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Abstract

In this paper, perfect reconstruction filter bank structures for GF-(N) fields are developed. The new filter banks are
based on the nonlinear subband decomposition and they are especially useful to process binary images such as document
and fingerprint images. ( 1998 Elsevier Science B.V. All rights reserved.

Zusammenfassung

In diesem Artikel werden Filterbankstrukturen zur perfekten Rekonstruktion von GF-(N) Feldern entwickelt. Die
neuartigen Filterbänke basieren auf der nichtlinearen subband-Zerlegung und eignen sich besonders zur Verarbeitung
digitaler binärer Bilder wie Abbildungen von Schriftstücken oder von Fingerabdrücken. ( 1998 Elsevier Science B.V.
All rights reserved.

Résumé

Cet article développe des structures en bancs de filtres à reconstruction parfaite pour les champs GF-(N). Les nouveaux
bancs de filtres sont basés sur la décomposition en sous-bandes non-linéaire et sont particulièrement utiles pour traiter
des images binaires telles que les images de documents ou d’empreintes digitales. ( 1998 Elsevier Science B.V. All
rights reserved.
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1. Introduction

The subband decomposition is a widely used tool
in signal processing and pattern recognition. Tradi-

tionally, linear filters with perfect reconstruc-
tion (PR) property are employed for the decompo-
sition. Recently, a variety of nonlinear ‘subband’
decomposition structures with perfect reconstruction
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property have been proposed and successfully used
in image compression and analysis [4,5,7—9]. The
key idea is to replace the linear filters in a classical
subband decomposition scheme with nonlinear
‘half-band’ filters.

In this paper, we show that the nonlinear subband
decomposition structures of [4,5,8] can be imple-
mented in Galois Field (GF) arithmetic. In Sec-
tion 2, the Galois field concepts are reviewed. In
Section 3, the nonlinear subband decomposition
structure of [8] is explained and it is proved that
the filter bank provides perfect reconstruction in
GF-(N) arithmetic as well. In Section 4 examples of
binary and 256-ary nonlinear subband decomposi-
tions are presented.

2. Galois field arithmetic

A field is defined as a set with two arithmetic
operations, addition and multiplication if
1. the set is closed under addition and multiplica-

tion;
2. addition and multiplication are associative and

commutative; and
3. the distributive law holds.
A field with a finite number of elements, q, is called
a finite field or Galois field and is denoted by
GF-(q) [1]. Most signal processing operations are
carried out over real and complex fields whose sizes
are infinite. However, binary images such as docu-
ment images, fingerprint images, etc., constitute an
important class and GF-(2)-based image processing
is not only computationally efficient for such images
but also sufficient in many applications.

The simplest Galois field is GF-(2), with the set
M0, 1N, and modulo-2 addition, and multiplication.
Two binary sequences u[n] and v[n] can be convol-
ved in this field as follows:

c[n]"+
l

u[n!l]v[l] (modulo-2). (1)

For example, the convolution of the sequences
u"M0, 0, 1, 1N and v"M1, 1, 0, 1N in GF-(2) results
in c"M0, 0, 1, 0, 1, 1, 1N in GF-(2). If real arithmetic
were used then the result would be M0, 0, 1, 2, 1, 1, 1N.

Nonlinear filtering operations can also be per-
formed in GF-(2). For some morphological filtering
operations such as erosion, dilation, the filter out-
puts are binary for binary inputs [3]. Hence in such
filters the output is also in GF-(2). Another impor-
tant nonlinear filter is the median filter. For binary
images, median filtering can be efficiently computed
simply by counting the number of ones in the
region of support. If the number of ones is greater
than half of the number of pixels then the median
value is one, otherwise it is zero. In general, if the
result of the nonlinear filter is an integer different
from 0 and 1 then it can still be expressed in GF-(2)
after a modulo-2 operation.

The above concepts can be generalized to GF-(q),
which is based on the set M0, 1,2, q!1N and
modulo-q arithmetic, if q is a prime number. If q is
not a prime number but an integer power of a prime
number, p, then GF-(q) can still be constructed as
an extension of GF-(p). For example, GF-(256"28)
is an extension of GF-(2).

3. Nonlinear decomposition in GF-(N) arithmetic

In Fig. 1, the block diagram of the nonlinear
subband decomposition structure proposed by
Hampson and Pesquet is shown [8]. In this struc-
ture H and G are nonlinear operators. The approx-
imate signal y

!
and the detail signal y

$
are obtained

from the input signal x[n] as follows [8]:

y
$
[n]"x

2
[n]!H(x

1
)[n], (2)

y
!
[n]"x

1
[n]#G(y

$
)[n], (3)

where x
1
[n]"x[2n!1], x

2
[n]"x[2n].

The corresponding synthesis equations are

x@
1
[n]"y

!
[n]!G(y

$
)[n], (4)

x@
2
[n]"y

$
[n]#H(x

1
)[n]. (5)

In GF-(N) arithmetic, Eqs. (4) and (5) take the
following form:

x@
1
[n]"y

!
[n]>G(y

$
)[n] (6)

"x
1
[n]=G(y

$
)[n]>G(y

$
)[n] (7)

"x
1
[n], (8)
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Fig. 1. N-ary subband decomposition structure.

Fig. 2. The nonlinear perfect reconstruction filter bank structure in [2].

where >, = represent the GF-(N) subtraction
and addition operations, respectively (they do not
represent morphological erosion and dilation op-
erations). Similarly,

x@
2
[n]"y

$
[n]=H(x

1
)[n] (9)

"x
2
[n]>H(x

1
)[n]=H(x

1
)[n] (10)

"x
2
[n]. (11)

The Perfect Reconstruction (PR) property is valid
as long as the outputs of the nonlinear filters G and
H are in the GF-(N) field. Therefore, Eqs. (8) and
(11) prove that the PR property of this nonlinear
decomposition structure is preserved, if GF-(N)
arithmetic is used. We call the resulting structure

nonlinear GF-(N) subband decomposition filter
bank.

Some of the nonlinear subband decomposition
structures are related to each other by appropriately
choosing the nonlinear filters. For example, the
structure depicted in Fig. 2 [5] is a more general
version of the structures developed in [8,9].
The analysis stage of Fig. 1 can be obtained
by cascading two analysis banks of the structure
of [2] and by choosing the filters as f

00
"1,

f
01
"0, f

10
"!H and f

11
"0 in the first anal-

ysis filter bank and f
00

"0, f
01

"G, f
10

"0
and f

11
"1 in the second analysis filter bank.

Similarly, the analysis filter bank of [9] can be
composed of as a cascade connection of the filter
banks f

00
"1, f

01
"a( ) ), f

10
"0 and f

11
"0 with

f
00

"0, f
01

"0, f
10

"b( ) ) and f
11

"1. It can
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Fig. 3. Binary subband decomposition of the letter ‘a’: (a) binary wavelet transform, (b) binary nonlinear subband decomposition.

easily be shown that the filter structure in
Fig. 2 also provides PR in GF-(N) arithmetic,
for the three types of filter structures (Type I:
Hierarchical DPCM-like, Type II: DPCM-like,
and Type III: channel swapping) discussed in
[5].

GF-(N) arithmetic was recently used in wavelet
theory [2,11]. In [2], a framework for the
wavelet transform of finite cyclic groups was
developed. In [10], this idea was specifically used
for the binary decomposition of binary images, and
the resulting transformation was called the binary
wavelet transform (BWT). Our structure differs from
the other GF-(N) arithmetic decompositions in its
use of nonlinear operations instead of linear opera-
tions.

The computational complexity of the binary
nonlinear subband decomposition is significantly
less than the BWT in which image-size matrix
multiplications are required. Due to this, a typical
BWT operation requires 2N3 logical operations
(XOR) where N is the size of the square image. On
the other hand, computational complexity of our
binary decomposition algorithm is N2(M#2)
where M is the size of the region of support for the
order-statistics filter. Since typical image size, N, is
much larger than the filter size, M, our structure
significantly decreases the computational complex-
ity. Furthermore, the ringing effects which appear
at sharp signal variation points are eliminated with
the use of nonlinear operations. An extra com-
putational saving is obtained if median (or any

order-statistics)-type filter is used as explained in
Section 2.

4. Binary and N-ary nonlinear subband decomposi-
tion examples

Consider the images in Fig. 3(a,b). In this figure
the binary wavelet transform (BWT) and the binary
nonlinear subband decomposition (BNSD) of the
letter ‘a’ are shown, respectively. The ringing arti-
facts of the BWT do not appear in the BNSD
subimages and slightly higher document image
compression results are obtained using the BNSD
in [6]. In Fig. 3(b) the nonlinear binary filter H is
chosen as the median filter and G"0. As pointed
out in Section 2, median filtering is per-
formed by simply counting the number of ones or
zeros in the region of support for binary images. If
the number of ones is greater than or equal to
the half of the number of pixels in the support
region then the median value is one, otherwise it is
zero.

Fig. 4 shows the result of the one-level subband
decomposition of 512]512 ‘Lena’ image which has
256 gray levels. The decomposition is obtained by
choosing H as the median filter and G"0, which
corresponds to the nonlinear decomposition struc-
ture of Egger et al. [4] in GF-(256) arithmetic. Since
the GF-(256) arithmetic is used in the decomposi-
tion, all the subimages in Fig. 4 are 256-gray-level
images. If the median filter has a support region
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Fig. 4. 256-ary nonlinear subband decomposition of the Lena
image.

with odd number of pixels then the output of the
median filter will also be in GF-(256) field. Other-
wise, the output of the median filter is modified as

x[n]"x
x
(L@2)

#x
((L`2)@2)

2
y , (12)

where x
(L@2)

is the (¸/2)th element of rank ordered
¸ pixels in the support region. In this way the
output of the median filter remains in GF-(256).

5. Conclusions

In this paper, it is shown that the recently pro-
posed nonlinear subband decomposition structures
can be implemented in GF-(N) arithmetic. The
resulting filter bank structures are especially useful
to process binary images such as document and
fingerprint images. Future work will include the

development of lossless medical image compression
algorithms in GF-(N) arithmetic.
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