., that are chosen 
for an application and used for the specifications of 
all the sub-programs of this application) can con- 
tribute to making much more manageable the 
amount of representation details specific to each 
specification. 

2.7 Requirements Specifications and the Theory 
of the Problem (Are the Same Thing) 

The process of elaborating requirements specifica- 
tions is nowadays considered by many computer 
scientists as the most crucial stage of software devel- 
opment. Requirements engineering is thus emerging 
as a new and major branch of the software engineer- 
ing discipline. It is primarily concerned with the 
identification of the user’s needs, i.e., the so-called 
requirements elicitation process. As soon as the 
user’s requirements are explicitly stated, they can 
(and must) be checked with respect to consistency 
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and completeness. In fact, this is what we call 
“elaboration of the theory of the problem.” Thus, 
requirements specifications are not specifications (in 
our sense), but rather an exposition of the very 
theory making it possible to specify the software 
system. 

Formal specification languages are advocated by 
many researchers as the distinguished methodologi- 
cal tool for requirements engineers, because they 
allow them to make the user’s informal statement 
precise, to check the requirements specification for 
consistency and completeness, and to ease the dis- 
cussion with the user by means of prototyping, to 
name but a few advantages. In our opinion, the 
mechanical treatment of (formal translations of) the 
user’s requirements can indeed possibly provide in- 
formation that could not be easily inferred by hand. 
However, the formal translation process is com- 
pletely similar to the writing of a program in that it 
necessitates giving precise specifications (in our 
sense) to most symbols and constructs of the formal 
text, in order to ensure that the formalization cap- 
tures exactly what the user meant. Thus, the writing 
of (so-called) formal requirements specifications 
presupposes the existence of an already fully under- 
stood theory of the problem, in our sense. Finally, as 
seen in Section 2.5, even the elaboration of. the 
theory of the problem may benefit from the use of 
specifications in our sense, in order to make explicit 
the rationales underlying the concepts introduced by 
means of definitions. 

3. SPECIFICATIONS NECESSARILY 
ARE INFORMAL 

3.1 Why Can’t There Be Any Formal 
Specifications? 

A “formal specification” is a statement in a formal 
specification language. lo Such a statement is unintel- 
ligible “by itself,” primarily because the concepts of 
the problem are not primitive concepts of the used 
formal language. Therefore, a formula can only be 
“understood” as a representation of an intuitive 
statement, according to explicitly given conventions. 
These conventions are in general that the formula is 
true, in the chosen interpretation of the language, if 

and only if the intuitive statement is true. The 
enunciation of such conventions is precisely what we 
call a specification, in the sense that we discussed in 
Section 2, although not the specification of a pro- 
gram but rather of a formula. Its role is to give a 
meaning and thus a purpose to something (the for- 
mula in this case) that would otherwise not have 
one. Whether a formula is true or false is of no 
interest whatsoever if this is the only thing we know 
about it. In general thus, a specification is necessary 
each time one wants to represent a known property 
or concept by a text written in an artificial language. 
This also shows that any “formal specification” of a 
(formal) program is much closer to the program 
itself than to a specification in our sense. A notice- 
able difference may be that it is not “executable” 
because it is written in a “non-executable” language. 
In our opinion, it is not important whether the 
chosen language is executable or not, but whether it 
allows us to say in the most direct way what the 
purpose of the program is. Such a condition cannot 
be fulfilled by any formal language, given the ex- 
tremely low expressiveness of such languages. A 
formal language is always almost as bad as a pro- 
gramming language for communicating the purpose 
of a program. In other words: providing a formal 
specification of a program amounts almost to consid- 
ering that the text of the program (or of another 
program) allows one to understand its purpose. 

Some would now charge that our thesis is mainly 
definitional, and that we redefine the concept of 
specification in a way that rules out formality. How- 
ever, we do not think that we actually redefine this 
concept, since it is generally agreed that the specifi- 
cation of a program is the statement with respect to 
which the correctness of the program becomes 
meaningful. Indeed, the crux of the question is not 
whether we have redefined the concept of specifica- 
tion in a way that rules out formality, but whether 
our view of the concept correctly captures the notion 
and makes it useful. Here we believe that our defi- 
nition puts a better emphasis on the role of this 
notion and thus makes it more useful. So the possi- 
ble charge can-and actually should-be reversed: 
it is the formalists who have incorrectly redefined the 
notion of specification, namely in a way that justifies 
the need for formal methods! 

“Note that a statement in the “usual” mathematical language, 
such as ex = 1 +x +x2/2!+ ..* +x’/i!+ *.., is not a formal 
statement, but an informal one because that language is not 
predehned, nor syntactically checkable, and, more importantly, 
because its meaning rests on general human knowledge, not on 
the (obscure) semantics of a formal specification language. Hence 
such a statement essentially is part of the fohdore. 

3.2 Seven Frequently Asked Questions about 
Formal Specifications 

Are informal specifications and formal ones com- 
plementary? Many authors suggest that it is neces- 
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sary to add an “informal comment” to a program 
that helps communicate the purpose of the program 
and that corresponds to our notion of specification. 
Similarly, many researchers argue that formal speci- 
fications ought to be complemented by informal 
statements [Hoare, 1996; Wordsworth, 1992; Zave 
and Jackson, 19961. Nevertheless, such comments 
are considered insufficient to ensure that the effect 
of the program has been precisely defined. This 
corresponds to the frequent opposition of intuition 
and rigor, which considers that a fruitful intellectual 
activity should be driven by intuition (which is com- 
prehensible but vague) so as to produce rigorous 
results (which are formal but incomprehensible). In 
our opinion, the correct usage of a program necessi- 
tates having understood intuitively and rigorously its 
purpose. There is no need to distinguish two notions 
of specification, one comprehensible and vague, the 
other one precise and unintelligible. If a specifica- 
tion features delicate issues that are likely to be 
misunderstood, it is only necessary to give more 
details about them. There is no reason to believe 
such difficulties are best resolved, in all cases, by 
using a formal language chosen once and for all. 

If one thinks it is not safe to directly and simply 
explain the purpose of a program, i.e., in the way 
one understands it oneself, and that one had better 
define with absolute precision the “effect” of the 
program, even under the risk of incomprehensibility, 
by giving the readers “indications” on how to recon- 
struct a comprehensible specification for themselves, 
then one is confronted with the following difficulties. 
It is almost as difJicult to write without errors a formal 
speci’cation as the program itself, and it is bare& 
easier to “decipher the message,” in the opposite direc- 
tion. To write a correct formal specification, one has 
to make an explicit detailed reasoning that is very 
different from a vague informal comment. In order 
to convince oneself of having understood the formal 
specification, another reasoning has to be done, 
which is extremely tedious if the formal specification 
is not accompanied by such comments. So, for a 
couple (formal specification, informal specification) 
to suitably play its intended role, it would have to be 
accompanied by a detailed reasoning fixing their 
representation relationships. However, this is only 
meaningful if the informal specification has been 
explicitly and precisely stated. The role of the formal 
specification and the reasoning is then reduced to 
lifting the last doubts and ambiguities. But this can 
be achieved at lower cost by other means, such as 
the inclusion of significant examples, the provision 
of the reasoning process leading to the definitions in 
the specification, etc. 

Are formal specifications a means of dividing the 
difficulty of programming? Other people would 
rather say that the recourse to formal specifications 
is, if not a panacea, at least a means of division of 
the difficulty. Indeed, it would allow, on the one 
hand, the formal and mechanical proof of correct- 
ness of programs, and, on the other hand, the intu- 
itive justification that the formal specifications cor- 
rectly represent the problem to be solved. One could 
thus give much more confidence to programs, since 
everything reduces to the problem of validity of the 
formal specifications, formal correctness being es- 
tablished beyond all doubt. 

This viewpoint rests on two forms of exaggerated 
optimism on formal methods. First, it is in general 
not significantly easier or safer to prove intuitively 
the correctness of formal specifications than that of 
programs. Second, formal proofs of program correct- 
ness are almost always infeasible in practice, what- 
ever the available mechanical aid (proof verifier or 
theorem prover). For example, note that a formal 
proof of program correctness amounts to proving a 
formula whose length is at least the sum of the 
lengths of the formal specification and the program. 
So what will be the length of the proof?! This also 
assumes a complete formalization of the semantics 
of the programming language, which is already by 
itself an almost unrealizable task. If one considers 
that the time and budget allocated to the verification 
of program correctness is necessarily limited, it can 
be easily seen that one had better spend a bit more 
time justifying intuitively the correctness of the pro- 
gram and carefully choosing test cases, rather than 
making use of such formal methods. 

More pragmatically and without aiming at com- 
plete correctness proofs, software tools could be 
used to check some “desirable” properties of pro- 
grams. It is not our purpose to discuss the value and 
usefulness of such tools in this paper, since they are 
often more related to documentation and organiza- 
tional issues than to correctness issues. The former 
issues are extremely important in practice, but their 
discussion is completely out of the scope of this 
paper. Nevertheless, we think that such tools can 
possibly become harmful, because the value of pro- 
grams could be judged only with respect to the 
properties that are checkable. Hence we insist that 
correctness rests on largely unformalizable issues 
and should thus be addressed by making explicit 
informal reasonings and by keeping a record thereof. 

Remark. In spite of the previous argumentation, we 
do not dismiss current research on automated 
program verification, provided it is understood as 
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very long term research whose final outcome is 
still largely unclear. In fact, both authors of this 
paper are doing research related to program veri- 
fication (Flener and Deville 1993; Flener et al., 
1998; Le Charlier, 1994). Existing techniques, such 
as model-checking or abstract interpretation, can 
be applied to verify specific properties of program 
and systems. It is however unclear at the time of 
writing how this research will affect future prac- 
tice. Moreover, the authors of this paper do think 
that their view on informal specifications remains 
of paramount importance to understand and mas- 
ter systems based on those emerging techniques 
(Le Charlier and Flener, 1997). 

Is it necessary to formalize specifications to prove 
their consistency and completeness? Some people 
say that formal specifications allow systematic veri- 
fication of their consistency and completeness. This 
deserves several remarks. 

If it is desirable that a statement be consistent 
and complete, the precise meaning of these notions 
always strongly depends on the context of the state- 
ment, that is on a lot of things that are known about 
the subject of the statement before even examining 
it. If a statement defines a problem that has no 
solution, it is sometimes judged inconsistent, but, at 
other times, it is considered a perfectly consistent 
statement of a problem that just happens to have no 
solution; similarly for completeness, when the prob- 
lem has many solutions. Since a formal statement 
only is, in general, a representation of a non-formal 
statement, which is the only one to be comprehensi- 
ble, the consistency and completeness of a formal 
statement can only receive a precise meaning 
through this representation relation. As this relation 
is always chosen ad hoc, it is impossible to satisfacto- 
rily define (i.e., in a manner always corresponding to 
the intuitive concepts) consistency and completeness 
of formal specifications. Since this relation is thus 
totally exterior to the used formalism, consistency 
and completeness cannot be verified mechanically. 

However, there is some belief and hope among 
many computer scientists that the “real world” can 
be modeled in some canonical way, provided that an 
adequate formalism is used. Such belief and hope 
rests on the assumption that such a formalism could 
reflect the structure of reality. Hence, incomplete- 
ness or inconsistency of a description of the world 
written in this formalism would be interpreted very 
naturally as incompleteness or inconsistency of our 
understanding of the world. This view is related to 
Hilbert’s program for proving the non-contradiction 

of mathematics. His intuition was that all mathemat- 
ics could be embodied in a uniform formal system 
whose non-contradiction could be proved by ele- 
mentary arithmetic reasonings. Godel’s incomplete- 
ness theorem has definitely ruined this program. 
Hence, there is no natural formal structure to all of 
mathematics. A fortiori, there is no formalism allow- 
ing one to model the world in a natural way. Thus, 
consistency and completeness of specifications only 
are a by-product of the specifier’s correct under- 
standing and there is no a priori way to check that 
her understanding is correct. 

Are formal specifications more concise than infor- 
mal ones? A common argument is that formal spec- 
ifications are more concise than informal ones. How- 
ever, some people argue to the contrary. Strictly 
speaking, the raised question is meaningless for 
specifications in our sense, since they are only the 
way to link the (formal) program to its (informal) 
purpose. So the question in fact only applies to 
requirements specifications, or, in other words, to 
the theory of the problem. 

During the elaboration of this theory, the usage 
and introduction of mathematical notations is cer- 
tainly useful, but, in our view, usual mathematics are 
part of the folklore and hence mathematical nota- 
tions are part of the natural language. Indeed, math- 
ematical notations mainly are a way to make natural 
language more concise. Note however that an expla- 
nation of the link between these mathematical con- 
cepts and the concepts of the problem is generally 
needed, and this part of the “theory of the problem” 
necessarily requires using plain natural language. 
(Thus, it cannot be made concise by means of math- 
ematical notations.) 

Finally, what can be done with usual mathematics 
can be done to some extent within a formal specifi- 
cation language. However, the notations available in 
such a language are extremely less convenient than 
the usual mathematical notations, notably because 
such languages are syntactically checkable and have 
(or should have) a fixed (and often complicated) 
semantics. As a consequence, many more explana- 
tions are needed to link a formal requirements spec- 
ification to what it stands for in the real world than 
to understand the “theory of the problem,” in our 
sense. 

Are formal specifxations more pragmatic than 
informal ones? Some advocates of formal methods 
readily agree on the inevitability of informal specifi- 
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cations and informal verification, but they also point 
out that formal and informal specifications have 
different purposes and qualities. Indeed, formal 
specifications, whether executable or not, would offer 
a means of early feedback from the customer- 
through execution of the specification (early proto- 
typing) or through demonstration of desired proper- 
ties-and hence could allow significant cost savings. 
Otherwise, discrepancies between the specification 
and the customer’s intentions might only be de- 
tected when the customer runs (an increment of) the 
final software. Indeed, one may certainly construct 
intermediate formal descriptions before constructing 
the final software, as they can help during the pro- 
cess of elaborating the theory of the problem. But 
one cannot call such a description a “formal speci- 
fication” (and writing it is more of a programming 
activity than a specification activity), as it is not a 
specification at all (in our sense) and as it is incom- 
prehensible by itself and must thus be explained to 
the customer (which explanation process provides 
the very part that is missing in the formalization), be 
it as a document or as an executable or demonstra- 
ble prototype. 

Can formal specifications be automatically gener- 
ated from informal ones? Some researchers advo- 
cate writing informal specifications in so-called 
“semi-formal” notation (such as SA/SD) or in some 
form of “controlled natural language” (in the sense 
that the vocabulary and grammar are restricted so as 
to give sentences a “clear” semantics), expecting 
that they can be (semi-)automatically translated into 
(executable) formal specifications. The problem with 
the former approach is that these languages essen- 
tially are informal ones (because they do not feature 
a predefined syntax and semantics), and are thus 
subject to our comments above on the complemen- 
tarity of informal and formal specification frag- 
ments. There are no such things as “semi-formal 
languages.” The problem with the latter approach is 
that these languages essentially are formal ones, and 
thus subject to the comments in this entire paper. 
There are no such things as “informal controlled 
natural languages.” Since the descriptions are thus 
actually formal, it is only obvious that they can be 
automatically translated into some other formal lan- 
guages. And, as formal statements, they cannot pos- 
sibly be specifications, in our sense. For such speci- 
fications (in our sense), there is of course no way 
that they can be automatically formalized, as the 
link between the formal concepts and the real-life 
ones is not formalizable and as one would have to 

prove that the translation process is equivalent to 
the mechanisms of human knowledge acquisition. 

Are formal specifications necessary for safety-crit- 
ical systems? It is often argued that formal methods 
are necessary for the design of safety-critical sys- 
tems, and some standards organizations even start 
imposing/recommending their usage for such pro- 
jects. The rationale is that systems satisfying 
“specifications” in the form of, say, finite-state ma- 
chines (that are deemed trivially correct after in- 
spection) can be shown, say, to be free of deadlock 
and lifelock risks. Our objection to this formalist 
viewpoint is essentially the same as to the pragma- 
tism issue above, because, once again, it is a delu- 
sion to believe that there can be “obviously correct 
formal specifications.” 

Note that we do support the idea that extra care 
and rigor are needed in the design of safety-critical 
systems: it can certainly be worthwhile to check via 
model-checking whether some hardware component 
complies with some formalized property. Neverthe- 
less, the elaboration of such formalized properties 
requires substantial informal reasoning and specifi- 
cations in our sense. We even believe that, in most 
cases, making completely explicit the informal rea- 
soning leading to the design of a safety-critical sys- 
tem is more reliable than a formal verification. Of 
course, the formal verification can bring extra con- 
fidence or detect shortcomings in the informal rea- 
soning, but, in our opinion, such benefits have been 
too much overvalued in the literature on formal 
methods. 

4. CONCLUSION: WHY ARE THE ROLE AND 
NATURE OF SPECIFICATIONS SO OFTEN 
MISUNDERSTOOD? 

We now explain why our notion of specifications is 
difficult to understand and to admit by many piacti- 
tioners and theoreticians of computer science. But 
let us first summarize our viewpoint: 

1. A program is useful because its results can help 
to solve a problem. There is no limit to the class 
of problems that we can imagine in the “real” 
world. Therefore, the understanding of the pur- 
pose of a program may necessitate the knowledge 
of notions as distant as desired from program- 
ming concepts (or from concepts used in formal 
specification languages). 

2. The specification of a program essentially is the 
statement of its purpose. 
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3. A specification should not, nor can it provide all 
the knowledge necessary to the understanding of 
the purpose of the program. It must just try to 
state it in the most satisfactory possible way, that 
is in the most simple and direct way. That is why 
a specification is not meant for everybody, but 
only for those who can understand it. 

4. For the specification to be comprehensible by 
sufficiently many people, it is, in general, neces- 
sary to “construct” a theory that can be studied 
and understood by all. Such a theory cannot be 
constructed from nothing, but assumes a consid- 
erable preliminary knowledge that is partly shared 
by all the considered people. 

Now, there are at least two reasons why our view of 
specifications is very uncommon nowadays. 

First, there is the influence of the currently domi- 
nating ideas on the nature of mathematics. Mathe- 
matical theories are supposed to be founded on 
formal axiomatized theories. This means that every 
intuitive statement of the theory is supposed to be 
only an “abbreviation” of a formal statement that is 
itself mechanically deducible from the axioms. From 
there to infer that every interesting result of a 
theory can be discovered relatively quickly as soon 
as the axioms of its theory are known is only a small 
step. And this is the “step” made, consciously or not, 
when asserting that the specification of a program 
should, above all, define with absolute precision the 
effect of the executions of this program. Indeed, it is 
clear that from the input/output relation deter- 
mined by the executions of a program, one can 
theoretically deduce all other interesting properties 
of this program. Therefrom, some conclude that a 
specification reduces to such a definition, assuming 
that every reader is sufficiently intelligent to derive 
from it all other “interesting” properties of the 
program. (This means the reader is assumed to be 
omniscient, because if a program outputs the string 
“380,000”, she would, for instance, have to derive 
from this observation that one of the properties of 
the program is to give the distance between the 
Earth and the Moon, expressed as a decimal amount 
of kilometers.) 

Therefore, the idea that the specification of a 
program must be and can only be the definition of 
an input/output relation is a simple transposition of 
the idea that there is nothing more in a mathemati- 
cal theory than in its axioms. But, in order to under- 
stand the exact role of specifications, one should 
realize that, to the contrary, there is infinitely more 
than that in an intuitive theory: every new concept, 
notation, or result adds value to it that is not at all 

contained in the statement of its axioms. The intu- 
itive statement of an important theorem certainly is 
not a mechanical consequence of the axioms of a 
formal system, no more than the assertion of the 
“truth” equivalence between this statement and a 
formula. And this even holds for statements of the 
form “that formula is a theorem,” because the 
meaning of the notions of formula and theorem is 
not derivable from the mechanical rules of the for- 
mal system. 

In conclusion, a correct understanding of the notion 
of specification necessitates, in our opinion, a return to 
a more intuitive and “transcendent” perception of 
mathematics. 

Second, there is the opinion according to which 
the mastery of the programming problem can only 
be achieved by recourse to effective and automat- 
able methods. It seems (sadly) evident that few peo- 
ple are ready to admit that the mastery of program- 
ming will always depend, above all, on the compe- 
tence of the involved people. The manager wants 
effective criteria evaluating the quality of the work 
done by the programmers. The programmer expects 
the “theoreticians” to provide rules that can be 
followed blindly. Nobody wants to admit that the 
best way to realize whatever task is to do one’s best, 
by trying to stick to utmost intellectual honesty. 

If, regarding specifications, we say that the best 
thing to do is to understand the exact role of this 
notion so as to be able to “see,” in most cases, how 
to state them best, it will be considered that we have 
not brought anything interesting to the debate, be- 
cause we have not given any rule or criterion for 
writing good specifications or for evaluating them. 
However, some people say that, as it is better to do 
something rather than nothing at all, it is better, all 
things considered, to give rules that are arbitrary but 
measurable. 

For us, it is certain that little progress can be 
expected in programming as long as the opinion is so 
widespread that the value of a criterion is deter- 
mined by its being measurable and computer read- 
able. We think so because this idea can only prolong 
the illusions and avoid the real problems: thanks to 
such criteria, the manager can take decisions with- 
out having to get involved in the project, and this 
changes nothing to the quality of the programmers’ 
work, except that they have to adjust themselves so 
as to respect these rules even when they do not 
bring any practical help, or, worse, when they com- 
plicate the construction of the program. 

These remarks apply not only to software project 
managers, but also to the managers of research 
funding agencies. Academicians are almost “forced” 



Specifications Are Necessarily Informal J. SYSTEMS SOFTWARE 295 
1998; 40~275-296 

by them to claim that their formal methods research 
will increase productivity and competitiveness. 

Finally, let us stress once again that formal meth- 
ods research is not sterile, especially in the long 
term, because it will allow us to understand better 
how to design convenient computer languages and 
systems. However, we do think that our view of 
informal reasoning and specifications will remain 
relevant in the long term, since no formal language 
can possibly refer to real-world concepts as conve- 
niently as natural language can. 
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