
International Journal of Forecasting 17 (2001) 305–322
www.elsevier.com/ locate / ijforecast

Software reviews

The aim of this section is to provide objective works.com. Microsoft Windows, UNIX, and
information to guide choices in both scientific Macintosh versions are available. Neural Net-
and business applications. Anyone wishing to work Toolbox 3.0 requires MATLAB.
contribute a review should write to the editor at
the address below. The suggested outline for a Neural Network Toolbox authors
software review includes the following topics:

Professor Emeritus Howard Demuth, Uni-identification of the target user, equipment
versity of Idaho, and Mark Beale, President ofrequirements, data entry and editing capability,
MHB, Inc.evaluation of graphics and other data analysis

features, a synopsis of modelling options, the
Related productsvalidity of computations, quality of documen-

tation and ease of learning and use. Standard
Neural Network Toolbox User’s Guide,IJF instructions to authors apply.

Howard Demuth and Mark Beale. Fifth Prin-
ting. Version 3. Mathworks, MA, 1998;Editor: B.D. McCullough
info@mathworks.com.Dept. of Decision Sciences

Neural Network Design, Martin T. Hagan,LeBow College of Business
Howard B. Demuth, and Mark Beale. PWSDrexel University
Publishing Company, 1996; info@pws.comPhiladelphia, PA 19104

USA

2. Introduction

There is a variety of numerical techniques for
modelling and prediction of nonlinear time
series such as the threshold model, exponential1. Environment
model, nearest neighbors regression and neural
network models. In addition, the Taylor seriesNeural Network Toolbox 3.0 for use with
expansion, radial basis function and non-MATLABE

parametric kernel regression are also used for
The Mathworks, Inc., 24 Prime Park Way, nonlinear prediction. These techniques essential-

Natick, MA 01760-1500, USA. Tel.: 1 1-508- ly involve interpolating or approximating un-
647-7000. Fax: 1 1-548-647-7001. Sales, known functions from scattered data points.
pricing, and general information: Among these techniques, artificial neural net-
info@mathworks.com. http: / /www.math- works is one of the most recent techniques used

0169-2070/01/$ – see front matter  2001 International Institute of Forecasters. Published by Elsevier Science B.V. All rights reserved.

306 Software reviews

in nonlinear modelling and prediction. A recent Elman, Hopfield, learning vector quantiza-
tion (LVQ), probabilistic network, general-survey of this literature is presented in Kuan
ized regression, and quasi-Newton algorithm.and White (1994).

• Unsupervised network paradigms: Hebb,In feedforward networks, signals flow in only
Kohonen, competitive, feature maps and self-one direction, without feedback. Applications in
organizing maps.forecasting, signal processing and control re-

• Unlimited number of sets of inputs andquire explicit treatment of dynamics. Feedfor-
network interconnections.ward networks can accommodate dynamics by

• Customizable architecture and network func-including past input and target values in an
tions.augmented set of inputs. Gençay and Dechert

• Modular network representation.(1992) and Gençay (1996) used feedforward
• Automatic network regularization.networks in estimating the Lyapunov exponents
• Competitive, limit, linear and sigmoid trans-of an unknown system. Gençay (1994, 1999)

fer functions.used feedforward networks in predicting noisy
time series and in foreign exchange predictions.

In this paper, we review the numerical ac-Among many applications, Dougherty and Cob-
curacy and the robustness of some Matlab NNTbett (1997) model inter-urban traffic forecasts
commands. The sections are organized such thatusing neural networks; Callen, Clarence, Patrick
each section corresponds to a NNT chapter. Inand Yufei (1996) model quarterly accounting
this review, we study Chapters 2, 3 and 4 withearnings; Hill, Marquez, O’Connor and Remus
specific examples which are comparable to the(1994) focus on forecasting and decision mak- 1examples given in the Matlab NNT. We con-ing; Kim and Se (1998) construct probabilistic
clude afterwards.networks to model stock market activity; Kirby,

Watson and Dougherty (1997) use neural net-
works for short term traffic forecasting; Swan-

3. Chapter 2son and White (1997) study modelling and
forecasting economic time series; and Refenes

Chapter 2 of the user’s guide contains basic(1994) comments on the field of neural net-
material about the network architectures. Theworks.
chapter has seven examples. Each exampleOur interest in this review is confined to the
states a problem, shows the network used tofunction approximation and filtering capabilities
solve the problem, and presents the results. Weof various neural network models.
replicate six of these examples with slightlyThe Neural Network Toolbox (NNT) is one
different input sets.of several toolboxes the Mathworks offers. The

company states that the NNT is a comprehen-
sive environment for neural network research, 3.1. Example 1
design and simulation with the MATLAB. For

The static network is the simplest case amongthe NN experts, the key features of the NNT are
all classes of network simulation as there are noclassified as follows:
feedbacks or delays in the system. Given a set

• Supervised network paradigms: perceptron, of weights for each input and assuming zero
linear network, backpropagation, Levenberg–

1Marquardt (LM) and reduced LM algo- Matlab codes of the examples are available at
|rithms, conjugate gradient, radial basis, www.bilkent.edu.tr / faruk.

Software reviews 307

bias, a well designed NN should result in a Output
weighted sum of the input set. The first example
of Chapter 2 on page 2-15 (concurrent inputs in

A 5 WP 1 b1 1a static network) demonstrates this property. In
0.00001the example, four concurrent vectors are pre- 5 [0.00001 100000] 1 0S D100000sented into the static network created with

5 (1.0e 1 010) 1 (1.0e 2 010)newlin command. Given preset weights and
bias, the sim command simulates the network
and produces an output. However, when we A 5 WP 1 b2 2
utilized the same network with a different input

0.00001
5 [0.00001 100000] 1 0S Dset, the reported results on the screen were 0.00001

completely wrong, although the results in the
5 (1.0e 1 000) 1 (1.0e 2 010)program memory were correct. After some

experiments, we found that the NNT gives the
A 5 WP 1 bcorrect answer on the screen if one uses a 3 3

different format for the output, a peculiar solu- 100000
5 [0.00001 100000] 1 0S D0.00001tion to avoid a misleading result in a high

caliber program like MATLAB. 5 2.0e 1 000
The problem of misleading results on the

screen is not specific to a concurrent input static A 5 WP 1 b4 4network. The example of incremental training
100000with static networks given on page 2-20 also 5 [0.00001 100000] 1 0S D100000produces misleading results if the default format

5 (1.0e 1 010) 1 1.is not changed to ‘format long e’. The lesson of
our very first two experiments with the NNT is

The codea clear one: to avoid misleading results, change
the default format ‘short’ to ‘long e’ before you
start using the NNT.

3.1.1. Concurrent inputs in a static network
Results(page 2-15)

This example creates a two-element input
linear layer with one neuron. The ranges of
inputs are [2100000 100000] and [2100000

Comments100000]. The input weights are 0.00001 and
By hand calculation, the correct answer is100000. The bias is 0.

(1.0e 1 010) 1 (1.0e 2 010), (1.0e 1 000) 1

(1.0e 2 010), 2.0e 1 000, (1.0e 1 010) 1 1.
Input

With the default format, the results on the0.00001 0.00001P 5 , P 5 ,S D S D screen are misleading. To have the correct1 2100000 0.00001
answer displayed, the format must be set to

100000 100000P 5 , P 5 . ‘format long e’.S D S D3 40.00001 100000

308 Software reviews

3.2. Example 2 that the NNT manual should give detailed
explanations and warnings regarding the impor-The training methods of a network can be
tance of the choice of the learning rate.classified into two groups: incremental training

and batch training. In incremental training, the
3.2.1. Incremental training with static

weights and biases of the network are updated
networks (page 2-20)

each time an input is presented to the network.
This example creates one two-element input

On the other hand, the batch training updates all linear layer with one neuron. The ranges of
the weights and biases after the entire input set inputs are: [1 3] and [1 3]. The input delay is 0.
is presented. The learning rate is 0.1. We train the network to

An example on page 2-20 presents a case for create a linear function
incremental training with static networks. First,

t 5 2p 1 pthe learning rate of the system is set to 0.0 to 1 2

show that ‘‘if you do not ask the network to where p and p refer to inputs.1 2learn, it will not learn’’. As expected, the The inputs are
network outputs are zero since there is no
‘learning’, e.g. the weights and biases in the p 1 p 21 1P 5 5 , P 5 5 ,S D S D S D S D1 2p 2 p 1network are not updated at all. Later, the 2 2

learning rate is set to 0.1 to show that the p 2 p 31 1P 5 5 , P 5 5 .S D S D S D S Dsystem, in fact, learns. Now, the first output 3 4p 3 p 12 2
from the network is zero (since there is no

The target isupdating with the first input). After the second
input is presented, the second output differs t 5 2*1 1 2 5 4, t 5 2*2 1 1 5 5,1 2from zero, although the error is large. With the

t 5 2*2 1 3 5 7, t 5 2*3 1 1 5 7.3 4third and fourth inputs, the errors get smaller
and smaller giving the impression that the

The codesystem is in fact ‘learning’. According to the
example, the weights continue to be modified as
each error is computed. The authors claim that
‘‘if the network is capable and the learning rate
is set correctly, the error will eventually be
driven to zero’’.

In order to check the validity of this claim,
we presented the same input and the same target
values several times to the same network in the
example. We expected that after a reasonable
number of inputs, the network would learn and
the errors ‘‘would eventually be driven to zero’’.
Although there were some improvements in
terms of the mean squared error, the results
were far from satisfactory. When we input the
same set of numbers 24 times, the mean squared

2error was still different from zero. We think

2We even tried the same set of numbers 48 times. The
mean squared error was still different from zero.

Software reviews 309

Results sulting input weight should be 3 and the bias
should be 8 since the linear function used to
train the network is t 5 3p 1 8. The updated
input weights and bias are far from these values
even if we present the same set of numbers
more and more times. In the third case, we set
the input weight to 3 and bias to 8. This time
the output is equal to the target and the input
weights and bias are all correct. Fine. In the last
case, we make a small change in input weights
and bias as compared to the third experiment

Comments and set them to 2 and 6. The updated input
From the result of a and e, there is no clear- weights and bias are completely off from what

cut evidence that, when using the adapt func- we would expect. The experiment shows that if
tion, the output will close to the target and the one gives the correct input weights and bias to
error will eventually be driven to zero. The the system, the network does not diverge from
MSE gets smaller when the same set of inputs these correct values. However, the network does
are supplied a greater number of times. This is not converge to the correct set if given input
some evidence of improvement. However, when weights and biases are slightly different than the
we use the same numbers 96 times (fourth true set. The researcher may obtain an incorrect
case), the mean squared error is still different answer and not know it. Here, we expect that
from zero. the Matlab NNT would provide robustness and

stability benchmarks to the researchers.3.3. Example 3

3.3.1. Batch training with static networksUnlike incremental training in which weights
(page 2-23)and biases are updated each time, the batch

This example creates a single input lineartraining updates the weights and biases after all
layer with one neuron. The range of input isthe inputs are presented to the system. This
[2500000 500000]. The input delays are 0 andtraining can also be used in static and dynamic
1. The learning rate is 0.1. The function trainednetworks. An example on page 2-23 shows an
isapplication of batch training with static net-
t 5 3p 1 8works.

We adopted the same approach with slightly where p refers to inputs. The inputs are
modified input and output settings. Particularly,

P 5 1, P 5 0.0001, P 5 10000,we defined the target values from the following 1 2 3

linear function: P 5 2 500, P 5 3000000,4 5

t 5 3p 1 8 P 5 2 0.00003.6

where p is the input. In the first two cases, we
The target isset the input weights and bias all to be zero and

we obtained the network outputs to be all zero, t 5 3*1 1 8 5 11,1
because the weights are not updated until all of t 5 3*0.0001 1 8 5 8.0003,2the training set is presented. This result is not

t 5 3*10000 1 8 5 300083unexpected. After presenting the entire data set
in the second case, we expected that the re- t 5 3*(2500) 1 8 5 2 1492,4

310 Software reviews

t 5 3*3000000 1 8 5 9000008, Comments5

This example once again demonstrates thatt 5 3*(20.00003) 1 8 5 7.99991.6
the estimated network weights are highly un-
stable if the starting network values are notThe code
chosen to be their actual values. In real data
applications, the underlying function and its
parameters are unknown so that this instability
has to be addressed.

3.4. Example 4

The batch training with the dynamic networks
example on page 2-25 uses a linear network
with a delay. We adopted the same example
with a different setting. Specifically, the linear
function training the network is defined as

t 5 1 2 100000t .m11 m

Therefore, we expect that the input weights
from the network should be 2100000 and 1 and
the resulting bias should be 1. Again, with a
learning rate of 0.02 as in the original example,
the results of the network are far from beingResults
satisfactory. When we change the learning rate
to 0.000000000000001, the results are closer to
what they should be. Note that a researcher
normally does not know the training function.
As a result, setting the correct learning rate may
not be obvious in practice. The NNT does not
provide any guidance on this matter.

3.4.1. Batch training with dynamic networks
(page 2-25)

This example creates a single input linear
layer with one neuron. The range of input is
[2100 100000000]. The input delays are 0 and
1. The learning rate is 0.02. The linear function
training this network is

t 5 1 2 100000t .m11 m

The inputs are

P 5 0.01, P 5 2 999, P 5 99900001.1 2 3

Software reviews 311

When P 5 t 5 0.01 learning rate may not be obvious. Therefore, we0

question whether this procedure produces accur-
t 5 1 2 100000*0.01 5 2 999,1 ate answers in real situations.
t 5 1 2 100000*(2999) 5 99900001,2

t 5 1 2 100000*(99900001)3

4. Chapter 35 2 999000009999.

A single layer network with a hard limitThe code
transfer function is called a perceptron. Chapter
3 introduces perceptrons and shows the advan-
tages and limitations of them in solving differ-
ent problems. After creating a perceptron and
setting its initial weights and biases, one can
check whether the network responds as ex-
pected or not. This is done in the NNT with the
sim command. After checking the integrity of a
perceptron with sim, it can be trained with a
desired learning rule.

In general, a learning rule or a training
algorithm is a procedure for modifying the
weights and biases of a network. The NNT
provides learning rules which can be classified
into two groups: supervised learning and un-

Results supervised learning.
In supervised learning, the learning rule is

introduced to the network with a training set. In
this algorithm, as the inputs are introduced to
the system the output of the network is com-
pared to the targets in the training set. The
learning rule is then used to adjust the weights
and biases of the network. A learning rule might
be ‘minimum error’, ‘minimum mean squaredComments
error’, ‘minimum absolute error’, or some otherThe linear function training this network is
criterion depending on the problem in hand.t 5 1 2 100000t , so the IW should bem11 m

In unsupervised learning, the weights and2100000 and 1, and b should be 1. In the first
biases are adjusted only as a response to inputscase, when we use a learning rate of 0.02 for the
and there are no targets.training, the results of input weights and bias

The perceptron learning rule in the NNT,are far from it. In the second case, when we use
learnp, is a supervised learning rule. It has ana learning rate of 0.000000000000001, the
objective of minimizing the error between theresults are closer to what they should be. We
input and the target. If simulation sim andconclude that if the network is capable and the
perceptron learning rule learnp are used re-learning rate is set correctly, it gets the correct
peatedly, the perceptron will eventually findoutput. In most cases, we do not know the
input weight and bias values which solve thetraining function and setting the appropriate

312 Software reviews

problem. Each presentation of input and targets will converge in a finite number of steps unless
to the system is called a ‘pass’. The NN toolbox the problem presented cannot be solved with a
provides another command, adapt, which per- simple perceptron. However, it would be con-
forms these repetitive steps with a desired venient for users with large data sets if adapt
number of passes. has an option which decides on the number of

passes automatically.
4.1. Example 1

4.2.1. Adaptive training
First, we created a perceptron layer with one This example creates a perceptron layer with

two-element input and one neuron. After defin- one three-element input and one neuron. The
ing our inputs and targets, we let the network ranges of inputs are [210000 10000], [210000
adapt for one pass through sequence. The 10000] and [210000 10000].
network performed successfully.

The code
4.1.1. Adaptive training

This example creates a perceptron layer with
one two-element input and one neuron. The
ranges of inputs are [210000 10000] and
[210000 10000]. Here we define a sequence of
targets t, and then let the network adapt for one
pass through the sequence.

The code

Results Results

Comments
The network performs successfully.

4.2. Example 2 Comments
The network performs successfully if the

Now we create a perceptron layer with one number of passes is set correctly.
three-element input and one neuron. First, we
applied adapt for one pass through the sequence
of all four input vectors and obtained the 5. Chapter 4
weights and bias. Another run with two passes
resulted in correct answers. Our experiment is in Perceptrons introduced in Chapter 3 are very
accord with the claim in the handbook: adapt simple classification networks and they have

Software reviews 313

very limited usage in practice. Adaptive Linear t 5 1000p 2 300
Neuron Networks (ADALINE) are different the outputs are
than perceptrons as they have a linear transfer
function rather than a hard limiting function. t 5 1000*0.00004 2 300 5 299.96,1

The toolbox uses the Least Mean Squares t 5 1000*100000 2 300 5 99999700,2learning rule for ADALINE. Particularly, the
t 5 1000*(230) 2 300 5 2 30300,3function newlind provides specific network val-
t 5 1000*0.002 2 300 5 2 298,ues for weights and biases by minimizing the 4

mean least squares. In other words, newlind t 5 1000*(250000) 2 300 5 2 50000300.5designs a linear network given a set of inputs
and corresponding outputs. The resulting net- The code
work can be used for simulation purposes. Our
experiments with newlind showed that it per-
forms well even under some extreme situations.

5.1. Example 1

In this example, we design a network with
newlind and check its performance. We found
that the network performs successfully.

5.1.1. Linear system design (NEWLIND)
In this example, for given P and T, we use

newlind to design a network and check its Results
response.

The inputs are

P 5 0.00004, P 5 100000,1 2

P 5 2 30, P 5 0.002, P 5 2 50000.3 4 5

When we train the network to create a linear
Commentsfunction

The network performs successfully.
t 5 0.001p 1 5

5.2. Example 2the outputs are

t 5 0.001*0.00004 1 5 5 5.00000004,1 The train function introduced earlier is ex-
plained for the ADALINE environment int 5 0.001*100000 1 5 5 105,2

Chapter 4. The function train takes each vectort 5 0.001*(230) 1 5 5 4.97,3 of a set of vectors and calculates the network
t 5 0.001*0.002 1 5 5 5.000002,4 weights and bias increments due to each of the
t 5 0.001*(250000) 1 5 5 2 45. inputs by utilizing the function learnp. The5

network is then adjusted with the sum of all
When we train the network to create a linear these corrections. The train continues with the

function application of the inputs to the new network and

314 Software reviews

calculates the outputs and mean squared errors. Comments
If the error goal is met or the number of preset The network cannot achieve the value of 0.1.
echos is reached, the training is stopped. In our The new weights and bias cannot be obtained
second example in this section, we utilized the either. The network cannot attain a numerical
same input and target values we used in our first solution. Increasing the number of epochs does
example in the previous section. The utilized not change the non-numerical solution. At least
code is the same as the example on page 4-14. in this case the user is not misled with an
With our input and target set, the function train incorrect answer.
could not obtain a goal of 0.1. The results were
reported as ‘Not a Number’ so we were not able 5.3. Example 3
to get the new weights and bias. The network

Adaptive Filtering (ADAPT) is one of thesimply stopped for no apparent reason. Note
major applications of ADALINE in practise.that the adaptive training with the same input
The output of an adaptive filtering is a simpleand target set in Chapter 3 with perceptrons
weighted average of current and lagged (de-produced the correct results. Examples of these
layed) inputs. Therefore, the output of the filtertypes of failures should be provided and reasons
is given bybehind them be explained in the NNT manual.

a(k) 5 purelin(Wp 1 b)
5.2.1. Linear classification (TRAIN)

R

In this example, we use train to get the 5OW a(k 2 i 1 1) 1 b.1,i
i51weights and biases for a network that produces

the correct targets for each input vector. The
Our third example shows that the NNTinitial weights and bias for the new network will

performs well in this respect.be 0 by default. We set the error goal to 0.1
rather than accept its default of 0. The inputs

5.3.1. Adaptive filterand targets are the same as in Example 1 of
In this example, the input values have a rangeChapter 3.

of 210000 to 10000. The delay line is con-
nected to the network weight matrix through

The code delays of 0, 1, 2, 3 and 4. The input weights are
0.07, 28000, 90, 26 and 0.4. The bias is 0. We
define the initial values of the outputs of the
delays as: pi5h1 0.2 2100 50j.

The inputs are

P 5 2 30000, P 5 0.0004,1 2
Results

P 5 500, P 5 6.3 4

The outputs are

a 5 0.07*(230000) 1 (28000)*501

1 90*(2100) 1 (26)*0.2 1 1*0.4

5 2 411100.8

Software reviews 315

a 5 0.07*0.0004 1 (28000)*(230000) 5.4.1. Adaptive filter2

In this example, we would like the previous
1 90*50 1 (26)*(2100) 1 1*0.2

network to produce the sequence of values
5 240005100.2 2999999995, 45, 50000005 and 600005.

a 5 0.07*500 1 (28000)*0.00043
The code

1 90*(230000) 1 (26)*50 1 1*(2100)

5 2 2700368.2

a 5 0.07*6 1 (28000)*500 1 90*0.00044

1 (26)*(230000) 1 1*50

5 2 38199495.544.

The code

Results

Results

Comment
The network errors are large and the network

outputs are wrong.

Comment
The network performs successfully. 6. Conclusions

The results on the screen as a result of the5.4. Example 4
default format are very misleading. Also, our
replications of simple examples from the NNTThe network defined in Example 3 above can
guide with slightly different input sets led tobe trained with the function adapt to produce a
incorrect results and raised questions on theparticular output sequence. In our last example,
reliability of the toolbox.we would like the network to produce the

In incremental training, setting the learningsequence of values 2999999995, 45, 50000005
rate is a crucial step. The user guide shouldand 600005. The network completely fails to
emphasize this point and should give detailedproduce the desired output, resulting in large
examples of the importance of the learning rate.errors even after 10 passes. This again dem-
The current version gives the impression thatonstrates that NNT is not robust to the large
‘some’ learning rate will be sufficient to obtaininput ranges and lacks numerical stability.

316 Software reviews

(1996). Neural network forecasting of quarterly ac-correct results. Our experiments with the exam-
counting earnings. International Journal of Forecastingple in the guide show that this is not the case,
12, 475–482.leaving an untrained user with the impression

Dougherty, M. S., & Cobbett, M. R. (1997). Short-term
that the software is not functioning properly. inter-urban traffic forecasts using neural networks.

In batch training, we found that the network International Journal Forecasting 13, 21–31.
Gençay, R. (1994). Nonlinear prediction of noisy timedoes not converge to the correct set if given

series with feedforward networks. Physics Letters Ainput weights, and biases are slightly different
187, 397–403.than the true set. Since the true weight and bias

Gençay, R. (1996). A statistical framework for testing
cannot be known in practice, NNT should chaotic dynamics via Lyapunov exponents. Physica D
provide robustness and stability benchmarks to 89, 261–266.
researchers. Gençay, R. (1999). Linear, nonlinear and essential foreign

exchange rate prediction with simple technical tradingA simple example utilizing the train function
rules. Journal of International Economics 47, 91–107.in the adaptive linear neuron network environ-

Gençay, R., & Dechert, W. D. (1992). An algorithm for thement showed that the designed network can stop
n Lyapunov exponents of an n-dimensional unknown

without any apparent reason. When we run an dynamical system. Physica D 59, 142–157.
example with the function adapt, the network Hill, T., Marquez, L., O’Connor, M., & Remus, W. (1994).
completely failed, indicating that NNT is not Artificial neural network models for forecasting and

decision making. International Journal of Forecastingrobust to large input ranges.
10, 5–15.A study of the first three chapters of the NNT

Kuan, C. -M., & White, H. (1994). Artificial neuraltoolbox does not provide incentive for a trained
networks: an econometric perspective. Econometric

researcher to utilize the neural network meth- Reviews 13, 1–91.
odology by exploring its very rich capabilities Kim, S. H., & Se, H. C. (1998). Graded forecasting using
in a simple, structured framework. After observ- an array of bipolar predictions: application of prob-

abilistic neural networks to a stock market index.ing the capabilities of this toolbox in simple
International Journal of Forecasting 14, 323–337.problems, we are not convinced of its numerical

Kirby, H. R., Watson, S. M., & Dougherty, M. S. (1997).stability and robustness. We lost confidence in
Should we use neural networks or statistical models for

the toolbox after the first three chapters and did short-term motorway traffic forecasting? International
not proceed with more advanced topics. Journal of Forecasting 13, 43–50.

Refenes, A. N. (1994). Comments on neural networks:
‘forecasting breakthrough or passing fad’ by C. Chat-
field. International Journal of Forecasting 10, 43–46.

Acknowledgements Swanson, N. R., & White, W. H. (1997). Forecasting
economic time series using flexible versus fixed spe-

We are grateful to B.D. McCullough for cification and linear versus nonlinear econometric
comments on an earlier draft and Jian Gao for models. International Journal of Forecasting 13, 439–

461.research assistance. Ramazan Gençay gratefully
acknowledges financial support from the Natu-
ral Sciences and Engineering Research Council

a ,*Ramazan Gençayof Canada and the Social Sciences and
bFaruk SelçukHumanities Research Council of Canada.

aDepartment of Economics
University of Windsor

401 Sunset, WindsorReferences
Ontario N9B 3P4

Callen, J. L., Clarence, K. C. Y., Patrick, C. Y., & Yufei, Y. Canada

Software reviews 317

bDepartment of Economics (2001) (TH) chapter of the new Principles of
Forecasting Handbook from Kluwer AcademicBilkent University, Bilkent
Publishers (2001). The authors found SPSSAnkara 06533
Trends to be far less effective in implementingTurkey
principles of forecasting than is the time series
module offered in SAS/ETS. You can view the*Corresponding author. Tel.: 11-519-253-3000,
chapter and summary tables at the Principles ofextn. 2382; fax: 11-519-973-7096.
Forecasting website – hops.wharton.upenn.edu/E-mail address: gencay@uwindsor.ca (R.
forecast.Gençay).

With the emergence of DecisionTime and
What-If?, SPSS is attempting to enter thePII : S0169-2070(01)00084-X

mainstream market of dedicated business-fore-
casting software. DecisionTime is a standalone
product that does not require the SPSS base

DecisionTime 1.0 and WhatIf? 1.0: SPSS, program. In this market, it joins established
Inc., Marketing Department, 233 South Wacker players such as Autobox, Forecast Pro, Smar-

thDrive, 11 Floor, Chicago, IL 60606-6307. tforecasts and tsMetrix. These programs offer in
Tel.: 11-312-651-3000; fax: 11-312-651- varying degrees exponential smoothing,
3668; http: / /www.spss.com. List price: Single ARIMA, regression, intervention /event model-
user license for DecisionTime and WhatIf? US$ ing, and, importantly, an ‘‘expert system’’ for
1,999, additional single user license of WhatIf? automatic forecasting of a time series. Auto-
US$ 399 (North America only); System require- matic forecasting is in fact the central mission
ments: Windows 95, Windows 98, or Windows of DecisionTime as the forecaster is given little
NT 4.0, 32 MB RAM, 486DX or higher pro- direction in understanding how to build or
cessor, 30 MB disk space, SVGA Monitor, choose models on his own.
Math co-processor, CD-ROM drive. The methodological mix in DecisionTime

offers several interesting twists. These are: (a)
the incorporation of ARIMA with explanatory
variables (ARIMAX) into the automatic fore-1. Background and methods
casting system; (b) a remarkably simple but
effective procedure for modeling special events,Founded in 1968, SPSS has since been a
including outliers; and (c) through its What-If?major player in data analysis software. The base
companion, the opportunity to explore the ef-program, now in its tenth edition, supplies a
fects of alternate assumptions about futurecomprehensive menu of statistical techniques
values of the predictor variables on the forecastswith tabulation, graphing and reporting capa-
of the dependent variable. The first feature isbilities. Specialty add-on modules extend the
presently available in Autobox but without thebase program capability in data collection,
full exponential smoothing component. Themodeling and presentation. The Trends module,
WhatIf? functionality is really a macro thatintroduced in 1994 to serve practitioners of time
improves the packaging and presentation ofseries forecasting, expanded the SPSS-family
scenarios that could be directly examined, albeitmodeling capability to include autoregression,
more crudely, in a spreadsheet.ARIMA and some exponential smoothing tech-

DecisionTime includes a batch processingniques. SPSS Trends is one of 15 forecasting
capability, called a production job, which makesprograms evaluated in the Tashman and Hoover

