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Effects of skewness and kurtosis on model selection criteria
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Abstract

We consider the behavior of model selection criteria in AR models where the error terms are not normal by varying
skewness and kurtosis. The probability of estimating the true lag order for varying degrees of freedom (k) is the interest. For
both small and large samples skewness does not effect the performance of criteria under consideration. On the other hand,
kurtosis does effect some of the criteria considerably. In large samples and for large values of k the usual asymptotic theory
results for normal models are confirmed. Moreover, we showed that for small sample sizes performance of some newly
introduced criteria which were not considered in Monte Carlo studies before are better.  1998 Elsevier Science S.A.
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1. Introduction

¨In a Monte-Carlo study Lutkepohl (1985) compares the finite-sample performance of 12 different
identification approaches for AR models. In his study, Schwarz Criterion (SC) (Schwarz, 1978;
Rissanen, 1978) and Hannan-Quinn Criterion (HQC) (Hannan and Quinn, 1979; Quinn, 1980) emerge
as being the best among the compared criteria. Akaike Information Criterion (AIC) (Akaike, 1973,

¨1974) also performs well. Koreisha and Pukkila (1993) augment Lutkepohl (1985) and show that the
performance of the above mentioned criteria depends on the number of nonzero elements of the
matrices of the AR parameters and the maximum possible lag order that is used. These two studies
and some other prior theoretical and empirical studies assume that the distribution of the error terms
are normal. Our object in this paper is to relax this assumption and compare the performance of above
mentioned criteria, as well as a few others, when the AR process may have nonnormal errors. We do
this by varying skewness and kurtosis. Since it is known that some of the financial data posses
skewness and kurtosis it is important for applied econometricians to know the behaviour of various
criteria under such circumstances.

We find that although skewness does not have much effect on the performance of criteria while
estimating the lag order of the AR model, kurtosis effects the performance of some of the criteria. We

¨reached same conclusion as Lutkepohl (1985) that SC and HQC are best criteria under normal error
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distributions and large samples. More than that we showed that they are also best for nonnormal error
distributions if the sample size is large. For small sample sizes performance of other criteria which are

¨not included in Lutkepohl (1985) are better than SC and HQC under the assumptions of both normal
and nonnormal error distributions.

2. Criteria for AR lag order selection

Assume that a given set of data X 5 (X , X , . . . ,X )9 is generated by a stationary AR( p) process0 1 T

(allowing for nonzero mean a ):0

X 5 a 1 a X 1 . . . 1 a X 1 ut 0 1 t21 p t2p t

where the a , i50, . . . p, are unknown parameters and u is an i.i.d error term with commoni t

distribution F. Our object is to find p, the true unknown lag order. It is assumed that there is an a prior
maximum order M, so that our estimate for p can be any integer between 0,1, . . . ,M. All prior studies
of the issue, both theoretical and empirical, assume the errors to be normally distributed. In this paper,
our goal is to assess the performance of these criteria when errors may be nonnormal. From the theory
of Edgeworth expansions, we know that the first two terms in asymptotic approximations arising from
lack of normality correspond to skewness and kurtosis respectively. Thus a good approach to assess
robustness is to vary skewness and kurtosis and study the behavior of the model selection criteria. It
appears that skewness does not have much effect on the relative performance of the criteria we
studied, while kurtosis does have a great effect.

We first briefly review the model selection criteria included in this study. To describe the criteria,
ˆˆ ˆ ˆ ˆlet a , . . . ,a be the OLS estimates of the parameters of the AR( p) model. Let X 5a 1a X 10 p t 0 1 t21

2 21 Tˆ ˆ. . . 1a X be the OLS estimate of X . Define the usual variance estimate s 5(T2( p11)) op t2p t p t5p
2ˆ(X 2X ) . The first criteria AIC was introduced by Akaike (1973), and has been a very populart t

2 2pˆ ]criterion for model selection. Define AIC( p)5ln(s )1 , and estimate p to be that integer betweenp T

1, . . . ,M which minimizes the criterion AIC. Shibata (1976) shows that AIC is not consistent but
overestimate p asymptotically with positive probability if M$p. Zaman (1984) shows how to

ˆcalculate the probability distribution of the estimate p produced by AIC. Shibata (1980) discusses an
asymptotic efficiency property of AIC.

2ˆHurvich and Tsai (1989) makes a bias correction to the AIC, defined by AIC ( p)5T ln(s )1C p

T [11( p /T )] / [12( p12)T ]. They show that it is asymptotically efficient if the true model is infinite
dimensional. When the true model is finite dimensional AIC chooses the true lag order most oftenC

compared to other asymptotically efficient criteria.
2ˆThe Schwarz Criterion, SC( p)5ln (s )1p ln(T ) /T was introduced by Schwarz (1978) based onp

Bayesian reasoning. It has the advantage of being consistent over the AIC. This and the Hannan-
2ˆ ¨Quinn criterion HQC( p)5ln (s )12p ln(ln(T )) /T both perform well in the Lutkepohl (1985) study,p

and hence are included in our study.
¨In addition to the AIC which was not part of the Lutkepohl (1985) study, we introduce two otherC

criterion which have not been studied in this context. The criterion PRESS, closely related to
Quenouille (1949) jacknife, was first introduced by Allen (1974). This is defined as PRESS( p)5
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T 2˜ ˜o (x 2x ) where x , t51, . . . T, is the predicted value of x from an AR( p) model after omittingt51 t t t t
1the t-th observation in the process of estimation. The value of p minimizing PRESS is selected.

The last criterion included in our study is the often-used sequential F test. We start with the largest
ˆmodel AR(M), and examine the t statistic of a . If this is insignificant, we drop it and re-estimate anM

AR(M21) model. We keep dropping the last coefficient until we get a significant one. In the
simulation study we took the significance level as 5%.

3. Simulation results

To compare the small sample performance of the criteria discussed in the previous section we have
two types of processes where one assumes three lags and the other assumes two lags as the true lag

2order. a is one. In order to have a stationary process we generate a , i51,2,3, from a uniform0 i

distribution in the region (21/2,1 /2). We set M56. For our robustness studies, we use two classes of
iid2error distributions. Let X|&(k,2);x . To study the effect of skewness, we considered u |F, where2k t

] ] ]3Œ Œ ŒF is the distribution of (X /(2 k))2 k. This has mean 0, variance 1, and Eu 52 k so that skewnesst

increases with k.
Fig. 1a,b below give the probability of correctly estimating p using the various criteria for varying

k. Fig. 1a has sample size 30, representing the small sample situation, and Fig. 1b has sample size
200, representing the large sample situation. From the figures we can see that skewness does not have
much effect on the performance of criteria while estimating the true lag order. Although AIC is theC

best criterion for sample size 30, it becomes one of the worst criteria for sample size 200.
Performance of PRESS is similar to AIC . Asymptotically consistent criteria, SC and HQC, are notC

doing that well for sample size 30 but they estimate the true lag most often when we increase sample
size to 200. Performance of AIC and sequential F test are close to each other.

iid
To study the effect of kurtosis, let u |F where F is a Student’s t distribution scaled to havet k

variance 1. As k increases, the kurtosis decrease, converging to that of the normal asymptotically.
Note that skewness is 0 for this class of distributions. When k is one we have the Slash distribution
defined in Morgenthaler and Tukey (1991) as a normal divided by a Uniform (0,1).

Fig. 2a,b below give the probabilities for correctly estimating p. We see from the figures that
kurtosis has a considerable effect on the criteria under consideration, especially on AIC and PRESS.C

When k is small, that is for heavy-tailed error distributions, performance of PRESS and sequential F
test are good but as k increase, that is when we get closer to normal distribution, we see a decline in
their performance. Converse is true for AIC . The result for AIC is what is to be expected becauseC C

Hurvich and Tsai (1989) makes the bias correction under the assumption of normality. Results can be
seen more clearly for the case of sample size 200. Performance of other criteria slightly increase as we
move towards normal distribution when sample size is 30. For sample size 200, it seems that kurtosis

1There are potential problems which arise from omitting middle observations in time series. We made adjustments to account
for such problems but found that such adjustments made no difference in the outcome, and hence have chosen to report
results without any adjustments.
2Since the results for three lags are similar to the ones for two lags, we only present in this paper the results for two lags.



20 S. Başçı, A. Zaman / Economics Letters 59 (1998) 17 –22

Fig. 1. (a) Probability of estimating the true lag order (true lag order52, sample size530, a skewed distribution). (b) Probability of
estimating the true lag order (true lag order52, sample size5200, a skewed distribution).
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Fig. 2. (a) Probability of estimating the true lag order (true lag order52, sample size530, t distribution). (b) Probability of estimating the
true lag order (true lag order52, sample size5200, t distribution).

does not effect these criteria. Once again SC and HQC are performing badly when sample size is 30
but they are the best ones when we increase sample size to 200. PRESS and AIC are the worstC

criteria for sample size 200.
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4. Conclusions

To conclude we can say that skewness does not effect the probability of estimating the true lag
order but kurtosis effects it especially for the criteria PRESS and AIC . When the sample size is smallC

and error distributions are not heavy-tailed (corresponding to large values of degrees of freedom, k)
we suggest the use of AIC for lag order selection. On the other hand, for heavy-tailed errorC

distributions PRESS and sequential F test perform very well. For large samples SC and HQC are
definitely the best criteria to be used.

We also studied forecasting performance based on models selected by the various criteria. This does
not correlate very well with the ability of the model to pick out the true p. In addition, we also studied
the probability distribution of the estimate of p. This reveals that PRESS has higher probabilities for
models size m satisfying m$p relative to the other criteria. If the maximum size M is reduced the
performance of PRESS improves substantially. Results for the normal distribution are very similar to
those for t .100
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