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Abstract

This paper shows the computational bene"ts of a game theoretic approach to optim-
ization of high dimensional control problems. A dynamic noncooperative game frame-
work is adopted to partition the control space and to search the optimum as the
equilibrium of a k-person dynamic game played by k-parallel genetic algorithms. When
there are multiple inputs, we delegate control authority over a set of control variables
exclusively to one player so that k arti"cially intelligent players explore and communicate
to learn the global optimum as the Nash equilibrium. In the case of a single input, each
player's decision authority becomes active on exclusive sets of dates so that k GAs
construct the optimal control trajectory as the equilibrium of evolving best-to-date
responses. Sample problems are provided to demonstrate the gains in computational
speed and accuracy. ( 2000 Elsevier Science B.V. All rights reserved.

JEL: C61; C63; C73
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1. Introduction

In this paper we o!er a method that reduces the computational e!ort needed
to numerically approximate high dimensional optimization problems. Our
solution procedure uses a divide and conquer strategy. More speci"cally, using
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the fact that open-loop control trajectories in an optimal control problem can be
reconstructed as the Nash equilibrium of a dynamic noncooperative game
amongst players with identical preferences, we divide a high dimensional optim-
ization problem into smaller subproblems and delegate each exclusively to an
arti"cially intelligent player (Genetic Algorithms). GAs evolve their solutions
locally according to the shared common objective while exchanging information
globally. When further exploration and experimentation bring no additional
bene"t for any one player, the players will have found the system optimum as
the game equilibrium. Our method reduces the complexity of computation at
the local level leading to a faster learning and an improved accuracy at the
global level.

In dynamic games, open-loop Nash equilibria can be obtained as joint
solutions to optimal control problems (Bas7 ar and Olsder, 1982). Previously, we
used this idea to exploit the &explicit' parallelism in genetic algorithms to
approximate Nash equilibria in discrete and continuous dynamic games
amongst players with con#icting interests (OG zymldmrmm, 1997; Alemdar and
OG zymldmrmm, 1998). This paper emphasizes the proximity of the concepts of Nash
equilibrium and the optimum as learned behavior in environments lacking any
explicit strategic interactions. In so doing, we bring forth the potential bene"ts
from delegating exclusive decision authority to agents who learn to optimize; an
important aspect of optimizing behavior which has not received due attention
(Marimon, 1996). Analytically, decentralized decision making with a common
objective is equivalent to a centralized decision making with the same objective.
If optimum decisions evolve over time, however, as result of learning, there are
sharp di!erences between the two modalities. How agents learn to optimize
under two these regimes is the focus of this paper.

Optimizing behavior is an important tenet of positive economic analysis.
Even though this belief permeates deep into economic thinking, the behavioral
underpinnings of how the optimum, supposing that it exits in some well de"ned
sense, is achieved by human action are not well articulated. There is now
a growing recognition that the optimum human action, whether individually or
as a group, is not best described by a timeless instantaneous inspiration, but
rather as an evolutionary learning process by experimenting and exploring
error-bound human actors (see Marimon et al., 1990; Arifovic, 1994). Our study
makes contact with this literature to the extent learning by arti"cially intelligent
agents in our genetic algorithms approximates human learning. Few results
stand out: First, if human learning evolves in implicit parallelism, as do our
genetic algorithms, that is, while manipulating individual objects, it in e!ect
evolves similarities in groups of objects, then human actors can indeed learn
such complex phenomena as intertemporal economic equilibria with fragile
saddle path stability. Moreover, if learning takes place in a decentralized manner
as with the arti"cial agents in our parallel genetic algorithms, then with a proper
information exchange facility, in order for the diverse beliefs to converge on the
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1For analytical solutions, usually optimal control methods are employed which requires continu-
ity and the existence of derivatives of F

t
(.) and R

t
(.). For genetic implementations, however,

restrictions on F
t
(.) and R

t
(.) are that they only be bounded.

global optimum, it is su$cient that local agents share the grand objective and do
their best at the local level. The global problem need not be known in its entirety
by any one agent.

There are bene"ts of the method we propose from a purely computational
point of view as well. The need to solve optimization problems frequently arises
in one form or another in almost all "elds of economic inquiry. Researchers'
ability to carry out a meaningful economic analysis is often compromised due to
the inherent di$culty of the problem at hand. For example, high dimensional
nonlinear dynamic economic models do not easily yield to analytical treatment.
In the face of intractability, soon stamina for rigor fatigues and recourse to
numerical simulations remains as the only viable route to obtain insights about
the inner workings of the system under study. Given the diversity of complex
problems posed, we believe, our method o!ers a cheap, reliable, model indepen-
dent numerical alternative.

The balance of the paper is organized as follows. In section two we discuss
how straightforward optimization problems can be reworked as solving for
game equilibria. This is followed by a brief introduction to genetic algorithms in
section three. We then use the methods developed in section two to delegate
control authority to genetic algorithms. In section four we consider two applica-
tions to demonstrate the computational gains that accrue from our solution
method. Section "ve concludes with limitations and possible extensions.

2. Control problems as dynamic games

2.1. Multiple input control problems as dynamic games

Consider the following n-dimensional deterministic generic control problem
in discrete time, t3¹:
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For an open-loop solution,1 recursively substitute backward Eq. (1) into Eq. (2)
to express J as a function of u
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In order to distribute the computational e!ort to maximize (3), we rework the
above optimization problem as a dynamic game. Towards that assign exclusive
sets of n
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where the state equation (1) is eliminated by substitution.
The k-dimensional vector, uiN

t
, will constitute an open-loop Nash equilibrium

solution of this game if,
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N is the globally e$cient Nash equilib-
rium solution. Consequently, k-parallel GAs can be implemented to maximize
JI is to search JI (uH

t
) as the game equilibrium.

2.2. Single input inxnite horizon control problems as dynamic games

Our methodology is still valid and computationally helpful even if the control
space includes only a single input, therefore not permitting partitioning of
controls. Due to the open-loop nature of the control action, however, it may be
more e$cient to distribute the single control (or the state) trajectory &time-wise'
to a number of GAs and search it as a Nash equilibrium.

This idea is closely related to discretization of in"nite horizon continuous
time control problems. Numerical solutions necessarily require reformulating
the problem into a discrete-time "nite horizon approximation. Mercenier and
Michel (1994) propose time aggregation along with steady-state invariance for
discretization. The steady state invariance property is achieved by imposing
consistency constraints on the joint formulation of preferences and accumula-
tion equations which amount to some simple restrictions on the discount factor
in the time aggregated model.
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2The value of the terminal state is given by S(x)":=
0

e~otR(x,u(x)) dt"1
oR(x, u(x)) where o is the

pure time preference in the continuous time analog of Eq. (5).

The extent to which a model is time aggregated depends on the trade-o!s
between the information conveyed along the transient path and the concomitant
increase in the computational cost. Using our approach the computational
burden can be distributed by partitioning the transient phase during which the
control is optimized and designing parallel GAs to search for the optimum over
the assigned partition. Thus, to capture convergence, sluggish transition dynam-
ics can be countered by increasing the length of the transient phase without
having to unduly increase the degree of time aggregation; or faced with rapid
transient adjustments, the degree of time aggregation can be set smaller to o!set
otherwise costly approximation errors. In this manner, better approximation of
the transient dynamics can be obtained at a minimal additional cost.

Formally, consider one input in"nite horizon control problem, time aggreg-
ated in the following a& la Mercenier and Michel (1994).
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). Intraperiod controls are assumed either constant

or growing (decaying) at a constant rate therefore adding to approximation
errors.

The choice of n re#ects the trade-o!s, at the margin, between the utility of
better approximation and the increase in computational costs and thus deter-
mines the degree to which the model is aggregated. One may opt for a less
aggregated model (smaller n) and therefore avoid approximation errors, if at the
same time, computational costs can be reduced. This we will show to be one of
the bene"ts of explicit GA parallelism.

Time aggregated discount factor, a
v
, satis"es the following recurrence rela-

tion:
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Again after eliminating the state evolution equation via recursive backward
substitution into Eq. (5), the optimum solution, uH
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, will satisfy,
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3Or more simply, if we interpret the index v as signifying players rather than the aggregated time,
then Eq. (5) will be immediately recognized as a game between < players with identical objectives.
Thus, each player v (date) on the globally optimum control trajectory can also be interpreted as in
a Nash equilibrium of a game between intertemporally located players with a common interest, i.e.,
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Then each player will be assigned a control vector, ui3;i-Rvi, and a state
vector, xi3Rvi, whose respective elements are the inputs and the states at the
arbitrarily designated dates. The problem for the ith player is then

max
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The k-dimensional control vector, uiN
t

, is said to be the Nash equilibrium
solution of this game if,

JI i(x
0
, u1N,2, uiN,2, ukN)5JI i(x

0
, u1N,2, ui,2, ukN), ∀i, ui3;i,

where JI i is again obtained by substituting the relevant state constraints into
Eq. (6). Note that the globally optimum control trajectory, uH

tv
, v3< when

partitioned as above will also satisfy the inequality

JI i(x
0
, u1H,2, uiH,2, ukH)5JI i(x

0
, u1H,2, ui,2, ukH), ∀i, ui3;i,

so that it is the globally e$cient Nash equilibrium.3

3. Genetic algorithms and dynamic games

A basic GA consists of a set of iterative procedures whereby in each iteration,
called a generation, a constant size population of candidate solutions or struc-
tures are maintained and evaluated to create a new set of potential solutions.
Iterative procedures simulate natural evolution: at each generation the &relative-
ly good' solutions reproduce while &relatively bad' solutions die. GAs essentially
initiate a blind search, but they &learn as they solve'.

GAs owe their power and success largely to their implicit parallelism: While
GAs operate on individuals in populations, they exploit the similarities in classes
of individuals to "lter and process vast amounts of information parsimoniously
and e!ectively. These similarities in classes of individuals, which Holland calls
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schemata, are de"ned by the lengths of common segments of bit strings. By
manipulating n individuals in one generation, a GA e!ectively gathers informa-
tion approximately about n3 individuals (Holland, 1975). In addition, GAs
provide for explicit parallelism in the sense that they can generate and collect
data independently and that genetic operators can be implemented in parallel.

The advantages of parallel computing have been long recognized: reduced
computing time and better approximation (Chazan and Miranker, 1970).
Bertsekas and Tsitsiklis (1989) provide extensive discussions about the likely
bene"ts from a numerical point of view. The potential power of parallelized
genetic algorithms was "rst noted by Robertson (1987), Tanese (1989), and
MuK hlenbein (1989).

The main inspiration for parallel genetic algorithms comes from an analogy in
biological evolution of species in isolated locales where local adaptation features
prominently. To mimic this evolutionary process, a population is divided into
subpopulations and a processor is assigned to each to separately apply genetic
operators while allowing for periodic communication between them.

The particular division of population we envision delegates the computa-
tional e!ort needed for function evaluations to exclusive subpopulations. Sub-
populations, though sharing the same &grand objective', specialize on one
portion of the problem and communicate among themselves to learn about the
remainder. For each subpopulation the dimensionality of a complex objective
function is thus reduced leading to faster and possibly to fewer function
evaluations.

Our decentralized GA search for JI (uH
t
) takes place in discrete time,

t ("0, 1,2,¹). Equipped with JI is, at each generation s, GAi maintains a con-
stant size population, M, of solutions, ;i(s)"Mui(s, 1),2, ui(s,m),2, ui(s,M)N,
where ui(s,m)3;i(s)LRniT is any feasible solution vector such that
6k

i/1
;i(s)";(s), and 6S

s/1
;(s)-;. For player i, each potential solution

vector is evaluated by computing JI i(x
1
, ui(s, m), u~i(s)), given any solution vector,

u~i(s), of the other players denoted by &!i'. At any generation s, players explore
further if there exists an m3M such that

JI i(x
1
,ui(s,m), u~iH(s!1))'JI i(x

1
, ui(s, l), u~iH(s!1)), ∀i3k,

where l ("1,2,2, m!1, m#1,2, M). The best performing control vectors,
uiH(s)"ui(s,m) are mutually exchanged, and genetic operators are applied to
form the next generations. Because of the &elitist selection strategy' employed by
each player, the respective best performing structures survive intact into the next
generations. If it were not for such a strategy, it may be that the best structures
disappear due to mutation stagnating the search process. This procedure will
continue with "tter individuals proliferating, thanks to reproduction and cross-
over operators, until s@4S whence no m3M exists such that for all i,

JI i(x
1
, ui(s@#1, m), uiH(s@))'JI i(x

1
, ui(s@#1, l), u~iH(s@) , ∀lOm.
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Therefore,

JI i(x
1
, uiH(s@), u~iH(s@))5JI i(x

1
, ui(s@#1,m), u~iH(s@)) ∀i and m3M

indicating convergence to the Nash equilibrium (see Appendix).
In essence, our algorithm searches the global optimum as the evolutionary

equilibrium of best-to-date responses in a noncooperative dynamic game wherein
players with identical "tnesses employ Nash strategies. The rationale behind
searching for the global optimum as a Nash equilibrium is also evolutionary:
smaller and more homogenous populations should evolve faster than larger and
more complex populations. So, when the size and the complexity of the popula-
tion is reduced by way of our game construction, the evolutionary process
should speed up leading possibly to a more rapid convergence.

4. Applications

As the saying goes, the proof of the pudding is in the eating. So, to test our
solution algorithm, "rst, we optimize a multiple input "nite horizon control
problem as a dynamic game between two players each with an identical
objective and an exclusive decision authority over an assigned control vector.
Second, we approximate a single input in"nite horizon optimal control problem
as the equilibrium of a game between two players with a common interest and
a decision authority over the single control on exclusive dates.

4.1. Distributing controls in a nonrenewable resource model

To illustrate our method, we choose the nonrenewable resource model in
Hughes Hallett et al. (1996). They use a hybrid algorithm combining the Newton
method with Gauss}Seidel iterative techniques to solve the necessary conditions
as a system of nonlinear equations. These equations are highly non-linear there-
fore presenting considerable numerical di$culties to standard gradient techniques
in terms of initialization and convergence. Neither the single nor the parallel
versions of GAs in any of our runs have shown any sign of nonconvergence.
Moreover, relative to single GAs, our parallel GA searches have demonstrated
considerable improved computational e$ciency and performance. Admittedly,
the true value of the algorithm can be better tested and appreciated with higher
dimensional problems possibly with non-smooth functional forms.

The nonrenewable resource problem is as follows:

max ="
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where C
t
stands for consumption and h is the rate of pure time preference.

S
t
denotes the stock of nonrenewable resource, available oil reserves, with the

extraction rate R
t
. Together with the physical capital, K

t
, R

t
determines output

according to the production technology, F(K
t
,R

t
), that has a Cobb}Douglas

speci"cation: AK0.9
t

R0.1
t

. Since leaving any unexploited oil reserves and capital
stock at the end of the "xed planning period, ¹, will be suboptimal, a backstop
technology is assumed which becomes operational at ¹ and remains so there-
after. This stipulation, however, is not further elaborated, and is immaterial to
the optimization of ¹-period welfare.

We delegate control authority to two separate GAs, GAK and GAS, each
having the same "tness function, to search for the optimal capital (K) and
resource (S) stocks. GAK evolves the population of candidate solutions, K

t
, while

GAS iterates on the population of chromosomes, S
t
. Structures K

t
(m) and S

t
(m) in

each population (m"1,2,2,50) are represented as binary strings (M0 1N) of
length ¸. For string m of length ¸"10, decoding works as follows:
K

t
(m)"+L

h/1
ah
t
(m)2h~1 and S

t
(m)"+L

h/1
ah
t
(m)2h~1 where ah

t
(m) is the value

M0 1N taken at the hth position in the string.
In this particular example, initial states are given, and the time horizon is "xed

at ¹"10 so that each GA computes 9 structures with a domain,
D

i
"[d,dM ]LR ; i"S,K. The domain , D

i
, is cut into (dM !d)2L equal size

ranges. Hence, our parallel solution procedure has the search domain of
2]210C9"291 (¸"10, k"2,¹!1"9). When the very same problem is ap-
proximated by a single GA, the search domain expands to 210C(9`9)"2180.

The genetic operators in this paper were done using the public domain
GENESIS package (Grefenstette, 1990) on a SUN SPARC-1000 running Solaris
2.5. In a typical run we use the population size of 50, the crossover rate of 0.60 and
the mutation rate of 0.03.

For comparison we use single (centralized) and parallel (decentralized) GAs to
approximate the model for three di!erent number of generations. Since popula-
tions are randomly initialized, in each run computation times are random as
well. For any given number of generation we repeat the experiment eight times
and report our numerical results. First, to be assured of the convergence and to
establish a benchmark, we run the experiment for hundred thousand genera-
tions for both the single and the parallel GA and report the average sample
paths in Table 1. The convergence to a global optimum is apparent as all three
methods generate the optimal trajectories with some minor di!erences.

Table 2 summarizes the averages and the variances of the maximum welfares
found and the average CPU times consumed by the single and the parallel
genetic algorithm for each number of generations. Reported discounted welfares
are the averages of the best individuals found in the last generation of each run
over the eight experiments. Variances indicate the deviations of these individuals
from the calculated averages. Observe that our game theoretic GA on the
average yields better approximations than the conventional GA in every case.
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4Eight experiments may seem too small a sample to make this statement statistically signi"cant.
However, since populations converge substantially for both algorithms at around ten thousand
generations, variances get smaller for larger number of generations. Consequently, variances as
a measure of e$ciency can be a basis of comparison between the two algorithms for smaller number
of generations.

Table 2
Comparison of performances

Number of CPU times (s) Discounted welfares Variances
generations

Single Parallel Single Parallel Single Parallel

10,000 152.99 73.78 46.376 46.483 6.473E!02 2.178E!03
20,000 305.19 147.25 46.250 46.540 5.113E!01 1.121E!03
100,000 1528.70 726.43 46.520 46.530 1.131E!03 1.331E!03

Note : The maximum welfare under hybrid algorithm is 46.575.

Table 1
Optimal trajectories in the nonrenewable resource model

Time Hybrid algorithm Parallel GA algorithm Single GA algorithm

K
t

S
t

K
t

S
t

K
t

S
t

1990 4.913 11.5000 4.913 11.5000 4.913 11.5000
2000 19.231 9.2230 20.743 8.4773 20.743 8.4870
2010 66.383 7.2283 69.086 6.6748 67.743 6.8015
2020 203.889 5.5051 208.744 5.1063 204.715 5.2400
2030 560.433 4.0413 565.946 3.7691 556.546 3.8847
2040 1381.198 2.8247 1385.093 2.6296 1366.293 2.7188
2050 3038.662 1.8442 3028.759 1.7131 2993.844 1.7757
2060 5870.274 1.0812 5819.230 1.0054 5769.544 1.0514
2070 9502.490 0.5287 9372.449 0.4872 9310.677 0.5179
2080 10936.590 0.1724 10693.830 0.1585 10669.660 0.1696

Note: The parameter values are A"3.968, r"0.05, K
0
"4.913, S

0
"11.5.

Moreover and more signi"cantly, for every given number of generations, the
decentralized GA "nds these better results on the average in less than half the
time the centralized GA takes. Note also that parallel GA has smaller variances
indicating robustness of the results found.4

Fig. 1 depicts the gains in computational e$ciency from decentralization in
striking terms: The parallel Nash search accomplishes by twenty thousand
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Fig. 1. Time paths of capital and resource stocks under di!erent solution procedures.

generations in 147.25 s (2.454 min) what the conventional GA achieves by
hundred thousand generations in 1528.70 s (25.478 min). Two features of our
search procedure contribute to this signi"cant computational gain: First, the
fact that structures evolve independently improves local adaptation and hence
yield better approximations; second, due to the speci"c character of the objects

S. O$ zynldnrnm, N.M. Alemdar / Journal of Economic Dynamics & Control 24 (2000) 483}499 493



searched, control specialization, the complexity of "tness evaluations are
lessened and thus the speed.

4.2. Distributing time in an optimal growth model

In our search procedure we partition the original problem time-wise into
smaller subproblems and distribute them to a number of parallelly running GAs
to search the optimum as a game. Because of the reasons provided in the
preceding section, convergence to the Nash equilibrium will also indicate
convergence to the global optimum. We show that by using our algorithm the
sample points on the transient phase of the state trajectory can be increased to
obtain better approximations at a minimal cost.

In order to demonstrate the computational payo!s stemming from such
a revamp, we consider a discrete time version of the one sector optimal growth
model in Mercenier and Michel (1994). The formulation assumes logarithmic
preferences, Cobb}Douglas production technology, no capital depreciation,
constant population growth at rate g, and post terminal growth at rate g over an
in"nite horizon:

max
V~1
+
v/0

a
v
n

v
log(C

tv
)#a

V
log(C

tV
)

s.t. K(t
v`1

)!K(t
v
)"n

v

1

1#g
(aKb

tv
!C

tv
!gK

tv
),

where the time aggregation term is

n
v
"

1#g

g
[1!(1#g)tv~tv`1]

with

a
v`1

"

a
v

1#on
v`1

for any a
0

and v(<!1,

and the terminal value is

log(aKb
tV
!gK

tV
).

Mercenier and Michel approximate this problem for eleven periods (<"10),
aggregating two hundred quarters, (t

v`1
!t

v
"20). In order to reduce approxi-

mation errors owing to time aggregation, we choose smaller time intervals,
(t
v`1

!t
v
"10) to better capture adjustments along the transient phase. The
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time horizon, <, is partitioned into two and the resulting subproblems are
subsequently approximated as a two person noncooperative dynamic game.
Since each GA will be searching for structures at di!erent time segments of the
&same optimal path', the quality and the quantity of information about the
respective search topologies is critically important to the learning processes of
the GAs. We let GAs search for structures at alternate dates to enhance learning
across search spaces.

To obtain respective "tnesses we "rst substitute the capital evolution equa-
tion into the utility function. Then, GA0 and GA%, each equipped with the
identical "tness, initiate separate searches for odd and even dated capital stocks,
K

v1
(I

1
"M1,3,5,2,19N), and K

v2
(I

2
"M2,4,6,2,20N), respectively. Of course,

as in the previous example, GAs explore their respective search spaces in a Nash
manner; that is, they exchange, synchronize and apply genetic operators sequen-
tially. Execution of the algorithm is similar to the previous example so we do not
repeat the details here. In referring to the #owchart of Fig. 2, once it is
understood that number of variables controlled by each player, n

i
¹, is now

v
i
(v

1
,v
2
"10), the rest follows.

Again, we run the experiment for three di!erent number of generations, repeat
each eight times, and report the numerical results for comparison. In parallel
Nash searches, each GA has ten structures so that the total search domain is
2]210C10"2101. Single GAs, on the other hand, will explore 20 structures with
the domain 210C(10`10)"2200.

In Table 3, we report the "ndings of our "rst experiment with 100,000
generations. From the numerical results, 200 quarters seem to be su$cient to
capture transition dynamics as all three algorithms indicate convergence to the
steady state. Also note that whether implemented in parallel or single GAs
replicate the optimal trajectory with some minor di!erences. Furthermore, as
previously claimed, considerable improvements in performance are observed
with "ner time aggregation: The maximum welfare found by Mercenier and
Michel when t

v`1
!t

v
"20 quarters is !142.241. When t

v`1
!t

v
is set to ten,

the conventional and parallel GA improve it to !127.8716. This result is
further corroborated even with smaller number of generations as reported in
Table 4. Also reported in Table 4 are the average run times. In terms of average
CPU times, again the parallel GA takes about half as much time to "nd these
better results verifying the returns from &division of labor' and &specialization' in
the form of increased e$ciency.

5. Concluding remarks

The utility of a game theoretic analysis when the underlying dynamics
emerges as a result of the strategic interplay between economic agents with
di!ering interests is apparent. A less obvious, but no less signi"cant employment
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Fig. 2. Flowchart.

of the game theory can be in the computation of high dimensional optimization
problems. Indeed one argument in this paper is that game theoretic concepts are
still valid and very useful from the computational point of view, when
the economic model under consideration is admittedly singular as in the tradi-
tional optimal control theory. For instance, a dynamic model with a single
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Table 3
Timewise parallelization of the aggregated growth model

Mercenier and Michel Parallel GA algorithm Single GA algorithm

t t
v

K t t
v

KGA
o

KGA
e

t t
v

KGA
s

0 0 2.400 0 0 2.4000 } 0 0 2.4000
} } } 1 10 2.5601 } 1 10 2.5596
1 20 2.675 1 20 } 2.6442 2 20 2.6856
} } } 2 30 2.7855 } 3 30 2.7848
2 40 2.858 2 40 } 2.8374 4 40 2.8624
} } } 3 50 2.9242 } 5 50 2.9234
3 60 2.978 3 60 } 2.9560 6 60 2.9707
} } } 4 70 3.0089 } 7 70 3.0085
4 80 3.056 4 80 } 3.0282 8 80 3.0375
} } } 5 90 3.0605 } 9 90 3.0602
5 100 3.107 5 100 } 3.0723 10 100 3.0782
} } } 6 110 3.0921 } 11 110 3.0923
6 120 3.140 6 120 } 3.0994 12 120 3.1032
} } } 7 130 3.1114 } 13 130 3.1118
7 140 3.161 7 140 } 3.1158 14 140 3.1189
} } } 8 150 3.1236 } 15 150 3.1243
8 160 3.175 8 160 } 3.1265 16 160 3.1290
} } } 9 170 3.1317 } 17 170 3.1326
9 180 3.186 9 180 } 3.1338 18 180 3.1357
} } } 10 190 3.1380 } 19 190 3.1386
10 200 3.194 10 200 } 3.1398 20 200 3.1413

Note: The parameter values are: a"0.2, b"0.24, o"0.0125, g"0.0075, a
0
"1, K

0
"2.4.

Table 4
Comparison of performances

Number of CPU times (s) Discounted welfares Variances
generations

Single Parallel Single Parallel Single Parallel

10,000 187.22 90.09 !127.8723 !127.8717 2.507E!07 0
20,000 373.46 173.08 !127.8718 !127.8717 5.002E!09 2.137E!09

100,000 1867.70 867.97 !127.8716 !127.8716 8.315E!12 0

Note: The maximum welfare under aggregated model by Mercenier and Michel is !142.241.

performance measure and multiple controls can be recast as a game between
players with identical objectives each controlling an arbitrarily assigned set of
controls. Obviously, there is no advantage in doing so from an analytical
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viewpoint; however, when numerically implemented via genetic algorithms,
the resulting computational gains are substantial. Also, the fact that an
optimal openloop control trajectory consists of points which are in inter-
temporal Nash equilibrium can be utilized to distribute computational
burden timewise to a number of parallel running genetic algorithms
each searching a certain time segment of the optimal trajectory. Again, there
are major bene"ts in the form of reduced computing time and better
approximation.

The tenor of our discussions has been the practical computational advantages
of the approximation of the optimum as the equilibrium of evolving
(sub-optimal) &best-to-date' responses. One interesting direction our
results can be extended in is to focus on the learning aspects of such a decentra-
lized search strategy and its implications for the optimizing behavior.
When optimum decisions evolve over time, whether agents learn to optimize
under a centralized or a decentralized regime gains signi"cance. For example,
we noted that when the decision authority was exclusively delegated to two local
arti"cially intelligent agents with a common objective there was improvement in
the quality and the speed with which decisions were undertaken. The e$ciency
gain was largely due to the reduction in the complexity of performance evalu-
ations and task specialization leading to a more rapid learning throughout the
locales. For a more general result, these bene"ts, however, have to be weighed
against the communication costs that come with the decentralization. Therefore,
at what point the net bene"ts from delegation of authority are exhausted
depends on the available communication technology and remains open for
further empirical research.

Another direction our parallel GA algorithm can be extended in is to explore
closed-loop solutions in dynamic game models where players face time-incon-
sistencies. In neural network methods the log-sigmoid function is widely used to
approximate unknown nonlinear functions (Sargent, 1993). In approximating
time-consistent policy functions, our algorithm can be employed to evolve
neural network architectures, each representing a player, in a parallel manner to
obtain the time-consistent Nash equilibrium. At the present, we can only report
that we are actively pursuing this idea further.
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