
E L S E V I E R Operations Research Letters 21 (1997) 77 80

Batch scheduling to minimize maximum lateness

Jay B. Ghosh a'*, Jatinder N.D. Gupta b
~ Faculty of Business Administration, Bilkent University, Turkey

b Department of Management, Ball State University, USA

Received 1 January 1996; revised 1 March 1997

Abstract

We address the single-machine batch scheduling problem which arises when there are job families and setup
requirements exist between these families; our objective is to minimize the maximum lateness. As our main result, we give
an improved dynamic program for the solution of the problem. © 1997 Elsevier Science B.V.

Kevwords: Analysis of algorithms; Dynamic programming; Production/scheduling

1. Introduction

The single-machine batch scheduling problem
can be described as follows. Suppose that there are
F, F ~> 1, job families of which a fami lyf 1 <~f<<.F,
contains N (f) j o b s , that these jobs are ready at
time zero, and that they will have to be processed
without interruption on a single machine which is
available continuously. Suppose further that a job
j in family f, 1 <~j <~N(f) and 1 <~f<~F, has a pro-
cessing time Pit and a due-date dij associated with
it, and that a setup time sy o is needed when two jobs
j and k belonging to separate families f and 9 are
processed consecutively in that order (note that no
setup time is required i f j and k belong to the same
family f or 9, i.e., syy =soo =0). Assume that the

* Fax: +90 312 266 4958; e-mail: ghosh@bilkent.edu.tr.

machine is initially set up for a hypothetical job
family- call it 0 for convenience; thus, a job belong-
ing to family f, 1 <~f<~F, incurs a setup time s0i
whenever it is scheduled first. Also, make the very
reasonable assumption that the setup times obey
the triangle inequality: that is, given families f, 9 and
h, we have slo + sgh >~ Slh. Finally, let CIj represent
the scheduled completion time of job j of family f
Note that the objective typically is to minimize
some function of CIj.

Batch scheduling problems of the above kind
arise frequently in process industries, parts manu-
facturing environments and cellular assembly
systems. They also appear often in various other
contexts where a changeover is necessary (such as
loading shared software into a computer's main
memory, assigning labor to machines in a dual-
constrained production shop and sequencing the
landing of differently sized aircraft on a runway).
For further details on batch scheduling, the

0167-6377/97/$17.00 ~' 1997 Elsevier Science B.V. All rights reserved
PII S0 1 6 7 - 6 3 7 7 (9 7) 0 0 0 2 8 - X

78 ,LB. Ghosh. J.N.D. Gupta / Operations Research Letters 21 (1997) 77-80

interested reader is referred to the recent papers
by Monma and Potts [6] and Potts and Van
Wassenhove [8].

In this note, we examine the batch scheduling
problem with the objective of minimizing the
maximum lateness which is given by Lma x =

max1 ~_S <_F.I <.s~N~s) {Lys}, where Lfs = Cs, J -dfs.
Using the notation of Potts and Van Wassenhove
[8], the problem can be referred to as either
l[syglLmax or l[sylL depending upon whether
the setup times are sequence-dependent or sequence-
independent (that is, set = sy for all e # f) .

Let N = (1 / F) ~ T < , F N (f) +1. Monma and
Potts [6] have presented a generic dynamic pro-
gram which can solve l[sfg[Lma x in O(F2N F-'+2F}
and llsflLmax in O(FaN 2e) time. They have indi-
cated, as have Bruno and Downey [2] before them,
that llsfolLma x is strongly NP-hard. Bruno and
Downey [2] have also shown that l[syl Lmax is
NP-hard as well but is solvable in pseudo-poly-
nomial time if the number of distinct due dates

call it D is fixed. Recently, there has been
a revival of interest in the problem. Potts and
Van Wassenhove [8], Unal and Kiran [10] and
Webster and Baker [11] have all presented new
structural results with respect to variations of
the problem. Shutten et al. [9] have addressed
l lsf l Lmax in presence of job release dates and have
proposed a branch and bound algorithm that can
solve moderately sized problem instances. Baker
and Magazine [1] have also provided some pre-
liminary computational results. To the best of our
knowledge, no approximation algorithm exists for
l[sfol Lma x or l[sll Lma x per se. However, Zdrzalka
[12, 13] has given such algorithms for a problem
which is equivalent to llsy[L both for the case
when the setup times are all equal and the case
when they are not. (It should be noted though
that the performance guarantees obtained for his
equivalent problem do not hold for l lsf[Lmax.)

Our main contribution is the development of
a new dynamic program for llsfglL which
solves it in O(F2N F) time. This resolves the vexing
situation that the problem could not thus far be
solved in this time order, even though most of the
other single-machine batch scheduling problems
(including the threshold version of 1 [Syg[L~) could
be. We also provide a minor generalization which

can help reduce effectively the size of a problem
instance. The long-standing question as to whether
liST[Lmax is strongly NP-hard for an arbitrary D,
however, remains open.

2. Preliminaries

We start out by stating the known complexity
results for lls~,l Lmax and liST[Lma x.

Theorem 1. l[sfgl Lmax is strongly NP-hard even for
a single due date, one job per family, and two distinct
setup times; it is, however, polynomially solvable for
a fixed F.

Monma and Potts [6] and Bruno and Downey
[2] point out that the proof of NP-hardness is
trivial. One approach is to use a reduction from the
Hamiltonian Path problem; see [4]. The polynomial
solvability for a fixed F follows directly from the
complexity of the Monma Potts dynamic program
[6].

Theorem 2. l [s f lLma x is NP-hard even for either
two distinct due dates, two jobs per family, and arbit-
rary setup times or three distinct due dates, three jobs
per family, and equal setup times; in general, it is,
however, pseudo-polynomially solvable for a fixed
D and polynomially solvable for a fixed F.

The NP-hardness proofs, based on the Partition
problem [4], are given in [2], as is the pseudo-poly-
nomial algorithm for a fixed D. The M o n m ~ P o t t s
dynamic program [6] provides the polynomial
solution for a fixed F.

We now state two useful structural properties,
including a generalization, for an optimal solution
to lIsfg] Lma x.

Theorem 3. There is an optimal schedule for l[STo I
Lmax in which all jobs from a given family are pro-
cessed in the earliest-due-date-first (EDD) order.

The proof appears in [6]. The theorem signifi-
cantly cuts down the enumerative burden. For

J.B. Ghosh, J.ALD. Gupta / Operations Research Letters 21 (1997) 77-80 79

notational convenience, we assume, from this point
on, that the jobs are indexed such that d:~ >1 df2
• .. >~d:N~:) for all f, 1 ~f<~F.

Theorem 4. I f there are two consecutively indexed
jobs i a n d j within family f such that i <j and dfi <~
dfj +Pyi, then there is an optimal schedule for
llsfg I Lma x in which job j is processed immediately
before job i.

The theorem is a generalization of a result for
llszlL given in [t0] and also in [11]. It is
proved straightforwardly by moving job j imme-
diately before job i and showing, through the use of
the triangle inequality, that doing this does not
increase Lma x.

Theorem 4 can be applied repeatedly, moving
from the smallest index to the highest, to combine
all jobs from the same family that will be processed
together in some optimal schedule. The combined
jobs can actually be considered as a single job. For
example, if consecutively indexed jobs i and j (i <j)
from family f can be combined, the result will be
a single fictitious job whose processing time and
due date are given by pfj q-Pfi and dfi , respectively.
Notice that job j will be processed before job i in
a real schedule.

From this point on, we will assume that all jobs
within family f, 1 ~ f ~ F , have been combined as
above and thus that d:~ >d:~ +p:~ whenever i < j for
all (i,j) pairs of consecutively indexed family f jobs.

3. New algorithm

The Monma-Pot ts dynamic program [6]
solves lls:al Lmax in O(F2N F2+2F) and l[s:l Lmax in
O(F2N 2F) time. These are the best worst-case com-
plexities reported to date. However, for F =2, an
adaptation of the algorithm for 11s:o I Y w:j C:~ given
in [7] yields a n O (N 3) time solution for llsfol L

This is somewhat vexing since most similar
single-machine batch scheduling problems, such as
llsso [~Wsj CS~, can be solved in O(F2N e) or com-
parable time. It is all the more so because the
threshold version of llsso [L where one is inte-
rested in finding out if there exists a schedule such
that L ~<Lo, can also be solved in the same

time order through a slight modification of the
algorithm for lls:91 •U:j given in [6].

One possible approach to solving lls:olLm, x is
through the repeated solution of the threshold
problem in a binary search scheme where the Lo is
picked from the interval [L Lr, ax], Lmax and
Lmax being known lower and upper bounds, respec-
tively, on the optimal value of Lma x. In each case,
a new problem instance I' is created from the
original instance I by choosing d~rj = d:j + Lo, and
I' is solved by using the modification of the
Monma-Pot ts dynamic program for llsfgl~Ufj
[6] to see if 2:,j Uyj =0. Assuming that all data
are integral, this approach solves llsyolLma x in
O(F2Nelog(Lmax-Lm,x + 1)) time. This, however,
is not entirely satisfactory as the time complexity
falls short of our target of O(F2N r) and also is not
strongly polynomial for a fixed F.

We now propose a new dynamic program which
schedules the jobs from the back to the front (i.e., in
the increasing order of their indices within the
families) and achieves the desired complexity. It is
motivated by the success of such schemes in solving
liST01Zwfj Cfj; [3, 5].

The key is the partitioning of Lm~x of a schedule
between the jobs in the front and the back. Let
cp(t) and p(t) denote, respectively, the family and
the index of the job processed in the tth last
position in a schedule. Also, let the total number of
jobs be N ' = F (N - 1) , and define the family
of a fictitious (N' + 1)th last job as q~(N' + 1) --0.
Finally, let A be the ordered set of the last r jobs
in the schedule whose maximum lateness would be

a
Lmax if they started at time 0, and, similarly, let B
be the ordered set of the first N ' - r jobs whose
maximum lateness is n Lmax and whose makespan is
given by

MS ~ = ~ [s~,+l)~.) +P~").I')]"
r < t ~ N '

One can easily verify that, after some algebra, it is
possible to write Lmax of the given schedule as
follows:

B Lmax = m a x {Lmax, A Lma x + MS B +s~.+ ~),t~) --So~(,i}-

We can now state a result about the viability of
expanding a r-job partial schedule. Assume that

80 J.B. Ghosh, J.N.D. Gupta / Operations Research Letters 2l (1997) 77.-80

there are two r - job par t ia l schedules, call them
A and A', consis t ing of the same set of j obs and with
the same first job.

L e m m a 5. l f L Aax A' ~< L then the completion of A'
cannot yield a smaller Lma x value than what can be
obtained from the completion of A.

P r o o f The p roo f is simple. Imagine that bo th
A and A' have been comple ted identically, by
schedul ing the N ' - r j obs in B before them, to
ob ta in the full schedules S and S', respectively. It is
easy to show, using the pa r t i t ioned expression for
Lma x given above, that A A' Lma x ~<Lma x necessari ly
implies s .< s' L Lma x. This comple tes the proof. []

The l emma essential ly suggests that only A needs
to be re ta ined for further expansion. We are now in
a pos i t ion to develop the new dynamic p r o g r a m
which will rely heavi ly on the l emma and which we
will call A lgo r i t hm DP.

Let A(n(1) n(F);g) be the m i n i m u m maxi-
m u m lateness when only the first n(f)jobs of each
family f, 1 <.~_.f < F, have been scheduled such that
j o b n(g) from family g is first and has a s tar t t ime of
0. This A(n(1) n(F);g) can be ob ta ined from
A(n'(1) n'(F);g'), where n'(f) = n (f) for 1 ~<f~<
F and f # g , and n ' (f) - - n (f) - i for f=g , and
where 1 ~ g ' ~<F and n'(g') >0 . The dynamic pro-
g r amming recurs ion is expressed as follows:

A(n(1) n(F);g) = minl¢:,xo,)> o ' t _< 0' ,<v,,

{max {Sos + Ps.~o) -do,~y,,

A(n ' (l) n'(F);g') +Soy

+ Po,~y) + soy' - Sos,} }.

The recursion is first initialized with A(n(l) n(F);
g) :Soy +Pgncy) -dy,<o) for all g, 1 ~<g ~<F, such that
n(f) = 0 i f f # g and 1 i f f = g for all J; 1 <~f<~F. It
is then carr ied out over all n(f), 0 <<,n(f) <~N(f)
and 1 <~f<~F, and all g, 1 ~<g ~<F, whenever
n(g) >0 . The op t ima l solut ion is finally ob ta ined by
comput ing:

A * (N (1) N(F)) = min ,1 ~< s -< v,,

{A(N(1) N(F); g)}.

Clearly, D P enumera tes only over those
schedules that are po ten t ia l ly op t imal (el Theo-

rem 3 and L e m m a 5). It is, therefore, correct , Next,
there are 2F c ompu ta t i ons needed for a single
A(n(1) n(F);g), and the size of the state space is
bounde d above by FN F. This t ranslates into a com-
plexity of O(FZNP), bo th in terms of t ime and
space. We summar ize this in the form of a theorem.

T h e o r e m 6 . Algorithm DP solves lls:olLm, x in
O(FaN e) time and space.

A c k n o w l e d g e m e n t s

Thanks are due to an a n o n y m o u s referee for his
helpful comments . The present version of the paper
has benefi ted great ly from these comments .

R e f e r e n c e s

[1] K.R. Baker, M.J. Magazine, Scheduling groups of jobs to
minimize maximum lateness, ORSA/TIMS Meeting,
Detroit, 1994.

[2] J. Bruno, P. Downey, Complexity of task sequencing with
deadlines, set-up times and changeover costs, SIAM J.
Comput. 7 (1978) 393-404.

[3] J. Bruno, R. Sethi, Task sequencing in a batch environ-
ment with setup times, Found. Control Eng. 3 (1978)
105 117.

[4] M.R. Garey, D.S. Johnson, Computers and Intractability,
Freeman, New York, 1979.

[5] J.B. Ghosh, Batch scheduling to minimize total completion
time, Oper. Res. Lett. 16 (1994) 271 275.

[6] C.L. Monma, C.N. Potts, On the complexity of scheduling
with batch setup times, Oper. Res. 37 (1989) 798-804.

[7] C.N. Potts, Scheduling two job classes on a single
machine, Comput. Oper. Res. 18 (1991) 411-415.

[8] C.N. Potts, L.N. Van Wassenhove, Integrating scheduling
with batching and tot-sizing: a review of algorithms and
complexity, J. Oper. Res. Soc. 43 (1992) 395 406.

[9] J.MJ. Schutten, S.L. van de Velde, W.H.M. Zijm, Single-
machine scheduling with release dates, due dates and
family setup times, Management Sci. 42 (1996) 1165 1174.

[10] A.T. Unal, A.S. Kiran, Batch sequencing, IIE Trans. 24
(1992) 73 83.

[11] S. Webster, K.R. Baker, Scheduling groups of jobs on
a single machine, Oper. Res. 43 0995) 692-703.

[12] S. Zdrzalka, Approximation algorithms for single-machine
sequencing with delivery times and unit batch set-up times,
European J. Oper. Res. 51 (1991) 199-209.

[13] S. Zdrzalka, Analysis of approximation algorithms for
single-machine scheduling with delivery times and se-
quence independent batch setup times, European J. Oper.
Res. 80 (1995) 371-380.

