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Abstract 

A genetic algorithm is introduced to search for optimal policies in the presence of 
knowledge spillovers and local pollution in a dynamic North/South trade game. Non- 
cooperative trade compounds inefficiencies stemming from externalities. Cooperative 
trade policies are efficient and yet not credible. Short of a joint maximization of the global 
welfare, transfer of knowledge remains as a viable route to improve world welfare. 
0 1998 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

This paper aims to contribute to the recent literature exploring linkages 
between international trade, environmental degradation, and growth by bring- 
ing to the fore the dynamic gaming aspects of these issues.’ The framework we 
adopt is a dynamic trade game between North and South. 

An extensive literature exists studying various aspects of the North/South 
trade. Galor (1986), an early precursor to this study, emphasizes the dynamic 
inefficiency of a noncooperative North/South trade wherein North is the engine 
of growth and South has a comparative advantage in resource production. 
Noncooperative resource pricing chokes up growth in the North. Labor 
market imperfections in the South, the surplus labor concomitant with positive 

*Corresponding author. E-mail:suheyla@bilkent.edu.tr 

’ See among others Markusen (1975), Clemhout and Wan (1985), Levhari and Mirman (1980), and 
Dockner and Long (1993). 
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subsistence wages, are the main culprit for the inefficiency. These market 
imperfections may, however, be a blessing in disguise if resource extraction 
pollutes the Southern environment; diminished Northern growth will check the 
pollution level in the South about which the North is indifferent. 

In a series of papers, Chichilnisky (1993, 1994) draws attention to the salient 
feature of resource extraction in the South; (domestic) open access to Southern 
resources results in overexploitation and excessive pollution. Copeland and 
Taylor (1994) study the volume and the composition of trade between the North 
and South. Asymmetric endowment of human capital leads to trade between 
otherwise similar regions. Starting with a low level of human capital, South 
specializes in low-skill/pollution-intensive goods so that in the aftermath of 
trade, along with income the level of pollution rises. However, the long-run 
effects of trade on growth and pollution are unclear since accumulation of 
human capital is not allowed. 

Neither Chichilnisky nor Copeland and Taylor consider the likely conse- 
quences of trade on knowledge spillovers. To the extent, trade also gives rise to 
knowledge spillovers, its undesirable impact on the pollution level will be 
mitigated. The beneficial effects of trade on capital accumulation or research 
and development are discussed by Grossman and Helpman (1991). 

Our paper then addresses the issues related to trade and environment in 
a growth-cum-externalities setup. We intend to capture the impact of the 
Northern growth on the quality of the Southern environment in the presence of 
transboundary knowledge spillovers. Knowledge accumulation and spillovers 
bring about additional growth/pollution tradeoffs, and thus, help us identify 
sources of inefficiencies that have been hitherto overlooked. 

The North/South trade in our model is specialized as in Galor (1986). In 
addition, resource extraction causes environmental pollution in the South. Also, 
knowledge accumulates in the North and diffuses costlessly to the South 
highlighting the public good nature of investment. We let the authorities in the 
South levy an export tax (or an import tariff) to internalize the local social cost 
of pollution and also to exploit their resource monopoly. 

An additional contribution of the paper is in its methodology: We introduce 
a general purpose genetic algorithm (GA) to solve open-loop differential games 
of infinite duration. The lack of attention paid to the development of computa- 
tional techniques to solve such problems was first addressed by Pau (1975a,b). 
We implement the algorithm GA to solve numerically the North/South dynamic 
trade game. 

In the GA search for optimal regional policies noncooperative and 
cooperative modes of behavior are considered. In the noncooperative Nash 
search, each region is represented by an artificially intelligent player, a GA, to 
adopt policies taking the rival’s as given. Choices are evaluated in terms of their 
impact on the respective preferences (fitness functions) ignoring the side eficts 
on the rival’s fitness. Policies are then iteratively improved upon using a 
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synchronous Darwinian search mechanism. Fittest policies are found if no 
improvement in ‘lifetime’ fitnesses is possible. South chooses resource prices 
with a view to maximize her own fitness. Resource prices also affect the rate of 
knowledge accumulation in the North, and hence, the Northern welfare which, 
however, does not enter into South’s calculus of price determination. Likewise, 
in its search for optimal resource/knowledge mix, the Northern intertemporal 
calculus discounts the fact that knowledge accumulation attenuates the detri- 
mental side effects of the resource extraction to the Southern environment. As 
such, from the vantage point of global efficiency, noncooperative regional 
policies ultimaletly lead to underinvestment in knowledge capital. 

In the cooperative search, the world fitness is represented as a weighted sum 
of each region’s respective fitness. All externalities are thus internalized. Obvi- 
ously, the resulting price and resource/knowledge paths are Pareto-efficient 
relative to a global fitness. It is worth noting here that though environmental 
pollution is local in nature, it has global ramifications calling for an interna- 
tional approach to appropriately internalize it. 

Cooperative North/South trade agreements may fail to materialize for well- 
known reasons such as the absence of enforcement mechanisms and high 
monitoring costs. Nevertheless, there is still scope to improve the world welfare 
even when regions adopt inefficient noncooperative policies. We show that 
‘enhancement’ of knowledge diffusion has the potential to generate substantial 
welfare gains for both regions. For instance, if North, acting unilaterally, is to 
improve the Southern access to the stock of knowledge (related to the pollution 
abatement), this will improve not only the Southern, but via initially lower 
resource prices, North’s own welfare as well. 

The balance of the paper is organized as follows: Section 2 discusses the 
dynamic trade game between North and South. Section 3 introduces the 
Genetic Algorithm to solve open-loop dynamic Nash games. Section 4 contains 
numerical solution of the model and interpretations. A brief conclusion and 
further extensions follow in Section 5. 

2. The model 

2.1. Non-cooperative North/South trade 

Consider a global economy comprised of two regions, namely, North and 
South. Employing a concave production technology Y = F(K, R,u), North 
produces manufactured goods which are consumed and invested in the North or 
exported to the South at a fixed world price of unity. K stands for broad capital 
measuring the current state of technical knowledge in the North (Griliches, 
1979), R is the raw material imported at a monopoly price determined by the 
South and u captures all other uncounted determinants of output. 
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The stock of knowledge accumulates in tandem with the rate of investment, 

k, = Y, - ptR, - 6K, - C;“, (1) 

where pt is the relative price of resources (Southern terms of trade), 0 < 6 < 1 is 
the rate of depreciation of the broad capital.’ Henceforth, a dot over a variable 
denotes its time derivative while superscripts J)r and Y stand for North and 
South, respectively. Eq. (1) indicates that the rate of knowledge accumulation 
will be set not only by the North’s desired consumption profile, but also the 
South%. No investment takes place in the South so that the proceeds from the 
resource sale are totally consumed. Nonetheless, South indirectly affects the 
pace of knowledge accumulation in the North via its desired trajectory of terms 
of trade. 

Northern optimal consumption plan maximizes the discounted Northern 
lifelong welfare, namely, 

max JK= 
s 

me-p.x ’ U(C;“) dt O<px<l 
CA,,& 0 

subject to Eq. (1) and K(0) = K. given, C;” 2 0 for all t. U(C;“) is a strictly 
concave instantaneous utility function and pK denotes the Northern time 
preference rate. 

We assume endowment asymmetry and let the primary resource be produced 
only in the South by a constant returns to scale production function which is 
assumed, for simplicity, to be a fixed coefficient type. That is, R, = bL,, b > 0 
where L, is the labor employed at time t.3 

Resource extraction causes pollution. Also knowledge, broad capital accumu- 
lated in the North, diffuses, albeit at a diminishing rate, to check the damage 
done to the Southern environment from resource extraction. Thus, patterns of 
trade and growth are further complicated by the presence of local and trans- 
boundary externalities.4 

* Griliches (1979) discusses extensively various interpretation of depreciation in the context of 
broad capital. 

3 If it is assumed that the supply of labor in the South is perfectly elastic at a fixed real wage w in 
terms of the manufacturing goods, the nature of the labor force coupled with the CRS production 
function would then determine labor income per unit of raw material as w/b. Competitive firms in 
the South will charge a price equal to the private marginal cost of resource extraction w/b. The 
assumed social planner in the South levies an export tax, not only to internalize the social cost of 
pollution, but also to extract monopoly profit from the North. 

4 In a dynamic game setup with transboundary pollution, Dockner and Long (1993) show that 
Paretoefficient steady-state pollution level can be sustained with nonlinear Markov-Perfect strat- 
egies if discount rates are suRlciently low. Bap (1996) analyzes incentives to free-ride on transboun- 
dary pollution abatements when there are informational asymmetries. 
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The type of pollution we consider has a high natural decay rate so that the 
cumulative effects are underplayed. With this specification the magnitude of the 
stock becomes proportional to the size of the flow defined as in Keeler et al. 
(1971), Markusen (1975). We specify the pollution 9 as 

(2) 

where y > 1, 0 c 4 < 1. y measures the exponential order of environmental 
damage due to extraction and 4 is a knowledge diffusion (spillover) parameter, 
signifying the degree of applicability of knowledge to pollution reduction. 

9 enters into the Southern utility as a flow with a negative marginal utility. 
Given the Northern demand for resources, South chooses the terms of trade to 
maximize lifetime utility, i.e., 

max J,y = 
P, s 

memp,y* U(Cp,g,)dt 0 < py < 1 
0 

subject to Eq. (l), (2) and 

C: = it R,, 

K(0) = K. given, CT 2 0 for all t, 

where py is the Southern rate of time preference. Instantaneous utility is 
assumed separable in consumption CT, and pollution pPt so that 
U(C;“,g’,) = U(Cp) - D(gJ. U(C?) is strictly concave and D(gJ is strictly 
increasing in R, and decreasing in K,. 

2.2. Cooperative North/South trade 

In the design of cooperative strategies, the participants have to agree in 
advance upon how to distribute the potential gains from cooperation. The 
distributive outcome depends on the weights, o, that are put on the respective 
fitnesses. The determination of the value of o most likely to prevail in 
a cooperative agreement requires a bargaining framework which recognizes the 
relative power of the participants. This is outside the scope of our inquiry. 
Instead, we consider an egalitarian allocation and assume exogenously given 
equal weights. 

Let p = wp,, + (1 - o)p, be the weighted time preference term. The Pareto- 
efficient solution is found by 

max J= e-P’ {oU(C?) + (1 -0) [U(CT) - D(gJ]}dt 
C-“;.R,.P, 

O<p<l 
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s.t. 

& = Y, - pt R, - 6K, - C;", 

K(O) = K0 given C;“, CT 2 0 (3) 

Cooperation takes place on the premise that North and South can enter into 
binding commitments. Precommitment is difficult in the absence of suitable 
institutions which can enforce global decisions. Still, cooperative solutions, 
though lacking credibility, are important in so far as they establish an efficiency 
benchmark against which other solutions can be compared. 

3. Solution methods 

In the open-loop Nash solution of the game, each player faces a standard 
optimal control problem which is arrived at by fixing the other player’s policies 
at some arbitrary functions. Hence, each such optimal control problem is 
parameterized in terms of some open-loop control policies which, however, do 
not alter the structure of the underlying optimization problems because of their 
open-loop character. Therefore, in principle, the necessary and/or sufficient 
conditions for open-loop Nash equilibria can be obtained by listing down the 
conditions required by each optimal control problem (via minimum principle) 
and then requiring that these all be satisfied simultaneously (Baqar, 1986). 
Because of the couplings that exists between these various conditions, each one 
corresponding to the optimal control problem faced by one player, solving 
analytically for the Nash equilibria of our game poses a formidable task. 

Recently, there has emerged a growing interest among economists in the 
computational aspects of complex dynamic structures which cannot be easily 
handled with traditional analytical methods. One search technique that has 
been successfully applied to such complex problems is the genetic algorithm. 
Genetic algorithm is a globally robust search mechanism which combines 
a Darwinian survival-of-the-fittest strategy to eliminate unfit characteristics and 
uses random information exchange, with exploitation of the knowledge con- 
tained in the previous solutions. Grefenstette (1986), Michalewicz (1992) and 
Krishnakumar and Goldberg (1992) used GA to optimize control problems with 
a single controller. t)zylldlnm(1996) extended GA to solve open-loop difference 
games of finite horizon. In this paper we develop and implement GA to solve 
open-loop differential games of infinite duration. Given the concave-convex 
structure of the model, a nonGA algorithm such as a gradient procedure could 
have performed equally well for numerical experimentation. However, since the 
application of GA to differential games is quite new for the researchers, experi- 
menting with such regular functional forms should be considered a start. 
Otherwise, the solution procedure is general and‘independent of the assumed 
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functional forms. One aim of our paper is to propose it as a general purpose 
alternative game algorithm. 

3.1. Genetic algorithm 

Genetic algorithm initiated by Holland (1975) and further extended by De 
Jong is best viewed in terms of optimizing a sequential decision process involv- 
ing uncertainty in the form of lack of a priori knowledge, noisy feedback and 
time varying payoff function. It is a highly parallel mathematical algorithm that 
transforms a set of (population) individual mathematical objects (typically 
fixed-length character strings patterned after chromosome strings), each with an 
associated fitness value, into a new population (i.e., the next generation) using 
operations patterned after Darwinian principles of reproduction and survival of 
the fittest after naturally occurring genetic operations (De Jong, 1993). 

A GA performs a multi-directional search by maintaining a population of 
individuals, P(t) = {x1,. . , ,x,} where xi = {xir,. . . , XiT}; each individual, xi rep- 
resents a potential solution vector to the problem at hand. An objective function 
(fitness) plays the role of an environment to discriminate between ‘fit’ and ‘unfit’ 
solutions. The population experiences a simulated evolution: at each generation 
the relatively ‘fit’ solutions reproduce while the relatively ‘unfit’ solutions die. 
During a single reproductive cycle fit individuals are selected to form a pool of 
candidates some of which undergo crossover and mutation in order to generate 
a new population. 

Crossover combines the features of two parent chromosomes to form two 
similar offsprings by swapping corresponding segments of the parents. The 
intuition behind the applicability of the crossover operator is the information 
exchange between different potential solutions. Mutation arbitrarily alters one 
or more genes of a selected chromosome by a random change with a probability 
equal to the mutation rate pmut. The mutation operator introduces additional 
variability into the population. After some number of generations, the program 
converges. The best individuals represent the optimum solutions.’ 

3.1.1. Genetic algorithm for noncooperative open-loop dynamic games 

Considering the fact that GA is a highly parallel mathematical algorithm, we 
offer a new solution procedure using GA to visualize situations or problems in 
which there are more than one performance measure and more than one 
intelligent controller (player) operating with or without coordination with 
others. We use both the optimization and the learning property of the GA to 
solve the problems of multiple criteria optimization. Since the open-loop n- 
person Nash equilibria can be obtained as the joint solution to n optimal control 

5 For further details, see Goldberg (1989), Michalewicz (1992), and Arifovic (1994). 
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problems (Basar and Oldser, 1982), then we can use n parallel GAS to optimize 
the control system. 

In this setting, there are n artificially intelligent players (controllers) who 
update their strategies through GA and a referee, or a fictive player, who 
administers the parallel implementation of the algorithm and acts as an inter- 
mediary for the exchange of best responses. This fictive player (shared memory) 
has no decisive role but provides the best strategies in each iteration to the 
requested parties synchronously. In making his decisions, each player has certain 
expectations as to what the other players will do. These expectations are shaped 
through the information received from the shared memory in each iteration. 

The following figure shows the general outline of the algorithm we use for the 
two-region dynamic trade game: 

procedure lorth GA; procedure South GA; 
begin begin 

‘initialize PN(0) initialize PS(0) ; 
randomly initialize randomly initialize 
shared memory; shared memory; 
synchronize; synchronize; 
evaluate PI(O) ; evaluate PSCO) ; 
t - 1; t = 1; 
repeat repeat 

select PN(t) from PN(t-1); select PS(t) from PS(t-1); 

copy best to shared memory; copy best to shared memory; 

synchronize ; synchronize; 

crossover and mutate PN(t); crossover and mutate PS(t); 

evaluate PN(t) ; evaluate PS (t ) ; 

t=t+1 ; t=t+i; 

until(termination condition); until(termination condition); 

end ; end ; 

In the above algorithm, each side waits for the presence of the previous best 
structure of the other side in the synchronize statement. 

In each step of this algorithm, two GAS are solved. In order to reduce the time 
complexity, the two GAS are solved for one generation while continuously 
sharing the best responses. This approach has the advantage that while reducing 
the time complexity it ensures that the convergence is to the global extremum. 

3.1.2. Genetic algorithm for cooperative games 
In a cooperative game, the strategic rivalry that exists in noncooperative 

games is eliminated via an ‘arbitration’ whereby the ‘total fitness’ as the 
weighted sum of each player’s respective fitness is maximized. This is a typical 
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control problem which can be solved by standard GA techniques (Krish- 
nakumar and Goldberg, 1992; Michalewicz, 1992). 

In general, controls may involve constraints so that, either penalty functions 
or substitution may be used to transform the original problem to an uncon- 
strained optimization problem for GA implementation.‘j For n control variables, 
T periods, and k potential solutions, a GA performs the following steps to 
optimize a control problem: (1) randomly generate an initial potential solution 
set, (2) evaluate the fitness value for a solution set of nTk, (3) apply selection, 
crossover, and mutation operations to each set of solutions to reproduce a new 
population, (4) repeat steps (l)-(3) until computation is terminated according to 
a convergence criterion, (5) choose the solution set nT based on the best fitness 
value from the current generations as the optimal solution set. 

4. Numerical experiments 

We need discrete reformulation of our model for numerical computation. 
Mercenier and Michel (1994) propose time aggregation to transform continu- 
ous-time infinite horizon optimal control problems into discrete-time approxi- 
mations with the same steady state. This approach imposes consistency 
constraints on the joint formulation of preferences and accumulation equations. 
It is shown that this consistency is achieved by a simple restriction on the choice 
of discount factor. In the appendix we show that their results extend to open- 
loop dynamic Nash games. Then we exploit the inherent parallelism in GA to 
solve the time-aggregated North/South dynamic trade game. 

The discrete-time approximation of infinite horizon North/South trade model 
with steady-state invariance is as follows:7 

M-l 

maxP = 1 6$ A, U’(t,) + &L-l G’(f((tM)), 
m=O 

(4) 

s.t. Wm+d - NL,) = 4 CW,) - ~hn)Wm) - c"k,J - WLJI, 

K(t,) = K. given, C’ 2 0 i = N,Y, (5) 

where A4 is the assumed terminal time when the stationary state is reached, 
A,,, a scalar factor that converts the continuous flow into stock increments, 

6 We have linear constraints both as equalities and inequalities. The equalities are eliminated at 
the start by substitution. The constrained problem is then transformed to an unconstrained problem 
by associating penalties with all constraint violations which are included in the fitness functions. We 
used arbitrarily large negative numbers to penalize constraint violations. See Michalewicz (1992) for 
various GA approaches to handle linear constraints. 

‘See appendix for derivation. 
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A,,, = t,il - t, and @,, the sequence of discount factors of the region i for which 
the stationary solution of the discrete-time problem is equivalent to the corres- 
ponding continuous-time problem. These sequences are given by the following 
recursions: 

e; = ec- 1 

1 + PAN’ 
e$ > 0 and 0: = 

The functions G’( a) denote the terminal values. 
For numerical experiments, we adopt the following particular functional 

forms: 

! Cf’_” - 
U(Cf) = 1 - 0 

for cr > 0, u # 1, 

I log Cf for 0 = 1, 

and 

where d converts pollution to utility. Also, 

Y, = aKF Rf, a +/? < 1 and a > 0. 

All uncounted inputs u, are normalized to one for simplicity. The following set of 
parameter values are assumed: 

a = 0.80, /I = 0.15, y = 2, a = 1, b = 1, d = 0.00001, 

0 = 1.50, 6 = 0.08, p_,/ = 0.02, py = 0.02, o = 0.50, 4 = 0.15. 

These parameter values are assumed for the purposes of illustration, however, 
they are not totally unjustified. Similar values of a, c, 6, pi and a are used by 
Auerbach and Kotlikoff (1987) in a different context. d is so chosen to conform 
with the assumed utility function. b, parameterizes the importance of the effects 
of knowledge spillovers in the North/South trade game. To highlight the 
significance of the knowledge spillover, we run the experiment with 4 = 0.30 as 
well. /3, y, and b are chosen to satisfy parameter restrictions and are incon- 
sequential to our arguments about knowledge spillovers. s 

*The genetic operators in this paper were done using the public domain GENESIS package 
(Grefenstette, 1990) on a SUN SPAC-1000 running Solaris 2.4. A typical run uses population size, 
j = 50, runs 15 million generations for noncooperative game and 30 million generations for 
cooperative game, crossover rate is 0.60 and mutation rate is 0.03. None of the results depends on the 
values of genetic operators other than run time by the choice of number of generations. For each 
parameter set, we have to implement three separate GAS. Hence, we are limited by the increased 
computational costs in our scope for a complete sensitivity analysis. 
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In the time-aggregated model, we assume 21 periods (M = 20) with a dense 
equally spaced gridding of the time horizon T (t(M) = 200), which is sufficient 
to capture the convergence over time. 

As mentioned earlier, we simultaneously run two separate genetic programs, 
GAM and GA”, to solve the noncooperative game. GAx generates a population 
of candidate solutions (chromosomes), K(t) representing the Northern accumu- 
lated knowledge. GA” produces the population of chromosomes p(t) denoting 
the set of Southern price strategies. Structures Kj, pj in each population 
(j=12 , , . . . ,50) are represented as binary strings ((0 l}) of length 1. For stringj of 
length 1 ( = lo), decoding works as follows: 

K](t) = i U;(t)2h-1, pj(t)= i Ujh(t)2h-1, 
h=l h=l 

where a!(t) is the value (0 l} taken at the hth position in the string. After strings 
are decoded, integers Kj(t) and p](t) are normalized in order to obtain a real 
number value. 

Since K0 is given and p. is free, in each iteration (generation), GAN computes 
M while GA” finds M + 1 structures each with a domain, 
Di = [$6] E ‘%; i = p,K. Di is cut into (a- d)21° equal size ranges. Thus, the 
noncooperative game has the minimai search domain of 2410 = 
2.64423E + 123. 

Cooperatiue solutions are computationally much more complex than non- 
cooperative ones. In the latter case, the search for the optimum consists of two 
one-dimensional problems, while the former represents one two-dimensional 
problem. In the cooperative experiment, three chromosomes, p,, K, and R,, (62 
structure) are searched in the minimal domain of 2620. 

Regional decisions are updated using genetic operators, selection, crossover, 
and mutation. The selection strategy is elitist so that the best performing 
strategy in the population of survivors is retained. This selection rule is a natural 
candidate in noncooperative Nash games. Therefore, it is especially crucial for 
the dynamic noncooperative game algorithm as it requires best responses be 
mutually exchanged. Were it not for the elitist selection, the best structures may 
disappear making for a nonconvergence. 

Since GAS work with constant-size populations of candidate solutions, GA 
searches are initialized from a number of points. Initialization routines may 
vary. We, however, start from randomly generated populations so as not to 
prejudice the convergence of the populations on the initial ones. Therefore, 
a randomly initialized GA is less prone to numerical instability that may be 
caused by initialization. For the GA parameters which might cause instability, 
we used the parameters chosen and studied on various optimization experi- 
ments by Grefenstette (1986). From the result of the experiments in the paper, 
the convergence is self-evident. 
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The termination conditions are specified beforehand as a certain number of 
iterations. We gradually increase the number of iterations until no further 
improvements are observed. 

4.1. The results 

Fig. 1 and Table 1 summarize our numerical findings based on the assumed 
parameter values. First, from Table 1 note that North/South cooperation gener- 
ates considerable welfare improvements for both regions. Moreover, South has 
more to gain from such a regime switch indicating the severity of the Northern 
noncooperation. 

Also to be observed from Ta’bie 1 is the increase in regional welfares attendant 
with stronger knowledge diffusion. More significantly, comparing the welfares 
under the noncooperative regime with augmented knowledge dissemination 
(4 = 0.30) and cooperation with restricted knowledge spillover (4 = 0.15), we 
see substantial gains materialize even with uncoordinated trading policies at- 
testing to the importance of access to knowledge. 

The policy implication is that even if parties fail, say due to enforcement 
problems, to realize the first best solution, they may still achieve significant 
improvements in global welfare by strengthening the knowledge flows from 
North to South. It may be costly to setup global institutions to monitor and 
enforce North/South cooperations. To the extent that knowledge diffusion can 
be enhanced relatively cheaply, regions may opt to cooperate on sharing 
knowledge related to pollution control. 

Studying Fig. 1 number of results stand out. To wit, in the long-run coopera- 
tion yields sizable increases in knowledge stock, resource use, resource/ 
knowledge mix, pollution level, and consumption irrespective of the extent of 
knowledge spillovers. Southern terms of trade first deteriorates to recover later 
on. Furthermore, this recovery is faster with the greater degree of spillovers so 
that in the long-run coordinated resource prices ultimately surpass the non- 
cooperative ones. 

Along the cooperative path Southern terms of trade equate the marginal 
social benefits of resource use (the marginal utility of manufactured goods times 
the marginal product of resources) to the marginal pollution costs in the South. 
Without cooperation, Southern terms of trade depreciates at the margin if the 
welfare improvement due to the increased marginal export revenue plus the 
marginal benefit from the accelerated knowledge accumulation in the North 
(valued at the shadow price of knowledge in the South which reflects also the 
positive knowledge externality) is greater than the increase in the marginal 
pollution cost (in terms of Southern disutility). 

As such, Southern noncooperation adds to the dynamic inefficiency to the 
extent her market power limits knowledge growth in the North. This deleteri- 
ous effect of resource monopoly, however, is mitigated to the degree South 



N.M. Alemdar, S. &yddvwn 1 Journal of Economic Dynamics and Control 22 (1998) 81 I-832 823 

Fig. 1. 1115 (~15) stands for noncooperation (cooperation) with 4 = 0.15. Likewise for #J = 0.30. 
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Fig. 1. (Continued). 

Table 1 
The total discounted welfares 

Rate of 
diffusion (4) 

0.15 
0.30 

North 

Noncooperative 

- 0.058 138 
- 0.047346 

Cooperative 

- 0.054725 
- 0.045009 

South 

Noncooperative 

- 0.072729 
- 0.060418 

Cooperative 

- 0.065882 
- 0.0543 18 

Note: Because of the assumed utility function, values closer to zero indicate higher welfare. 

internalizes the knowledge spillovers. On the other hand, noncooperative 
Northern investment plans are globally inefficient as they understate the true 
world marginal benefit by the amount of the marginal improvement in the 
Southern welfare due to the incremental reduction in the pollution level. 
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Therefore, major gains from cooperation accrue initially when the knowledge 
stock is so low that a rapid investment plan is called for. Southern terms of trade 
obliges by shifting down and tilting towards future to accommodate a faster 
adjustment. Consequently, the knowledge stock accumulates at a more rapid 
rate; the pollution level starts higher but falls off precipitously; and the regional 
consumptions rise more swiftly. 

Another important set of results has to do with the long-run effects of an 
increase in the knowledge diffusion parameter #J. First, note the rise in the 
optimal long-run resource/capital ratio. This will be true because, a higher rate 
of knowledge diffusion will reduce the long-run pollution cost and thereby the 
supply price of resources, and make the increased use of resources for any 
given level of knowledge optimal. Also, worthy of notice is the increase in 
the stationary knowledge stock and the fall in the pollution level. The 
marginal reduction in the pollution level due to a higher K outweighs the 
incremental increase due to a higher R so that the overall long-run pollution 
will fall. 

For the dynamic inefficiency of the noncooperative trade regime and the 
failure of cooperation, we provide the following explanations: In the non- 
cooperative mode the shadow value (the marginal benefit) of the knowledge 
stock differs for the two regions as the regions have different preferences 
(fitnesses) leading to conflicting policies and harmful ‘policy externalities’. More- 
over, when policies are chosen with a view to maximize own fitnesses taking the 
rival’s as given, the ‘incentive’ effects of the policies are ignored. The South 
chooses resource prices for any ‘given investment policy’ of the North, thus, 
ignoring the fact that a lower price today (lower consumption) may ‘induce’ the 
North to invest more today which then leads to higher prices (higher Southern 
consumption) as the higher knowledge stock shifts the demand for resources 
tomorrow. The North, on the other hand, ignores the fact that an initially higher 
investment profile (lower consumption) may induce South to ask for lower 
resource prices today in return for higher prices tomorrow (as the demand for 
resources will shift) and also to higher Northern consumption in the future as 
the amount to be invested will be lower in the future (higher Northern consump- 
tion). 

Parties ignore the incentive effects for the fact that promises are not credible. 
If South were to offer cooperative prices, it would not be optimal for the 
North to invest as much promised as along the cooperative path: North will 
consume more and invest less. Likewise, if North were to commit itself to the 
investment plan along the cooperative path, then it would not be optimal for the 
South to ask for the cooperative prices: South will raise prices and consume 
more. Failing to cooperate, the parties will revert to their respective Nash 
strategies. 
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5. Concluding remarks 

This paper has introduced genetic algorithms to search for optimal policies in 
the presence of knowledge spillovers and local pollution in a dynamic 
North/South trade game. Cooperative trade policies are efficient but fail to be 
enforceable. Noncooperative trade policies compound inefficiencies stemming 
from externalities. Competitive resource production in the South overpollutes 
whereas ‘local’ internalization of pollution together with resource monopoly 
limit growth and trade and result in underpollution. 

Because of the spillovers, the stock of knowledge is partially a common 
property (see Grossman and Helpman, 1991 for this point). The North under- 
invests because it cannot fully capture the benefits from investment in know- 
ledge. Even though the pollution is local in the South, the North still has an 
incentive to speed up knowledge diffusion. The South in turn internalizes the 
benefits from accelerated spillovers in the form of reduced pollution costs, 
compensating North with initially lower resource prices. 

The model can be extended in number of directions. For instance, one 
obvious modification would be to allow pollution to accumulate which then 
adds an extra dimension to the intertemporal pollution/growth tradeoff. The 
transboundary effects of pollution can be considered to further add to the 
dynamic gaming aspects of international relations. These, however, would come 
at the expense of increased computational cost as there would be an additional 
state variable in the system dynamics. 

Also, other forms of noncooperative behavior, such as Stackelberg leader/ 
follower setup, could be considered. In this framework one needs to utilize the 
necessary conditions from the follower’s problems as constraints to the leader. 
In the GA game algorithm we develop, it is not obvious how to handle this 
without having to first analytically derive the necessary conditions for the 
follower. This, however, would violate the integrity of the GA as a ‘blind’ 
algorithm. In order to numerically solve Stackelberg leader/follower model, 
a new GA game algorithm needs to be devised. 

Appendix A. 

A.1. A general sketch of GA for the solution of dynamic games 

Two parallel GAS use genetic operators to iterate on constant-size popula- 
tions, Pi(t), i = JV,Y of candidate solutions. During each iteration step, t, called 
a generation, structures in the current populations are evaluated to reproduce 
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new populations as 

procedure North GA (South GA); 
begin 
initialize P1(0) (PS(O) 1; 
randomly initialize 
shared memory ; 
synchronize; 
evaluate PI(O) (PS(0)); 
t = I; 
repeat 

select PM(t) (PS(t)) from Pl(t-1) (PS(t-1)); 
copy best to shared memory; 
synchronize; 
crossover and mutate PM(t) (PS(t)); 
evaluate Pi(t) (PS(t.1); 
t=t+i; 

until(termination condition) ; 
end ; 

The initial populations are randomly produced and a randomly selected 
individual from each population is sent to the computer shared memory to be 
exchanged synchronously. As both GAS (North and South) need to reach the 
shared memory, a priority protocol is required. By synchronization, one GA 
uses the memory if the memory is not currently in use by the other. If the 
memory is in use, however, the late arriver waits to access the memory. The 
whole procedure to reach the shared memory is the synchronization process. 
Upon the exchange of the information, the initial populations PN (0) (PS (0) are 
evaluated. At t = 1, a new population, Pi(t), is formed from the previous, 
Pi(t - 1). We select populations to reproduce on the basis of their relative 
fitnesses. Best performing individuals in each population are sent (copied) to the 
shared memory again to be exchanged synchronously. The selected individuals 
are then recombined using genetic operators, crossover and mutation to form 
new populations. Crossover is the most important genetic operator. It operates 
by swapping corresponding segments of a string of parents to produce off- 
springs. For example, if parents are represented by vectors, x1 = (al,bl,cl, 
di, el) and x2 = (u2, b2,c2,d2, e2), then crossing the vectors from the second 
to fifth elements would produce the offsprings (aI, bl, c2, d2, e2) and 
(az, b2, cl, dl, el). The mutation operator arbitrarily alters one or more compo- 
nents of a selected structure in order to introduce variability in the populations 
so that the likelihood of getting stuck at a local extremum is reduced. This 
procedure of creating new populations, exchange of the best individuals and 
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evaluation of the populations in each generation iterate a fixed number of times 
or until GAS find an acceptable approximate solution. 

A.2. Discrete-time approximation of the model with steady-state invariance 

We generalize the result by Mercenier and Michel (1994) to transform con- 
tinuous-time infinite horizon control problems to discrete-time approximations 
for multi-player games. Consider an n-player continuous-time dynamic game 
with the state vector x(t) E %“ and the control vector Ui E !R”‘, i = 1, 2,. . . , n: 

max J’ = 
s 

m 
eeP” gi(x(t), ul(t), . . . , u.(t))dt 

0 

s.t. i(t) =f(x(t), ul(t), . . . , u,(t)), x(0) = x0 given. 

The following relations for i = 1, 2 . . . , n characterize the stationary open-loop 
Nash equilibria (a, fir, . . . , I?,, gl, . . . , 4.): 

f(x*,u*l,...,u*“) 

= 0, pi Ji = VJP (2, Cl, . . . , &), and Vu’,Hi(% 61, . . . , 2”) = 0, (A.1) 

where H’(x, u 1 a.1 9%) = Si(X, ul . . . ,4 + 41 f (x, u 1, . . . ,u,) is the current valued 
Hamiltonian, qi(t)’ E ‘Sk is the transpose of the costate vector. 

The discrete-time approximation of the above problem is 

max Jr = 2 0; A,,, gi(x(tppJ, ul(t,,,), . . . , U, (t,,,)) 
m=O 

s.t. x (L+ 1) - x (&J = 4 .f(xhJ, ~lOm), . . . , Ud, x(to) = xo given, 

where A,,, converts the continuous flows into stock increments, i.e., (A,,, = 
t m+l - tm) and @i is the sequence of discount factors for which the stationary 
solution of the discrete-time problem is the same that of the continuous-time 
problem. The recurrence for Oh is generated from the optimality conditions of 
the discretized game. 

The optimality conditions satisfy 

A, v,,{sXx (rm), r&,J, . . . 7 Un(4n)) + 4i (LY fb (4iJ~ Ul(bJ, . -* 9% (4n))) = O, 

(A-2) 

%A,,{ ?x{&(fA ui k,,X . . . an W) 

+ 4i (LY Ax (GA 111 (CA -. * 3 Un(L>>>> -%-I 4iCfm-1) + @n4i(d = O* 

64.3) 

Imposing the stationary equivalence of the continuous and discrete-time prob- 
lems, using Eq. (A.1) in Eq. (A.2) and Eq. (A.3), the following recursions are 
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obtained: 

For the GA application, we truncate the original infinite horizon continuous- 
time problem. The finite horizon discrete-time approximation becomes 

M-l 
max 51 = C @a A, gi (I, ~1 (tm), . . . , U, (t,,,)) + j& G’ (x(tM)) i = 1, . . , n 

m=O 

s.t. x @,+ 11 - x kJ = A, _/lx @Au1 k,J, . . . , u, W), x0 given, 

where it is assumed that stationary solution is reached at TM. 
The steady-state invariance property imposes specific restrictions on the 

choice of functions Gi( .). The terminal value G’(a) is 

s 00 

G'(i) = e-Pf'gi(5Z,fil(X),..., 
0 

4. (4) dt = $ gX% a, (4, . . . , tin W, 
I 

so that recursion is terminated at & = oh_ r. 

A.3. Tables 

Table 2 
Noncooperative game with r#~ = 0.15 

0 1OOOOOO.OOQ 77.967 283.125 5045.758 33064.556 22074.356 0.000283 0.005046 
1 1120234.604 86.442 279.039 4818.407 35627.665 24120.597 0.000249 0.004301 
2 1234604.106 94.252 276.186 4652.048 38184.480 26031.175 0.000224 0.003768 
3 1340175.953 101.564 273.253 4498.064 40373.921 27752.721 0.000204 0.003356 
4 1436950.147 108.045 271.306 4388.060 42354.554 29313.215 0.000189 0.003054 

5 1524926.686 114.027 269.286 4284.599 44088.316 30705.942 0.000177 0.002810 
6 1604105.572 119.345 267.680 4201.621 45662.203 31946.254 0.000167 0.002619 

1 1674486.804 124.164 266.037 4123.555 46772.060 33032.227 0.000159 0.002463 
8 1739002.933 128.485 264.800 4062.196 48103.356 34022.724 0.000152 0.002336 
9 1794721.408 132.141 263.921 4016.228 49353.218 34874.649 0.000147 0.002238 
10 1841642.229 135.298 263.001 3972.867 50203.064 35583.532 0.000143 0.002157 
11 1882697.947 137.957 262.438 3942.815 51027.299 36205.093 0.000139 0.002094 
12 1917888.563 140.283 261.849 3914.248 51790.614 36733.103 0.000137 0.00204 1 
13 1947214.076 142.278 261.241 3887.233 52206.763 37168.797 0.000134 0.001996 
14 1973607.038 143.939 260.983 3871.732 52931.005 37565.710 0.000132 0.001962 
15 1994134.897 145.269 260.702 3857.408 53316.818 37871.848 0.000131 0.001934 
16 2011730.205 146.432 260.4 11 3843.733 53386.591 38132.566 0.000129 0.001911 
17 2029325.513 147.595 260.122 3830.200 53746.547 38392.741 0.000128 0.001887 
18 2043988.270 148.592 259.824 3817.304 54085.868 38607.874 0.000127 0.001868 
19 2055718.475 149.423 259.519 3805.080 54405.853 38778.193 0.000126 0.001851 
20 2064516.129 149.922 259.545 3803.405 55337.091 38911.488 0.000126 0.001842 
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Table 3 
Cooperative game with 4 = 0.15 

t K PI R, 9, C,’ C,v 4 I& 49 I4 

0 1OOOOOO.000 51.818 598.651 22558.876 31053.778 31021.008 0.000599 0.022559 

1 1225806.448 60.909 586.921 21031.282 35933.968 35748.814 0.000479 0.017157 

2 1460410.552 69.853 584.233 20298.802 40712.731 40810.621 0.000400 0.013899 

3 1697947.216 79.384 574.457 19186.562 45916.300 45602.827 0.000338 0.011300 
4 1923753.664 87.889 571.281 18622.863 50150.338 50209.026 0.000297 0.009680 
5 2140762.468 96.979 564.927 17921.275 54982.562 54786.292 o.ooo264 0.008371 

6 2331378.304 106.657 550.020 16771.980 57228.799 58663.375 0.000236 0.007194 
7 2507331.376 112.815 548.553 16501.593 61906.551 61885.174 0.000219 0.006581 
a 2653958.944 117.361 543.666 16071.253 64431.200 63804.988 0.000205 0.006056 
9 2791788.856 123.079 541.711 15835.157 66743.358 66673.302 o.ooo194 0.005672 
10 2912023.456 126.745 542.199 15763.725 69246.953 68720.993 0.000186 0.005413 
11 3017595.304 132.023 540.733 15595.052 70757.598 71389.460 0.000179 0.005168 
12 3105571.852 135.689 542.444 15626.375 72579.693 73603.737 0.000175 0.005032 

13 3175953.076 138.622 541.711 15531.866 74402.654 75092.852 o.ooo171 0.004890 
14 3228739.000 139.648 542.688 15549.477 75613.083 75785.369 0.000168 0.004816 
15 3275659.828 143.460 542.199 15487.926 76374.164 77784.150 O.ooo166 0.004728 
16 3304985.332 143.607 541.222 15411.513 78440.272 77723.273 0.000164 0.004663 
17 3319648.096 143.607 540000 15331.820 74690.809 77547.801 O.ooO163 0.004619 
18 3375366.568 145.806 541.711 15390.638 77901.150 78984.908 0.000160 0.004560 
19 3398826.976 137.302 547.087 15681.350 76759.806 75116.168 0.000161 0.004614 
20 3483870.964 148.739 540.000 15221.176 81028.038 80319.062 0.000155 0.004369 

Table 4 
Noncooperative game with 4 = 0.30 

t 4 Pl R, 9, C,” cg UK 9,/K, 

0 1OOOOOO.000 33.343 769.100 4687.433 40390.275 25644.170 0.000769 0.004687 

1 1249266.862 40.205 760.908 4291.783 47658.693 30592.521 0.000609 0.003435 

2 1506842.620 47.067 754.121 3985.032 54830.827 35494.555 0.000500 0.002645 

3 1764418.377 53.803 747.500 3734.328 60987.681 40217.422 0.000424 0.002116 

4 2021994.135 60.283 743.355 3545.101 66417.730 44812.030 0.000368 0.001753 

5 2279569.892 66.637 739.617 3385.541 72826.629 49286.121 0.000324 0.001485 
6 2520527.859 72.610 734.888 3243.138 78298.376 53360.227 0.000292 0.001287 

7 2744868.035 77.947 732.542 3141.080 83202.928 57099.637 0.000267 0.001144 

a 2952590.420 82.903 729.719 3049.443 87493.390 60496.074 0.000247 0.001033 
9 3143695.015 87.478 726.686 2967.777 91280.228 63569.031 0.000231 0.000944 

10 3318181.818 91.417 725.973 2914.347 94835.891 66366.589 0.000219 o.oooa7a 

11 3476050.831 95.103 723.980 2858.231 97954.462 68852.409 0.000208 0.000822 

12 3617302.053 98.280 723.134 2817.681 100047.483 71069.273 0.000200 0000779 

13 3750244.379 101.329 721.700 2776.297 102748.345 73129.473 0.000192 0.m740 

14 3866568.915 103.998 720.379 2740.904 106069.849 74917.967 0.000186 0.m709 

15 3957966.764 106.031 719.810 2717.463 107546.961 76322.329 0.ooo182 0.000687 
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Table 4 

Continued 

t K PC RC ,9, C,’ C: RJK, 9*/K, 

16 4041055.718 108.192 716.810 2678.120 108703.692 77552.851 0.000177 0.000663 
17 4115835.777 109.589 718.356 2674.931 111021.151 78724.278 0.000175 0.000650 
18 4173998.045 110.860 718.100 2661.795 112211.082 79608.752 0.000172 0.000638 
19 4223851.417 112.004 717.454 2647.559 113297.510 80357.660 0.000170 0.000627 
20 4265395.894 113.021 716.437 2632.319 117610.283 80972.110 0.000168 0.000617 

Table 5 
Cooperative game with r#~ = 0.30 

t K PI R, 9, C,’ CT R,IK 4°K 

0 1OCOOOO.000 23.072 1597.290 20217.970 37433.968 36852.467 0.001597 0.020218 
1 1364824.609 29.335 1591.687 18287.835 46345.522 46692.902 0.001166 0.013399 
2 1781925.607 35.152 1608.048 17213.262 56806.064 56525.621 0.000899 0.009628 
3 2263924.062 42.422 1591.687 15711.831 67700.291 67522.498 0.000103 0.006940 
4 2766351.580 48.686 1593.480 14828.288 77741.379 77579.514 0.000576 0.005360 
5 3304057.180 54.726 1604.014 14245.315 87214.859 81180.484 0.000485 0.004311 
6 3871001.532 61.548 1604.462 13585.639 99967.284 98752.037 0.000414 0.003504 
7 4432326.508 66.582 1627.547 13429.120 108431.263 108364.748 0.000367 0.003030 
8 5014080.547 73.964 1618.358 12195.634 111888.573 119699.843 0.000323 0.002552 
9 5569405.523 79.109 1615.893 12360.970 126898.505 127831.485 0.000290 0.002219 
10 6115920.811 85.820 1611.634 11955.405 140779.303 138310.269 0.000264 0.001955 
11 6565450.873 91.524 1602.221 11567.393 146735.396 146642.091 0.000244 0.001762 
12 6979742.183 98.123 1591.015 11198.618 152487.541 156115.849 0.000228 0.001604 
13 7332326.348 101.815 1512.188 10174.731 159340.646 160071.535 0.000214 0.001469 
14 7640822.743 102.933 1595.273 10957.160 164925320 164206.236 0.000209 0.001434 
15 7940548.78 108.190 1586.308 10110.010 169193.976 171622.663 0.000200 0.001349 
16 8178528.343 109.532 1581.602 10552.658 178158.237 173236.347 0.000193 0.001290 
17 8354800.161 108.637 1622.392 11033.182 173812.724 176252.449 0.000194 0.001321 
18 8619248.717 115.125 1595.049 10565.188 184793.166 183629.538 0.000185 0.001226 
19 8725043.631 111.585 1581.378 10346.920 186627.283 185946.965 0.000181 0.001186 
20 8795560.464 120.270 1561.206 10060.310 191094.069 187765.933 0.000177 0.001144 
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