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Currency forecasting: an investigation of extrapolative judgement 
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,% l t s t  r i i c  t 

This paper aini~, Ill cxphlr¢ the pl~tcntial elfeet,, i l l  trend type. lllli+,c and fl~icca,,t horii+on i~ll ¢xpt, rts" lind nt~ic'cx' 
l~rol~abilisiic ftllC'l~;l>,ls. The xubiccts Ill;id¢ lorc'c';iM~, ll~cr six li111¢ llllrizllllS frtlni ~,illitilaletl l l i ( l l l l l i l )  l.'tllrcnc) scriL's basc'd t)ll 
',i r;ilitllllll walk. with l¢1o, CtlllM;llll ;tlld ~tocllasiic drift. ;.11 IWtl iioixe levels. The dilfcrcn¢c bqlw¢¢n the Me;ill Ab,,ohilc 
I'rol~abilil) Score of i.';.tC'll I~arliCillanl ~ilid ;.lit AR( 1 ) nitldL'l ~';i~, tl',t'tl Io evahltilC ilt'rforillziiicc. The rc>,ull~, ,,hllwed Ilial Ihc 
c'xllt'lIX llc'rfl~rlilL'd I~l+,llc'r Ih;iil Iht' n~viccs. ;.illlil~ti~li ~OlSC Ihan Ihc' llitltlL'l ~.'XC'CpI ili lilt" I.';i~,c" of .tL'ro dri l l  ~crics. N~ Clezir 
c, xpcilixc cffccl,~ oc'currcd ow.'r horizon,,. ,llbc, il subjects" I~t'rf~rnl;inc'c rt_'laliv¢ Itl Ihc lll~tlc'l i l i iprovcd a>, Ihc" li~rizon 
iiiLl¢;t~,t'd. I 'u~iblc I.,xi)laii:lli(lli~+ atL" tlll'c'rl..d ;llld ~+tlllic, ,,u,,~,l..Mitltl~, for fultirc rcsc;irc'h ;ire" ouliini.,tl. <~ ll)(J7 t']lsc~ic't 
gc'it'llc't_" I I V .  

t l~t" , l l ,~,"dL ' I~ ,a l i l ; I t i ~ i l i ;  I ' ]xchiingc r;itt,% I']xpcrtisc; I : l ) r¢ l . ' ; iM i l lg ;  Jud! . ' t ' t l i t ' l i l  

I .  I n t r l l d u d h l n  

Foro.c',ists based tin human j t idgcnlent  are x~itlcly 

ti~+ctl m pr:tci ical .situations (e.g. Da l rymple ,  1987; 
K le in  i i l ld L i l l l len l , l t l ,  It)84). OI1¢ such si luut ion is 

currency ft)rceasting, where predict ions  are often 

based on judgei i lent  a lone or, at the very least, in 
col l lbinat ion with statistical models.  This  ix especia l -  
Iv the case wi th the "chartist" l 'or¢¢asting apl+roach, 
~h ich  essential ly COllSists o f  two pr incipal  
judge i l lon la l  tasks (Murphy .  1986). ] 'he Iirst o f  these 
tasks is tet ident i fy  trends at die beginning o f  their 

"('~rrc..l',~.lding :itltll,lr. Tel.: +44 141 3374035: I '~il: +-44 141 
337442O. 

develt~pnlcnt ft)r the I~tirl)oSc o f  trading in tile 
apl~ropriatc direct ion. The second  t;i~,k involves 

r¢¢t ignixing when the price series ix indic: i t iv¢ o f  a 
trend revers;tl al ld d is t inguishing this situ;.ilion frol l l  

inM;lllCCS v+hen +.lrlp~irollt ¢oillri+idietory nlovcillCill~, 
tn;.ly (.till)' reflect noise. Despite the practical signili-  
c' ,mcc of j udgemen t  in this area, academic  research 
has tended to be quant i ta t ively  based, focusing lln 
the advantages  of  one statistical lorccast i l lg method 
relative tit another.  Consequent ly .  very little is 
known about the quali ty of  protessi~mal currency 
l t l recast ing judgel l lent  and how it is affected by 
relevant  character is t ics  such as the t) pc of  trend, the 
level o f  noise and the length o f  the I'oreeast horizon. 
This paper reports ;.ill exphtrato O' invest igat ion o f  
these issues wi th in  a probabi l i ty  l'orccclsting frame- 
,work. 

(ll~,u-207()/U7/'% 17.0<) ," 1907 I-l,,e~ier ,",;cience B.V. All rlght~ re,,er~ed 
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Our focus on probabilistic forecasts stems from 
their advantages over point forecasts in presenting 
quantitative descriptions of forecaster's uncertainty. 
hence, enabling their users to make more informed 
decisions (Murphy and Winkler. 1974. 1992), Com- 
parative advantages of  using judgemental probability 
forecasts have been emphasised in a variety of 
decision-making contexts (Wright et al., 1996), 
including financial domains. In a study carried out by 
Kabus 11976). seven top banking executives pre- 
dicted the value of interest rates 3 months into the 
future and attached probability assessments to their 
predictitms. These experts performed very well at 
predicting actual values, and the correct direction of 
movement was predicted in all cases. In contrast. 
nnich of the earlier work examining probabilistic 
forecasting of stock prices has reported poor restllts. 
For instance, Stacl yon tlolslein (1972) conlpared 
Mock price prc'diclions of live subjecl groups - stock 
market expellS, baiikers, univcrsily business leachcrs, 
btisilles~, sludenls anti slalislicians. I Iis stibjects' 
prctliclioils were a'~lonishhlgly poor: only ] out of 72 
stilticcis pcrfllrnied bclter Ihan a 'uniforin folC¢;.ish.'r" 
(i.e. a forccaslcr who +issigns etlual prtlt+abililics Ill 
;ill possible oct-tlrrences), i;tlrlhernitire, the relalion- 
ship belweeu level of CXllcrtisc and accuracy was 
;ihnosl the opposile ill" what one wiluld expccl. The 
sl,ilisiici,iiis llerfornlcd heM, I'olhlwed by Ihc sltlck 
market experts, sitldcnls, leachers, anti lilially ball- 
kers. "l'h~is "inverted experlise" effect has also been 
illustrated in two reccnl Mock niafkcl sludics. Yalcs 
i.'l al. (1991), iii a sludy concerning blllh prices and 
earnings, found Illal the probabilistic forecasts of 
"novices" (i.e. undergraduate business adininislralion 
Mutlellls) were illllre accurate than thai of "semi- 
experts" ( i .e. graduate business students). (i}nk;.lI and 
Muradoglu (1994) analysed stock price forecasts, 
and found (h;,it students wht) had previously made 
stock investment decisions (i.e. senli-cxperts) per- 
I'ormed worse than students witti rio active trading 
experience, However. both studies used students as 
"semi-experts" in concluding the effecls of expertise. 
Also. Slael yon llolstein ( 1972); Yales el al. ( 1991 ), 
and ()nkal and Muradoglu (1994) have all employed 
multiple-interval task structures (where the forecaster 
is asked it) report his/her predictions by :lssigning 
probabilities to a given numl'~er of intervals) as 

opposed to dichotomous task structures (where the 
forecaster predicts which of the two possible out- 
comes will occur and then assigns a probability for 
the chosen outcome's occurrence). It is shown that 
the choice of task structure can have important 
implications for reporting and evaluating probability 
judgements (Rents and Yates. 1987). Thus, the 
exclusive use of multiple-interval task format may be 
viewed as another important factor that should be 
considered in interpreting previous findings, 

Focusing on the potential limitations of past 
research. Muradoglu and (~nkal (1994) and C)nkal 
and Muradoglu (1996) have investigated probabilis- 
tic forecasting performance of professional portfolio 
managers (i.e. experts) and other banking profession- 
als participating in a portfolio malmgement workshop 
(i.e. semi-experts). Results suggested that forecasting 
horizon and task format were signilicant determi- 
nailts ()1" forecasting perfornlancc. As governed by 
these two factors. (lie ecological validity of the 
forecasting task (i.e. its agreemen! with experts" 
llatural environments) was f()und tt) be of critical 
importance in explaining experts" I~erformance. This 
coilchlsion supports Iltllgcr and Wright (1994) con- 
ienlion thai +ctlhlgical wilidiiy and learnabilily iif 
tasks provide the critical variables lot understandiug 
Ih+ conlradiclory Iindhigs ill" expertise research. 
Acctirdingly. the alleged inverse-expertise effect t)l" 
earlier sludies was not found when pcrl'ormanccs of 
prt)l'cssional portl'olit) inanagers and other banking 
i~rtll'cssionals were analysed (()nk;il and Muradtighl, 
1996). This research accentuated the need for furlher 
investigation Itl delineaie the different dimensions t)f 
forecasting accuracy Ihal can be expected tit wlrions 
levels of expertise. One objective of the present 
study was to examine this isstle within a currency 
forecasting context, particularly in relation to inl- 
portant price series characteristics such as the types 
of trend and levels of noise. [n order to proceed 
within this l'ran~ework, we next review the literature 
specilically concerned with lisle series ltlrecasiing. 

Many recent studies have focused tin "abstract' 
time series forecasting tasks, i.e. forecasting under 
conditions where no infornlatitm on the nature of the 
series is provided to subjects (Goodwin and Wright, 
1991; Webby and O'Connor, 1996). Although the 
abstract design is highly representative ill + the charlist 
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forecasting approach outlined initially) this is not the 
case in other decision making domains where con- 
textual information is utilised in addition to time 
series information in the forecasting process. How- 
ever. even in the latter cases, the design is still valid. 
As O'Connor and Lawrence (1989) have pointed 
out, the quality of time series extrapolative judge- 
ment cannot be directly examined unless other data 
(i.e. environmental cues) are eliminated. If environ- 
mental cues are not controlled, the subject is able to 
retrieve relevant information from memory and this 
is likely to result in judgement based on both time 
series and non-time series information. As such, little 
can be said about the possible causes of  either good 
or bad performance: it is impossible to determine 
whether poor judgement, for instance, is the result of 
salient non-time series information (Tversky and 
Kahneman, 1973) or factors specitic to the series 
(e.g. Bolgcr and tlarvcy. 1993). 

Abstract forecasting tasks have so far enabled 
various important issues to be addressed. Of par- 
ticuhtr relevance t~ the present investigation arc 
sttatlics which have cx,mfincd subjects" ability to 
e x t r a p o l a t e  frt~l|l t r e n d e d  ant i  r a n d o l n  series. A 
pervasive tinding that has emerged from previous 
research ix the tendency to undcr-cstin~:lte the 
strength of the trend (Anth'easscn, 198~; I:gglcton, 
1982: I,awrcncc auld Makritl;tkis, 1989). This undere- 
stimation bias has bccn Ikmnd to be particularly 
strtmg when subjects extrapolate from tletcrnfinistic 
exptmential functions (Wagcnaar anti Sagaria, 1975; 
Wagcnaar and Timmcrs, 1978, 1979). 

The ability to recognise randomness or to detect a 
trend from noisy data are further issues that are of 
paramount importance to a currency analyst. Strong 
negative statements have been made in the psycho- 
logical literature about the human concept of ran- 
domness, t lowevcr, this view is arguably unjustilied. 
For example, in a critique of this literature, Ayton et 

J('h:irtints tit) not u~.e contextual information due to tile I',clief 
that all indicators of change ( i . e .  economic, p~flitical, pnychoh~gi- 
cal or otherwise) are rellccted in tile pattern of the price series 

itself and. therefore, a nludy cJl" price action is all that is tlcetled to 
f~recast Iuttnre price rno',emenls (Murphy. It)SO). The charti~,t is 
;aware [IIHI Ihere ;arc C~ltlSeS ltlr ri~.es ~lnd falls ill currency r~.ttc~.. 
|lt;wevcr. he ~r slle simply th~:~,n't think th;it llae fi~rccasling task 
require', ;t knowledge of thcne c;ttn~,es. 

al. (1989) have shown that many of the randomness 
tasks presented to subjects are logically and meth- 
odologically problematic. Wagenaar (1972) claims 
that studies have shown people to be poor at 
recognising randomness, but fails to cite any exam- 
pies. In fact. very few studies have focused on 
recognition, and those that did exhibited good per- 
formance (e.g. Baddeley. 1966; Cook. 1967). Further 
support that there is a performance difference be- 
tween recognition and production tasks comes from a 
time series study carried out by Harvey (1988). In 
this study, individuals were able to acquire internal 
representations of the process used to generate data 
points, but did not use these representations in a 
forecasting task, 

Other studies have shown that people are able to 
detect a known trend from noisy data. For example, 
Mostcller et al. ( 1981 ) and Lawrence and Makridakis 
(1989) found that the level of noise did not affect the 
ability to identify a trend, tlowcvcr, this was not the 
case in a study by Andrcassen and Kraus (1990) 
which found that sul~jccts tended to identify a trend 
more often when the signal was strong relative to the 
noise level. 

Studies of extrapolating, rather than detecting. 
trends from noisy data hdve also produced contratlic- 
tory lindings. Much of this research has compared 
htnnan jt,dgement to statistical int~dels. Soul|c stutlics 
have found htinlan judgement to bc less accurate 
than quantit,ttive methods. For instance. Adam and 
Ebcrt (I 976) conducted a comparison study to assess 
the impact of pattern complexity (comprising trend, 
trend with low ,rod high seasonally) and the degree 
of noise and found these factors tt~ have a signilicant 
detrimental effect on performance. I lowcver, it has 
been asserted that when the underlying signal of a 
series is unstable, human judgement can outperfornt, 
or at least rival, statistical models. For instance, 
Lawrence (1983)compared  judgement with statisti- 
cal forecasts obtained via exponential smoothing and 
Box-Jenkins techniques on a series of  US airline 
passenger data and found little difference in accura- 
cy. Similarly. Sanders and Ritzman (1992) found 
good judgentcnt,d perform,race relative to statistical 
models with higher variability series, l lowevcr,  it 
appears that people perform poorly relative to 
statistical models when extrapolating more complex 
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stable signals from noisy data. For instance, for a 
high noise step function. Sanders (1992) found 
human judgement to perform much worse than a 
statistical method. In a similar vein. Remus et al. 
(1995) documented the forecasters" overreaction to 
immediate past information, implicating the prob- 
lems that may be confronted in assessing random- 
hess. 

A number of studies have focused on the effect of  
length of the forecast horizon on judgemental accura- 
cy. There is evidence relating to both novices and 
experts that an inverse relationship exists between 
accuracy and the length of the forecast horizon. 
Lawrence and O 'Connor  (1992). with non-ex- 
perienced st, bjccts, and Bast ct al. 11976). with 
professional security analysts, found accuracy to bc 
greater in the shorter horizons. A reason fl~r this may 
bc fimnd in the Bolger and ilarvey (1993) stt,dy. 
They suggested that subjects tended to make report- 
lions of  previous lbrccasts as the horizon length 
increases (a I'orm of anchoring and adjt, stmcnt 
het, ristic with adjustn~cnt set its zcrt;). With the 
['~rcsence of  it trend, this heuristic would rcsuh in ~, 
decrease in accur:,cy as the horizoll in lengthened. 
I lowevcr, in one of  the few sit,dies relating tl~ 
currency f~wccasting, wc (Wilkie and Pollock. 1994) 
found that prol'cssitm;,I I'~r¢caslcrs f~crl'ormed worse 
in the short term. In this study, the profcssi,mals 
were compared to mathcnlaticians (with ut~ ex- 
perience, of  currencies) and interesting ht~riz~;n ef- 
fects emerged although overall i~crl'ormance was 
similar. Overall. I11¢ study suggested tllilt prol'cssion- 
als and non-professionals arc likely to be inlluenced 
tlifferently by specilic characteristics of the forec:tst- 
ing task. 

In view of  the literature cited above, this study is 
designed to explore time series extrapolative jt,dge- 
ment in a currency forecasting context. "Fhc goal is to 
investigate the potential effects of  trend, ntlise, and 
forecast horizon on judgcnlcntal probability forecasts 
based on abstract time series. The t, sc of  abstr.ict 
series aids our attempts to discern the comparative 
forecasting performance of  experts :and nou-exf~e~ls 
operating under identical historical inl'ornwtion. Ac- 
cordingly. Section 2 presents the simt, lated data used 
in this study, and the methodology is given in 
Section 3. Section 4 provides the results, while 

Section 5 presents conclusions and directions for 
further research. 

2. Characteristics of  exchange rate series and 
the simulation of  the data 

This section discusses the nature of exchange rate 
behaviour and the method by which the data used in 
the present study were obtained to exhibit the 
relevant characteristics. The principle feature of 
actual values of  currency series is that they are not 
stationary: the variance and covariance depend on 
time even when logarithmic values are used. In 
partict*lar, the variance tends to increase over time 
and lirst order serial correlation with a value close to 
t*nity is likely to be present. Series of this Ibrm can. 
however, be made stationary by some simple trans- 
I~rmaticms. Taking tarsi differences of the actual 
h+garithmic values simultaneously takes out the 
effect of  a linear trend in the series (i.e. giving 
constant drift in the difference data) and the auto- 
correlation {i.e. a lirst order serial corrclatitm c~elli- 
cicnl chase to; unity in the actual data has a value 
close to zero in the difference data). In olher words. 
currency series tend to follow what Nelson anti 
I'losscr (1982) descrihe its a difference slationary 
process (i.e. non-stationary arising fr~;m the accUmtl- 
l:,tion over time of slati~mary and inevitable first 
differences) rather than a trend station.try ploCCSS 
(i.e. stati,m;,ry fluctuations a r o u n d  it deterministic 
trend). In this difference stationary framework, the 
trend term in the actual series is associated wilh the 
drift term in the first differences. A connt,mt drift 
gives rise to a linear trend and at variable drift gives 
rise 1o a non-linear trend. Zero drift implies that 
there is no trend. 

The lsflicient Markets Ilypothesis (EMtJ) is often 
referred t~ its the random walk view and is supported 
by a nt,mbcr of  studies (e.g. Crumby and ()bstfcld. 
1984; Boothe and Glassman. 1987). "l'his view 
implies that currency nlovements I'~llow an identical 
and independent distriht*tion over time. This random 
walk process (for the actual h~garithmic values) 
would tend to meander away from the starting value 
but exhibit no particular trend in doing so and is. 
therefore, dependent on its initial vah,c and the 
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cumulative effect c)f random error mo~.ements from 
the initial period. Mo,.ements in this type of  series 
are purely random with zero drift. As this type of 
~eries w m i d e s  a basic starting point in examining 
currencies, it forms the basis of the first set of 
simulated series (i.e. Model I) which is statistically 
delined below. The error term can be modelled as a 
normally distributed random variable. 

The trend in the actual (logarithmic) series (drift in 
the Iogarithnfic difference series) is the major charac- 
teriqic in currency series that is of use to the 
forecaster when extrapt+lating from past and present 
,,alues of tile data. Both chartist and fundanlental 
currency forecasting techniques ;,ire essentially de- 
signed ttl identify lrends in linancial scries. Tile time 
series path of the spot exchange rate (as opposed it) 
futures or forward exchange rates) often exhibits a 
Ina or trend (e.g. an exainination of the Swiss ] : r . /  
I ' K  [ c l e a r [ )  ,diows it relative depreciating { over the 
la,,l ] ( )  )+t_,.'ii-x). ,",;uctl a trend arises f i t i t t l  f i indalt ienl l i ls 
in the Ioreign exch,utge inlirkel, the Most intporlanl 
Lfl which ix I 'urchasing I 'ower I 'ar i iy (1>1'1'). I>1>1 > 
,,talcs Ihiil exchiiltge ralex adjust to offset d i l fcrcnl ia ls 
in relative price clialigc~ lice. in l la l ion rales) between 
t'tULltll'iC', +~hic'h cam persist o~,.t.,r the loll,2 leril i. 
Results f l i l l t i  ( ) l ' l icel  (lt),~2) and l l t i lh lck {It)~t);.i), 
I It)<~i)b), (lgtJl)b} stipptlrt the hi i ig run valhl i ty  t l l  
I ' l ' l t  I f  it ix ;.issutiled thai rei,tl ixe price l i tovenlenls 
are roughly ctulsl:iltl o,,.c'r Ihne, the I'1'1' v iew would 
XtLpptlrt the presence e l  ,ippi+oxinizileiy linear trends 
Ill ct i r iel lcy series: coli,,lanl drift. As couii lr ies have 
d i f lc r ing i:iles i l l  + interest (high inlhttitut t.'titittlliC's 
tend to have higher rates t l f  interest than low 
utl lal ion countries), Ion 7 ternl speculative [.,aiils on 
rite nit lveinel l l  i l l  tit+ currency would tend ttl be 
oflsei by interest r:it¢ differentials such lhat the 
tru'nds Call persist over l isle. An apprtlxiut+ileiy l inear 
trend in a Iogari ihinic curienc) series is consistent 
~i t t l  this ~ iew, hcnu'e ii is appropriate to consider 
drift tin IIt in-zeltl ;.ind ctl i lslanl over time. This 
appioiil.'h provides the second ~lOtLp of  sinlt l l ; i led 
~erie~ (i.e. Model 2). This IllLIdel can hiive positive 
drift alld negalixe drift :.iltd ix coLIsislcnt with tile 
I -M I I  i f  interest r;lle differenli ; i ls fu l ly  explain the 
drift. 

Whi le major Irends can persist over the long let i l l .  
minor liend~, Call occur dtte to tile l ime it lakes 

inf l )rmation to he incorporated into exchange rates. 
Short term fundamentals can arise from asset market 
factors. These include: oil shocks arising from events 
such as the Iraqi invasion of Kuwait; political unrest 
in the former USSR: conflicts in the former Yugos- 
lavia: and other political and economic changes or 
less spectacular events such as the resignation of a 
prime minister or an announcement of good trade 
Iigures. If infomlation from such events is incorpo- 
rated into tile drift term over time. consecutive 
values will be inlluenced ill the same direction 
causing the drift to show positive autocorrelation. 
That is. there would be an initial effect and sub- 
sequent effects that decrease over time. which ix 
consistent with a short term variable drift pattern. 
This approach considers that over several periods the 
exchange rate moves in tile sltme direction (sub cot 
to random variation and other fi l ings being equitl) 
tmvards a mean (constant d,ift rellccting the major 
trend). If this mean ix ]ero the model wouM suggest 
that the exchange rate is influenced hy a series of 

events which fornt (by assumption) an irrcguhtr 

pattern. This p;ttlern can be modelled by using a 

t+andotn error ternl that folhv, vs a hernial dislrihution. 

I [elite, the nlotlCl COIltiliIls [tA,'tl ci-It'Pr tcI'InS, OIte th;.It 

rellc,,:ts pure rantlom variathm (as m the case of the 

random v,':dk model) and another v, hich reflects the 

ellect of (randotn) events on drift, the effect of which 

decreases over time. This type of series imwides the 

lhirtl group of smmlated series - variable drift with ~, 

/ero meau (i.e. Model 3). 

The ~.isstiitlptiolt nladc iih.<.)ve (if a /crti illean Call 

be relaxed to ;dlm>,' positive or negative drift m tile 

hmger term resulting in a price trend mo(.lel which 

allows In;.lior antl rain(n trends hl the currency series. 
It is this type ()1 series that provides tile Ikmrth type 
el simulated series (i.e. Model 4) - vltriahle drift 

',sith a l')ositi'.e or ncgati,.c mean. This inodcl ex- 
hints hoth illajor and itlillOr trends around rantl(ml 
IhLctuations ;Llld c:in he justilied in the siunc sv;.iy as 
the abtwe models+ In this case, however, both 
ctltlst;ant ;.Lilt] stochastic drift occur in tile same 

model. 

"l'hc>,e ['our models, therefore, take intu accourlt 
I+oth hmg and short term (inil.ior lind nl inoi)  trends il l 
Ihe exchange rate. Model I COill,iinx no long term or 
sllt+i-t tel in inl|uenccs, Model 2 considers (+ill), long 
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term influences. Model 3 considers only short term 
influences, and Model 4 considers both long term 
and short term influences. These four models can be 
simulated by defining the drift term as a linear 
and/or stochastic variable that follows a first order 
autoregressive (ARt process. Pollock (1990a) used 
various models of  this form in the context of  Italian 
Lira/UK £ exchange rate forecasting. In the exami- 
nation of  exchange rate behaviour, an AR(I)  model 
for the drift term is an appropriate specification 
(Taylor, 1980, 1986). Taylor (1989) illustrates a 
method for constructing daily financial data. By 
choosing appropriate parameters, Taylor 's  procedure 
can be applied to monthly exchange rate data. The 
design of the simulated series (described above) was 
based on this price trend model with parameters 
chosen to reflect a random walk with: (it zcm drift 
Model I ; (it) constant drift - M o d c l  2; ( i i i) stochas- 
tic drift - Model 3 and; (iv) constant and stochastic 
drift - Modcl 4. 

In modelling the noise ct>nlponcnt a natural choice 
is the nornml distribution. Wc (l'¢fllock and Wilkic, 
1996; Pt)llock et al., 1996) have I'¢u, nd for weekly 
forecasts of t he  U S  $/UK £ ;.tntl J a l ' ~ a n c s c Y e n / ( ~ c r +  

man I)M that the asstm|ptit)n of  norntally distributed 
first differences was appropriate if allow:race w:ts 
nt:ltle for tinte varying parameters. The case for the 
assumption of  norntality is even strtmgcr in the case 
of  the h)nger horizon, monthly data." 

In order to ex~tmine the imlmCt of noise on the 
judgcntental identilic:ttion of  the tn~tj(,r anti mirlor 

trends, high and low variance specifications for the 
four models delincd abovc were inchtdcd. No at- 
tempt was made to incorporate changing variances 
within particular series: the idcntilication of  changing 
variances within a series is a difficttlt task without 
statistical analysis. Each series, therefore, w:ts given 
a constant variance. 

The simulated cttrrency series were obtained by 
using a modification of  the Price Trend model of 
Taylor (1989). This model is set out in Eq. ( I ) and 
(2): 

: l l le Central Limit "l'heorenl ~,ugge~.ts that. :is exch;nlge rate 
chzlllge:,,; between two points in time are e~xentially the ~,uln (11" 

changes over ~horter horizeuis, the dixtribnti.n ~ill tend to 
normality, even if the underlying distribution is not n.rnial. 
provided this underlying distribution is ~,l:lhle. 

..%y, = T, + e, ( I )  

(7",-#) =p(T,_, - # ) +  e, (2) 

where: A is a first difference operator and y, is the 
logarithm of  the exchange rate such that Ay, = y , -  
y,_ j: 7', is the drift term; p is the autocorrelation 
coefficient: # is the mean of  ~y,; e, and u, are 
independent and identically distributed normal ran- 
dom variables with expected values of  zero and 
variances of  o':,~ and (r z respectively; A is defined as 
the signal to noise ratio ¢r~/o'"; subscripts t and t -  I 
denote time: variances are V(T, )=o '~ . / ( I -p: )  and 
V(Ay,)=¢r"a,=~r~.+~r~./(I-p"): and the initial val- 
ues for y and T are set at y , = 0  and T .= /z .  

To set the parameters (p. ~r,. .... A. /z), the actual 
scri~zs of  monthly cross rates between live major 
cnrrencics (UK Pound. US Dollar. Japanese Yen. 
German DM arid Swiss Franc) wcrc obtaincd for the 
period December 1973 to [)ccembcr 1994. The 
tigtnex for each series were indexed to a value of  
unity fi)r Decemher 1977,. I.ogarithntic values to base 
ten were then ol)laincd so thai the vahte for I)c- 
comber 19q3 became zero. The tl,ttu wcrc then first 
dilTercncc giving a series for the period January 1974 
to I)eccntbcr 1994. The ti tans,  slantl:trd deviations 
and lit'st order autocorrehttion cocl'licients were 
obtained for each series (see Table I fur cstimatcs). 
These estinmtcs provided the guidelines on which the 
parameters of  the models were relined. 

Using the results it) Table I as a guide and taking 
into account the need ft)r appropriate values that 
al low sonic degree . f  jttdgemental recognition in the 
series, the parameters chosen for the simulated series 
arc delined as in Table 2. 

To compare an individual's judgcmental predic- 
tions with the optinml, it was necessary to obtain 
theoretical expected point values for the I - 6  month 
ahead forcc,tsts (i.e. for months 61-66).  These arc 
set out in Appendix A. 

3. Methodoh)gy  

I)arficipam.~ of thN study catuc frem~ two gruups. 
One group consisted of ten members of the t-LIR() 
Working Group on Financial Modelling. This "ex- 
pert" group was comprised of  ac:tdemics and prac- 
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Table I 
Estimated parameters for the price trend model 

515 

Major cross exchange rates - first differences 
Rate 

January 1974 to December 1994 

Mean S.D. Autocorrelation coeff. 

US Dollar/UK Pound 
Japan Yen/UK Pound 
German DM/UK Pound 
Swiss Franc/UK Pound 
Japanese Yen/US Dollar 
German DM/UK Dollar 
Swiss Franc/UK Dollar 
Japanese Yen/German DM 
Swiss Franc/German DM 
Japanese Yen/Swiss Franc 

- 0.0007 0.0147 0.102 
-0.0025 0.0143 0.109 
- 0.0016 0.0118 0.107 
-0.0023 0.0130 0,121 
- 0.0018 0.0145 0.025 
-0.0010 0.0148 -0.002 
-0.0016 0.0164 0.0-12 
- 0.O~X)8 0.0131 0.055 
- O.(XX)6 0 . 0 0 7 0  O, I b9 

- 0 , 0 0 0 2  0 . 0 1 3 8  0 , 0 3 6  

Tahle ," 
Parameter set for the simulated series 

Nh~lcl Paranle lc rs  

p ~ r ,  ,. A /z 

Z e r o  dri#  - M,,d,'l I 

I,t)W IIOI~C 

Iligl~ m~isc 

( ' ,ns tan t  dr(# - Model  J 

I.IIW lllli~.e, positive ClHl~.[illl[ drift 
[,(IW IIOiNC. ncgalivc con'~liln[ tlrifl 
I ligh m*isc, po,qtive conslant drift 
I ligh IltbisC. ncg;itive constant drift 

Stochastic drl]t - Model 3 

[j, iw lloixe 
IIigh noise 

('on~tant ~ind stoch.stic drift - M.del 4 

l.ow muse, ISis(live conslalll drift 
Low mfi~,e, negative constant drift 
Iligh noise, ponitive constant drift 
tligh mfi~e, negative constant drift 

n ().ill 0 0 

0 0 .02  0 0 

n n.( i  I 0 11,1x12533 

(i 0.1] I (I - (1,(x12533 

11 0.112 0 n. ix12533 

0 0112 11 - 11.(X)2533 

0.5 0.(11 11.25 0 

11,5 11.02 0.25 0 

ll.5 0.01 [I.25 0.002533 
0.5 11.01 0.25 - 0.(X12533 
11.5 I).112 11.25 0.1~)2533 
0.5 0 .02  11.25 - 0.1X)2533 

Note: For Models 3 and 4 the values of p and A of 0.5 and 0.25 respectively arc consistent with a lirst order auttv,:orrelation c~el'licient of 
0.125. 

t i t i one r s  f r o m  d i f f e r e n t  E u r o p e a n  c o u n t r i e s .  All  o f  

t h e s e  i n d i v i d u a l s  had  c o n s i d e r a b l e  e x p e r t i s e  in l inan-  

cial  f o r e c a s t i n g  i n c l u d i n g  k n o w l e d g e  o f  the  na ture  o f  

c u r r e n c y  se r i e s  and  su f l i c i en t  u n d e r s t a n d i n g  o f  

j u d g e m c n t a l  p r o b a b i l i t y  f o r e c a s t i n g .  F i m d l y ,  t h e s e  

i n d i v i d u a l s  w e r e  p r o l i c i c n t  wi th  cha r t ( s t  t e c h n i q u e s .  

T h e  s e c o n d  g r o u p  c o n s i s t e d  o f  30 t h i r d - y e a r  

m a n a g e m e n t  s t u d e n t s  t ak ing  a I b r e c a s t i n g  c o u r s e  at 

B i lken t  U n i v e r s i t y ,  T u r k e y .  T h i s  ' n o v i c e '  g r o u p  w a s  

e x p o s e d  to j u d g e m e n t a l  p r o b a b i l i t y  f o r e c a s t i n g  v ia  

the i r  f o r e c a s t i n g  c o u r s e ,  and  h a d  l imi t ed  d o m a i n  
3 

k n o w l e d g e  v ia  a p r e v i o u s l y - t a k e n  I inance  cou r se .  

S i m u l a t e d  da ta  for  the  t i m e  p a t h s  o f  32 se r i e s  w e r e  

'S tudents  in the 'non-exper t "  g roup  were  ex i '~sed to random 

walk processes and FMll concepts at all elementary level. These 
subjects' comparatively limited domain knovdedge and minimal 
¢xl~rience induces their ¢lassitication as "novices'. On the other 
hand, professional qualilications of the members of the EURO 
Working Group on |:inancial M~vdelling substantiate their (dentil(- 
cation as the 'expert" group. 
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presented graphically to the subjects. The subjects 
were not told anything about the nature of  the data or 
that they were constructed, only that they reflected 
logarithmic values of  currency series. The series 
were presented for a 60 month period (months were 
numbered from ! to 60) and indexed with the initial 
value (for month 0) set at zero. 

The subjects were asked to study each series and 
make directional forecasts over six horizons (i.e. for 
months 61 to 66). They were also required to 
indicate how certain they were about each prediction 
by assigning a probability (between 50% and 10091 ). 
The subjects completed the task at their own pace 
and convenience. 

A comparison of  subjects" predictions with ex- 
pected probabilities were made using a range of 
probability accuracy measures which essentially 
involved the calculation of  the Mean Absolute 
Probability Score (MAPS) and the associated mea- 
sures of  the Mean Response {M(r)}  and liias (B). 
These essentially follow thc lines of tile covariancc 
decomposition approach..set out in Y:ltes (1982L 
(19gg). but with modifications to lake i,llo account 
the m:tgnitt,de of movements in the series (see 
Wilkic anti Pollock. 1996L These arc ot,llined below. 

()nee tire subjects" Iorccasts were obtained a 
weighted outcome intlcx (c,) for each forecast i was 
calct, latcd for each forecaster as dclined ill Eq. (3): 

c, =0 .5  + w, (3) 

To apply tile proposed I'ramework, it was necessary 
to calculate the v.'eight (w,) in the weighted outcome 
index (c,) for each forecast i. An deiined in Wilkie 
and Pollock (1996), tile qu.'mfity, 0.5, plus tile 
absolute value of  this weight (i.e. 0 .5+[w[ )  can be 
viewed as a probability that rellccts tile relative 
magnitude of  a nlovenlen[ ill the ctu'rency series ;.it 
period i. The sign of  ~,', reflects whether ttle I'or¢- 
caster in correct ( + )  or incorrect ( - ) .  Siqc¢ tile 
series used ill the present study were simulated, this 
weight was km~wn with certaiqty as the signal and 
error terms could be identilied. In lifts case, {0.5 + 
Iwl} was the theoretical probability of tile predicted 
change in the series at forecast i (i.e. ill tile appro- 
priate direction), 

The subjects' perfornmncc was compared with the 
hypothetical random walk li~recaster. The random 

walk forecaster assigns all probabilities an 0.5 with 
an arbitrary direction. An individual who views the 
currency market as efficient with exchange rate 
movements following a random pattern would make 
predictions in a similar way. The expected value of 
the weighted outcome index {i.e. M(c)=Y g / n }  for 
the random walk forecaster is 0.5. 

The IVlAPS. which is closely related to the Mean 
Absolute Error (MAE). was computed using tile 
modified outcome index. This is defined in Eq. (41: 

MAPS = ~, I r, - c , l / n  (4) 

where r, is the probability response for forecast i. 
The MAPS has an expected value for the random 
walk forecaster of  w [pl/'. 

The MAPS represents a form of linear loss 
function (tIle penalty attached to tIle error in propol'- 
tional to the size of  the error) ill contrast to the 
widely used Mean Probabil i ly Score (MPS) which 
lakes the forln Of ;.I quadratic loss Iunetion (tIre 
penally allachcd in I~roporfional Io Ihe square of Ihe 
error). II was consitlcred more approprialc to use 
MAPS in Ihis sIt,ely ;.Is it in l ikely thai the stlbjccls 
would have temled, inlui l ively, to view Ihe consc- 
qllellces of  lilt." error i,I ;.I linear way. II has bec,I 
pointed ()Ill by Keren (1991) thai th¢ loss fu,lctio,I 
t,ned in assessing protud'filistic forecasting perforln- 
:race should be :q~proxhnalcly ¢onsislu'nl wilh the 
framework in ~.~hich st,bjects make their predictions. 

To supf~lemcnl the interpretation of MAPS.  two 
olher aCCL, I';,cy IIleaSt,l'CS were calculaled. Thest." 
measul'cs were tIre Mean Response {M(r~} and Bias 
{ l l = M ( r ) - M ( c l } .  Bias measures tile degree of 
trader~overconfidence ill predictions. It is positive h| 
cases of o~.erconfidence and negative in cases of 
under co,llidence. ] ' l ie expected vah,¢ of B is zero 
for the random walk fo,ecastcr. 

The MAPS and associated nleasurcs, however. 
wJ.ry across the types of series with dif lorent charac- 
teristics and random vari:ltion with the result that 
interpreting a subject's perl'ornmnce between differ- 
ent situations becomes dif l icult, h was, therefore, 
appropriate to use a relative standard of  comparison. 
h! this sttldy, the MAPS I)iffcrence (MAPSI)) was 
used. which is defined as the difference between 
each subject's MAPS (and M(r) and B)  and the 
MAPS (and M(rl and B, respectively; obtained froln 
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applying a first order Autoregressi~e Model Order 
One {ARt l)} to the first differences of  the series. 
Each subject's performance was. therefore, measured 
relative to the model, which facilitated comparisons 
of experts and novices based on various series 
characteristics. While the MAPS can only take 
positive ,,alues with the best possible measure attain- 
able being zero, the MAPSD can take positive or 
negative values. A po,dtive value would indicate that 
the subject's pertbrmance was worse than that of the 
ARII )  model and it negative value would indicate 
that the subject's perlbrmance was better. To provide 
additional infornlation the M ( r )  Difference {M(rlD} 
and Bias Difference (BD) were also considered. The 
ARt I) model wits chosen because it hits been used ill 
a currency forecasting context (Pollock and Wilkie. 
1992) and because it can bc used to identify both the 
linear trclld (constant drift) and tile h)w level of 
autoct)rrelation (it IL'ature t)l stochastic drift). Due It) 
tile statistical prt)blculs a,~st)ciatcd with the idcntilica- 
lion altd .,,cl')ar;.tlion of tile two error let'lllS (/it and t,, ). 
v',uiablc i');iralltelcr tccltltitlUeX were not COllsitlered 
suilabh., for i~rt)vitling ;l more appr()priatc model. 

4. resu l t s  

A .'qpIit I'h)t (Mixed) ANC)VA was :.tpplicd It) tile 
dependent variable, MAPSI). with four independent 
factors: (1) l-xpertisc (expert/m)vice); (2) Ilori/on 
( I - 6  months); (3) Scric,, Type (I,  2, 3 and 4 derived 
frolrt Models I, 2. 3 ;.tnd 4 respectively, i.e. zero. 
c~)nstant, .,,tochastic, ;.tlld stochastic with ct)nst;.tnt 
drift): and (4) Nt)isc (h)w/high). Expertise wan ;.t 
bet,,vcen-sul)jects f, tctt)r and Ih)rizon, Series Type 
and Noise were within-subjects factors. As the 
~,ubjects ,,~ct'c cht)sell Irt)ln the Illelllbel's of the Euro 
Working (;l'()Ul~ ()n Financi,d Modelling (in the 
experts ca',e) and mamlgemcnt students ill Bilkent 
Univcrsit\ (in the ttt)~ice case) they were treated its 
fixed factors. In addition, as there were 10 eXl')erts 
;tnd 30 students, the AN()VA took the form t)l an 
unl')alanccd design. The four factor interaction terms 
,.,,ere excluded front the amdysis it) provide the error 
term. "I'o ct)ntplement the results and f)rovidc addi- 
tional information, the procedure wits also repeated 
with Mean Response l)iffcrcncc {M(r)l)} and Bias 
I)iffercnce (BIl l  its dependent variables. Accuracy 

components such as the Weighted Outcome Index. 
Slope and Scatter could not be included as the zero 
drift model gives the same constant values in all 
cases. The mean values for the MAPSD,  {M(r)D} and 
(BD)  for single factor effects and two way inter- 
action with series type are set out in Table 3 Table 4 
Table 5. Table 3 also gives respective values of the 
MAPSD for the random walk forecaster relative to 
the ARt I ) model. 

Important single factor effects were highlighted by 
the analysis for the MAPSD. There was a significant 
expertise effect {F( 1.585)=238.55, P<0,001} which 
reflected that experts clearly performed better than 
novices, although performance in both cases was 
poorer than the AR( I )  model (Table 3). This was 
probably due to tile experts giving a much lower 
mean response than tile AR(I )  model while the 
novices gave similar levels of response to the model 
bt, t exhibited a poorer directional probability per- 
Iormance ('Fable 4). tlence, the experts' bias scores 
were similar to the model's, whereas the novices 
proved to be quite overctmtident (Table 5), Exper- 
tise, therefore, did appear to improve pcrfornumce. 
There was also a signilicant horizon effect 
{1"( 5,585 ) := 16.15, / '-< 0.0()1 } which ilhiM rated that, 
with the exception of the one month horizon, relative 
I~erlornmnce over the model improved as the horizon 
lenglh increased (Table 3). The model, however, still 
perfornled belier thall the subjects ill all horizons and 

belier than the random walk forceasler. One explana- 
tion for this is that the subjects' mean response 
decreased relative to the model as the horizon 
increased, st) that I'or horizons of 2 or more nlonlhs. 
it %~as less than the AR(I )  model (Table 4). The 
result was that the clear overconlidence relative to 
the model di~f)l,lyed for the I-month horizon was 
signilicantly reduced to reveal slight under conli- 
dencc for the 0-mt)nth ht)riztm (Table 5}. The 
subjects, therefore. :q')pearcd less confident of a drift 
persisting into the future than the model. The type of 
series also had a major el'feet {1"(5,585) = 1416.90, 
I '  -:-" 0.001}. The subjects perlk)rmed similar to the 
random walk forecaster where the series contained a 
const,u~t drift element but their [')crlormance was 
worse than the AR(I )  mt)del (Table 3). The subjects 
perforrned similarly It) the AR(I )  model in the zero 
drift case, but this i')crfornlancc decreased with the 
presence t)f ,;tochastic and constant drift. Perfornl- 
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Table 3 
MAPS differences - subjects and random walk forecaster 

Series type/drift All Noise 

I 2 3 4 
Zero Constant Stochastic Stochastic 

and constant 

Low High 

E rpertise 

All 0.002 0.062 0.029 0.136 0.057 
Novice 0.014 0.066 0.039 0.139 0.064 
Expert - 0 . 0 3 2  0.051 0.001 0.127 0.037 

( -0 .083)  (0.062) ( -0 .027)  (0.135) (0.022) 

Horizon 
I month 0.048 0.064 0.043 O. 103 0.065 

(-0.046) (0,025) ~-0.019) (0.061 ) (0.005) 
2 month 0.028 0.060 0.037 O. 142 0.067 

( -0 .063)  (0.045) ( -0 .015)  (0,113) (0.020) 
3 month 0.008 0.003 0.036 O. 136 (I.06 l 

(-0.080) (0.059) (-0.019) CO. 135) (0.024) 
4 month - 0.013 0.057 0.024 O, 146 0.054 

(-0.092) (0.071 ) (-0.028) (0.154 ) (0.026) 

5 month -0 .025 0.(}62 0.021 O. 141 0.050 

( -O. 103) (0.082) (-11.037) (11.167) (0.027) 

6 month - 0.()32 ().()6~ 0.016 O. 148 O.(M9 
(-() .  I I 3) (0.092) (-() .045) ((). 179) (0.028) 

N,,ise 
l ,ow - 0,n38 0.{)3~ I).078 (1.144 0.1)56 

( -0 ,137)  (().0201 (1).()22) ((). 144) (0.0121 
I l igh ().(142 0.084 - (l.Ol 9 11.128 0.059 

(-(}.n29) (0.11}4) (-0.077) (0.120) ((1.031 ) 

E.tl,ertise I n,,ise 
Novice I low - 0.024 0.046 0.085 11.147 0.063 

l ' xper l / low - 0,080 0.021 0,058 0.138 0.034 
( -0 .137)  (0.02n) i0.()22) (().144) (0.012) 

Novice / high 0.n51 I).(185 - O.(X)7 O. 132 0.065 

lixpert I high 0.016 11.1)82 - 0.056 O. l 16 0.()39 

( -0 .029)  (0.105 ) ( -0.()77 ) (0.126) ((1.1)31 ) 

0.056 0.059 
0.063 0.065 
0.034 0.039 

(0.012) (0.031 ) 

0.078 0.052 
(0.019) (-0.009) 
0.071 0.062 

(0.021) (0.018) 
0.059 0.063 

(0.016) (0.032) 
0.049 O.058 

(0.010) (0.1142) 
[).041 f).058 

(0.005) 10.049) 
0.039 0.060 

(O.(X) I ) (0.056) 

Notes: 
Meam,- single factor el'(cots and two way inter:tclions with series type and noise relative to AR( I ) model {random walk relative to AR( I 
mtu.lel re,,uhs in brackets}. 
The lower the value the better the perlormance relative to the ARc 1 ) model. 
Ik~sitive values indicate pcrlbrmance worse than the AR( I ) model a,ld negative values indicate performance better than the ARc 1 ) model. 

a n t e  was worse  than the mode l  in the s tochas t ic  drift  

case.  m u c h  worse  in the cons t an t  drif t  case,  and  

wors t  o f  all in the cons t an t  wi th  s tochas t i c  drift  case.  

It would  a p p e a r  that  the mode l  was  m u c h  be t te r  in 

p ick ing  up the cons t an t  drif t ,  and  to a lesser  extent ,  

the s tochas t i c  drift ,  than  the subjects .  T he  m o d e l ' s  

abi l i ty  to ident i fy  the zero  drif t  s i tua t ion  wits s imi la r  

to the subjec t s  as a whole .  T he  m e a n  response  

indica tes  that  the subjec ts  par t icu lar ly  unde re s t ima ted  

the cons t an t  drift  in the series,  g iv ing  lower  re- 

sponses  in these  cases  (Tab le  4).  Subjec ts ,  however ,  

were  still o v e r c o n l i d e n t  re la t ive  to the mode l  reflect- 

ing that  they not  on ly  unde re s t ima ted  the drift  but 

were  poor  at iden t i fy ing  it ( T a b l e  5). Hence ,  the 

model  appeared ,  as would  be  expec ted ,  to pe r fo rm 

m u c h  be t te r  than the sub jec t s  par t icuht r ly  where  



M.E. Wilkie-Thomson et al. 

Table 4 

Mean re s pon~  difference - subjects 
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S e r i e s  t y p e / d r i f t  A l l  Noise 

I 2 3 4 

Z e r o  Constant Stochastic Stochastic 

and constant 

L o ~ '  High 

E.tpertise 
A l l  0 . 0 0 2  - 0 , 0 7 3  0 . 0 1 4  - 0 . 0 5 8  0 . 0 2 9  

N o v i c e  0 . 0 1 3  - 0 . 0 6 4  0 , 0 2 8  - 0 . 0 4 8  - 0 . 0 1 8  

Expert - 0 . 0 3 2  - 0 . 1 0 1  - 0 , 0 2 8  - 0 . 0 8 7  - 0 . 0 6 2  

Horizon 
I m o n t h  0 . 0 4 8  0 . 0 1 6  0 . 0 3 4  0 . 0 4 1  0 . 0 3 5  

2 m o n t h  0 . 0 2 6  - 0 . 0 3 4  0 . 0 2 2  - 0 . 0 3 7  - 0 , 0 0 6  

3 m o n t h  0 . 0 0 8  - 0 . 0 7 1  0 . 0 1 7  - 0 . 0 6 8  - @ 0 2 9  

4 m o n t h  - 0 . 0 1 3  - 0 . 0 9 7  0 . 0 0 9  - 0 . 0 8 3  - 0 . 0 4 6  

5 m o n t h  - 0 . 0 2 5  - 0 .  I I q 0 . 0 0 4  - 0 . 0 9 6  - 0 . 0 5 6  

6 m o n t h  - 0 . 0 3 2  - 0 . 1 3 5  0 . 0 0 0  - 0 . 1 0 6  - 0 . 0 6 8  

L o w  - 0 , 0 3 ~  - 0.(R'~7 0 . 0 3 3  - 0 . 0 5 1  - 0 . 0 3  I 

H i g h  0 . 0 4 2  - 0 . 0 8 0  - O.(X).4 - O.(X,5 - 0 . 0 2 7  

Ewerti.~,.In,n~-e 
N o v i c e  / l o w  - 11.1125 -- 0 . 0 5 8  0 . 0 4 7  -- 0 . 0 3 8  - 11.019 

I ' x p e r t  / h , w  - O . 0 7 q  - ().()") 3 - 0.(X18 - 0 . 0 9 2  - ( I . 068  

N,. ,v ice / h i g h  0 .051  - 11.11711 0 . 0 1 0  - 0 . 0 5 q  - 11.O 17 

I ' x l ~ r t  / h i g h  (1.01 t~ - 0.  I Oq - 0 . 0 4 8  - 0 . 0 8 3  - 0 . 0 5 6  

- 0 . 0 3 1  - 0 . 0 2 7  

- 0 . 0 1 9  - 0 . 0 1 7  

- 0 . 0 6 8  - 0 . 0 5 6  

0 . 0 1 5  0 . 0 5 5  

- 0 . 0 0 7  - 0 . 0 0 5  

- 0 . 0 2 7  - 0 . 0 3 0  

- 0 . 0 4 3  - 0 . 0 4 7  

- 0 . 0 5 8  - 0 . 0 6 0  

- 0 . 0 6 6  - 0 . 0 7 1  

~o l t . 'M  

M e a n s  .- ~ , i n g [ ¢  faclt~r effects ;.1111.1 t w o  w~ly i l l t e r : lc t l ( l l lS  w i t h  series type ~liid nt)ist2 

I'osilivc values indic~lte a higher mean resDmsc t h a n  I|1e A R (  I ) ul~s, l c l  a n d  ncg:ltive 

m o d e l .  

relative to  A R ( I )  m o d e l .  

v u l u e s  i n d i c a t e  ~ l o w e r  m e a n  r e s p o n s e  Ih~n t h e  A R (  I ) 

constant drift was present in the series. Of tile four 
factors, noise appeared the least intportant, giving 
non-signilicant results {F(I,5851=2.72,  ns}. 

There were also intportant two-way interactions 
for the MAPSD. The interaction between expertise 
and series type was signilicant {F(3,585)=22.80,  
P<0.001}  with the main difference occurring be- 
tween the perlbrmance of experts and novices on the 
zero and stochastic drift cases (Table 3). For series 
types displaying a constant drift element, experts 
performed better than the random walk forecaster 
while the novices performed worse, it was, of 
course, impossible for the subjects to perform better 
than the random walk forecaster on the zero drift 
type and. as the expected directional movement and 
probabilities for the stochastic drift type approached 
those of the random walk series when the forecast 
horizon was increased (i.e. the expected effect of the 

stochastic drift shock diminished over time), it was 
not surprising that subjects would perform worse 
than the random walk forecaster on this series type 
also. Experts performed better than the AR( I ) model 
while the novices performed considerably worse. On 
all series types experts gave much lower probability 
responses than the novices and the AR(I)  model 
(Table 4). For the zero drift series type, in particular, 
the experts showed under conlidence relative to the 
model while novices showed overconfidence (Table 
5). These results suggest that experts, who are 
familiar with the efficient market hypothesis and 
understand that currencies can often move in an 
apparently random way, are more ready to accept 
situations where they could not predict the direction 
of change in the series than novices. The interaction 
between horizon and series type was also signilicant 
{F(15,5851=27.22. P<0 .001}  with the best per- 
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Table 5 
Bias difference - subjects 

Series type/dril,'t All Noise 

I 2 3 4 
Zero Constant Stocha~,tic Stochastic 

and constant 

Low High 

Expertise 

All 0.002 0.021 0.025 @083 0.033 
Novice 1,1.014 0.033 0.038 0.097 0.045 
Expert - 0 . 0 3 2  - 0 . 0 1 4  - 0 . 0 1 3  0 . 0 4 0  - 0.005 

Horizon 

I month 0.048 0.l,)80 0.049 0. I 16 0.07-1. 
2 month 0.020 0.044 0.035 0.126 0.058 
3 month 0.l,X)8 0.032 0.028 0.098 0.(141 
4 month - 0.(I 13 0.(X)7 0.017 0.075 (1.021 
5 lnonlh -0 .025  -0.0(18 0.(113 0.l,1411 0.005 
6 monlh -0 .032  - 0.(J29 0.(X)O 0.042 - 0.(103 

Noise 
Low - 01039 11,11~17 0.074 0. I 13 0,1)30 
t l igh ().042 - 0.()35 - l,).()24 0.052 0.026 

I",~lwrli.~elnoi.~e 
Novit.'e I h,w - 0.026 (t.O2t) (1.0~0 O. 12~ 0.052 
lixl~Cl't / h~w 0.1)79 - t1.029 0.(14(1 ().0{~9 1t.11()0 
N,. F,,'ic,,." / hi gh 0.051 0.04fi -0 .010  0.066 (L()38 
I'~x pert / high (1.016 I).O(X) ~ 0.t)¢,O 0.012 - IX).O I tl 

0.039 0.026 
0.052 0.038 
0.000 -0 .010  

0.068 0.079 
0.062 0.053 
0.045 0.037 
0.033 0.010 
(1.014 -0.0115 
0.011 -0 .016  

Nol¢s: 

Mt';ms ~ single I~lt'lor efl¢cls and Iwo way inler~lclions With series lyPe and noise reLItive to ARt I ) n.Rl¢l. 
I 'oniliv¢ values r¢llccl overconlRl¢lnc¢ relative to tile ARt I I nn)d¢l lind Ileg~llp, e v;llues rell¢ct ullderconllidence relalive to the AR( I t ollod¢l. 

formanc¢ occurring wil,h zero drift and inq)rovi,lg as 
tile horizon increased. The subjects, in fact, pcr- 
fornled bel,lcr than tIle model in l,he longer horizons 
(Table 3). Perl'ornmnce on l,he olher l,hrec lypes 
w e r e ,  h o w e v e r ,  w o r s e  tha l l  t i le  model and m u c h  

tno l 'e  cOtlsl ; . l l l l  o v e r  lhe horizon. The Ille:_lN prt~babili- 
l,y responses indical,ed l,he subjects gave responses 
similar to l,hose of l,he model. Ill particular, even 
Ihougll tile probahility responses were slightly higher 
l,han the model ill the l-nlonl,h horizon, they declined 
as horizons increased (Table 4). While the zero and 
stochasl,ic drift responses did not show a marked 
difference from the model, this was i1ol, the case 
When  consl; , l l l l ,  drift w a s  present , ,  h i  t l l ese  cases ,  l,he 

responses were considerably less than l,he model. 
Ov¢l'conlJdence relal,ive l,o t he  n l o d e l  w a s ,  however. 
gre~.tl.esl, itl t h i s  c o m b i n e d  case  b u t  g e n e r a l l y  d e c l i n e d  

for all series types over the horizons (Table 5). It, 
appears l,hat the subjects" poor performance relative 
to the model reflected their inability correctly to 

idenlify Ihe consl,alll drifl sil,uations. The subject,s" 
I ~¢ r f o r l l l a l l ce  l e n d e d  Io  be w o r s e  Ih;,ul Ihe  I n o d e l  

w h e n  COllSI~.lllI drift occurred in a series, but when it 
w a s  1lOt f)resenl, the  sub jec l ,s '  perfornmnce w a s  

similar to the model. The inl,eracl,ion bel,weell drift 
l,ypc :rod noise was also signilicant {/"(3,5851 = 
644.96, P<0.0() I} ,  indicating that the main differ- 
trices occurred in series which did not conl,ain 
constant drift ('Fable .3). Ill the Zero drift case wil,h 
low noise ~,nd ill the stochastic drift case with Irish 
noise, the performance of the subjects was better 
than the A R ( I )  model. In terms of probabilil,y 
responses, the only marked difference occurred in 
l,h¢ zero-drift case with much higher probability 
responses being given ill the high-noise (greater than 
the model) compared with the low-drift, case (less 
than tile model) (Table 4). In this zero-drift high- 
noise case, predictions were more overconlidenl than 
the model but, the low-noise predictions were more 
under ctmlidenl, (Table 5). This was reversed, how- 
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ever, in the stochastic drift case. These results 
suggest that the level of noi.,,e can have both positive 
and negatixe effects on judgemental extrapolation. 
There re'as also a significant interaction between 
horizon and noise {Ft5.585~=21.46. P<0 .001}  in- 
dicating that. as the forecast horizon increased, there 
was a consistent improvement in performance rela- 
tive to the model in the low-noise case with a fairly 
constant performance in the high-noise case (Table 
3 I. Perfomlance was, however, worse than the model 
in all cases. The rest.Its for the probability responses 
did not indicate that this could b e  explained by 
differences in the probability responses (Table 4). 
but overconlidence tended to be higher in the Imv- 
noise case (Table 5). In fact. the high-noise situation 
with horizon,+ of 5 illonths or intlre showed under 
conlidence relative to the inodel. ] ' t ie poorer per- 
fori l lallce in the high-noise l.-ase al the longer 
horizoiis could be explained by less nccurale dircc- 
tion:ll plol+at+illty responses. It appears that it was 
nlnch easier lt+r tile subjects I l l  idcniil 'y tile signal ill 
the hlw-uoise xiit lalion ill l.'tunl:,aiison with file high- 
noise ~,itualitln. 

As ttlr Ihe ihree-waiv inier:lctii lns I'tlr Ihe MAI>.";I), 
c'xpl+'i'tisc, drift type Cilid noise wt.'re siguilil.'ant 
{1.(.1,5,x5 ) -- sx,, / ' -  I).1}(11 }. Table 3 shows that tile 
experts perltlrined better lhall the IIm'iCCS till all f t l t l r  

XCliCS types al I+uilh llilixl." levels; however, ni+lrked 
diflL, rences occurl'cd on the ZClO drift  set'its with low 
utlis~." (i.e. ext)cits had a nleall vahie t i f  -0.()Sl) a,+ 
COlilparcd Io thai t i f  the novices t i f  -0 .024)  iilid the 
xttlchastic drift series +viih high noise (i.e. experts 
had a iileall xaltic of -0+(i56 as cOlnl'l;iled Ill that t l f  
tile novices t l f  -0.()()7). These iesulis sugge>,i thai 
the expcrl.s ',~eie liitii+c +killed at idenl i fying :qochas- 
tic drift lit setits as ~¢11 as distinguishing it l l t l l l l  
ralidtinl Ihiciuatitlus. t;urther evidence thai the ex- 
pel'is beha,,ed differently where randoltinexs was 
conci.'rlted ix rellected in their nlean probability 
rcsponxes over tile four series types as i.'olnpared 
with Ihosc of novices. The novices had higher nteall 
resptlnses th:ul the experts ill all cases but exhibited 
relative constancy across series types (i.e. ().6l), 0.6(), 
0.6{} :ind O.(ll, rcspectivelyl. The experts, on the 
other hand. exhibited Imver nlcan FespOllSes till the 
/ere aitd stochastic drift series (i.e. 0.55. 0.57, 0.54 
and 0.57 respectivel)). These rexul ls  Stlggest Ihal  

while the novices yielded the four series typex as 

being of roughly equal difficulty to forecast, the 
experts appreciated that series with random charac- 
teristics were particularly difficult to forecast. There 
was also a significant interaction between horizon. 
drift type and noise {Ft5,5851=7.20, P<0,001}.  
This result indicated that the zero-drift case enabled 
better predictions relative to the model in all but the 
lirst horizon in the low-noise case (i.e. mean values 
for the I to 6 month horizon of: 0.013, -0 .004 ,  
-0 .028 ,  -0 .055 .  - 0 . 0 7 0  and -0 .085)  and that 
with stochastic drift gave better predictions than the 
model over all horizons m the high-noise case (i.e. 
mean values for the I - 6  month horizon of: -0.0()9. 
-0 .016 ,  -0 .015 ,  -0 .025 ,  - 0 . 0 2 3  and -0 .029) .  
This suggests that different levels of noise can have 
+.ill inlluence till the identil ication t i t  zero drift and 
stochastic drit t  series with the stlb.iects" perfornianee 
tending itl iniprov+ relative to the A R ( I )  inodel as 
the forecast l l t lr izt l i l  is increased. 

5. ( "( lnt 'hl, ' , ; i l ln 

The  present  i i lVes t i ga l i tm  I¢V¢;l ls c ruc ia l  i ns igh ls  

fo r  Ihc l i l l a l l c ia l  f o recas t ing  d t ln la in .  ( ) u r  i' i. 'sulls 

suggest  Ih; l l  exper ts"  imlbabi l ist ic cu r rency  IorlzcaMs 

:irc c l ea r l y  i i i t+le accura te  t l lau i lO l l - cxper l s '  foleCaSls. 

These lindings +tuil ir in \Vl i i lect l i i t l i t  (19t)6) i'esults 
regaldii ig the Stlperitu" accuracy of  linallt.-ial ;in;ilysis" 
pitl lml+il isiic ealll ings forecasts ulider lztlndititlli>, t l f  
<.'t lnMrained in t l r l l la l lOn,  O u r  Iindings ;.11"12 : l lst l  con-  

g ruen t  w i t h  the resul ts o f  p rev i t l us  s tud ies in l ina l i -  

cial n la l ke l s  s h o w i n g  better pe r f t l r l nance  t l f  exper t s  

under reflleSelllaliv¢ task ctulditions IK;.ibus, 197b; 
Mul'adoglu and Oilkal, It)94; (~)likal anti Muradt)glu, 
1996 ). 

Current results have iniflortant inif)l icalions Itlr 
linancial dcci,dtln inaking in thai the 7 extend the 
volti lninotis researclt deltlOlIMrating tile accuracy o1 

+lxt ~.'tltlrt~, ill ¢~alnin~ Ctllllp~i[;t|iv~ pel'fOtlll~tfl~.',..' tllldl'c ,,itarcd 
itllot'tllatit)l|. ~,Vhit~.'cotL~)n (1~.)'0{)) pF,~,¢nted ;tflal%,,tx ~lnd Mtld~ltt,~ 
+'vilh Imiitcd financial ratit~s and prc,,ioux caruimgs data, wiul¢ 
hiding lh'e compan.~ name',  and lime lrani¢~,. Analy~,t~,' pruhal+ilit) 
iOlC+iL~,l~, ~'el~ loulid It) utltl~rfi+fm ultd'er~r;+idtlal'e,+' fL+rc~.';+iM,+, 
It.'ildill~ ttl the ~lllldtl,~ion that ¢~.plzrlx COLlld dt.'lllOli'dratc thc+r 
pcrltirlnallml." ,zdgl.' i f given a mtln,,lra{ned inh~rlliatillli +,l.'l..~illlilar- 
I)'. our ,,ubiect~," data ',+,'ere ¢llti,,lraiiil.'d ill Ihai Ilil.'y w'erc ,,iinul~ill:d 
cind. tilCl'.21"Ol...', cr i i+,k- l+; l lc t ' l t l r r 'e l lC)  II{lll lt. '~. "+t.t'r'e I l l l l  ',Upl+lfe d. 
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financial analysts" judgemental point forecasts, espe- 
cially of earnings (Brown and Rozeff, 1978: Fried 
and Givoly. 1982; Armstrong. 1983; Collins et al.. 
1984: Brown et al.. 1987; O'Brien. 1988: Schipper, 
1991). Comparisons with time series models have 
suggested that the analysts' forecasting accuracy 
could largely be due to their use of non-time series 
information (see Brown (1993) for an extensive 
review). This suggestion has also been supported by 
the Aflleck-Graves et al. (1990) study, which com- 
pared the earning forecasts of students (having only 
time series information) with those of analysts 
(having non-time series information as well), yield- 
ing superior accuracy for the latter group. 

Following O'Connor and Lawrence (1989). we 
argue that a detailed investigation of time series 
extrapolative judgement necessarily entails eliminat- 
ing non-time series infornmtion and exploring expert 
performance under those conditions. Tile current 
study presents stnch an attempt in a situation where 
Ihe provision o f  time series inl'ornlation ahme does 
not reduce ecological validity. Wc employ probabili- 
ty furccasts as a means for cons~)lidating the inherent 
uncertainties ill linancial markets not rcllccted by 
point I't~rcc:lsts. Within a currency I'orccasting frame- 
work. we lind that experts can effectively outperform 
non-experts untler ctmtlitions t)l" equal access to time 
series inft~rmation. One potcnti:d explanation for this 
linding may involve the nature of expertise i,I 
currency forecasting, in particular, the experts in this 
study possessed specilic knowledge t>l" the nature of 
currency series in addition to their general knowl- 
edge of linancial forecasting, Unlike the experts who 
had substantive knowledge about the existence and 
nature of random walk processes and market ef- 
licicncy, students may not have hccn aware of the 
import:rot theoretical inlplications of these concepts 
to currency forecasting, leading to poorer perlbrm- 
ante. Further research may test this assertion by 
concealing the currency identilication of series and 
using participants with differing levels of expertise in 
linancial Ibrecasting. 

Another explanation ntay relate to proposed argu- 
ments on potential hazards of experts' richer cogni- 
tive representations. As sunmmrised by Whitecotton 
(1996), this view suggests that the presentation of 
selective information may serve to prevent the 
experts from using irrelevant and unproductive cues. 

hence enabling better accuracy. Belatedly. Yates et 
al. (1991) maintain that increased experience within 
a domain leads to more beliefs being formed about 
what types of information are predictive of relevant 
target events. False beliefs are corrected relatively 
easily in domains where feedback is reliable (e.g. 
Kaiser and Proffitt. 1984): but in some complex 
systems the correction of erroneous beliefs is practi- 
cally impossible. Consequently. greater experience in 
such systems can lead to a greater reliance on weak 
cues (e.g. Gaeth and Shanteau, 1984; Poses et al., 
1985). Secondly, Yates et al. (1991) contend that, 
even if additional cues are valid, better perlormance 
is not guaranteed. For instance, lens model research 
has demonstrated that even the addition of valid cues 
can be detrimental to performance: additional cues 
cannot only be misused, but they can reduce the 
individual's reliability by making the task more 
diflicult (Dudycha and Naylor. 19661. These argu- 
ments have direct inuplications for designing support 
systems to aid t'orecastcrs in effective ;rod cllicient 
processing of infornmtion. Future research cxanlhl- 
ing f'orecasters' search for :rod use of different levels 
of contextual and time-series information may en- 
hance our understanding of these importmlt issues. 

Another critical result emerging from the present 
study retlccts tile experts' ability to deal willl random 
series. Not only is this expert ability superior to that 
of re)vices, but ,+list) it outperfornls the AR( I ) model. 
These results support the lindings of Lawrence 
(1983); Edmundson et al. (1988) and Sanders and 
Ritzman (1992). The superior perl't>rnmnce of human 
judgement in this case perhaps rcllects two undesir- 
able characteristics of models in general. Firstly, 
models tend to underestimate uncertainty because 
they cannot take all of its sources into accotmt. 
Secondly, models attempt to identify signals in the 
data even whe,~ they are non-existent. Our experts, 
on the other hand, familiar with the characteristics of 
currency data, were able to accept that such series 
can exhibit r:mdom movements. In the present study, 
the experts were faced with a task which was, 
arguably, consistent with Ayton et al. (1989) criteria 
of being logically and methodologically appropriate, 
and this further supports tile view that humans can 
recognise randomness (Baddeley. 1966; Cook. 1967; 
Harvey. 1988). Further research delineating the 
effects of feedback on such tasks would be extremely 
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valuable for users of judgemental forecasts (Benson 
and Onkal. 1992, Bolger and Wright, 1993. 1994, 
Onkal and Muradoglu. 1995; Yates et al.. 1996). 

Another interesting result is that the experts and 
the ARt 1 ) model performed similarly on the stochas- 
tic drift series, with the experts significantly out- 
performing the model in the high-noise case. The 
comparative performance of experts and the AR(It  
model supports Yaniv and Hogarth (19931 assertion 
that. in dynamic (high-noise) enviromnents, humans 
may better utilise some infrequently-occurring cues 
that are difficult to include in statistical models. 
Accordingly. our results could also be viewed as 
suggesting that the experts were also able to concen- 
trate on recent movements of  the series as well as the 
overall trend. Support fi~r this explanation comes 
from point forecasting studies concerned with lhe 
anchoring ;.tnd adjustment heuristic (Bolger and 
I larvcy. 1993; Goodwm and Wright. 1994; I,awrcnce 
and O'Connor,  Iq95). Tile relevance o f  this heuristic 
in a ct, rrcncy forecasting context could provide a 
promising direction for future research. 

The interaction of  series type and horizon is also 
intriguing. When the series c~mtams ,io overall trend, 
subjcct~," perfornlance, relative to the mt~del is found 
to improve as tile horizon is cXlelldctl. I Iowcver, 
when an overall trend is present, the sul~jcets" 
pcrftwmancc, relative to tile mt~tlcl is sinlilztr for ull 
horizons. Not only rio these results help cxphtin the 
contnldictory horizon effects discussed in the intro- 
duction but they suggest that the whole issue of  the 
elfeet t)f forecast horizoll on pcrft~rmance is much 
more comf~licatcd than was previously thought, and 
that it depends largely on the nature of the data and 
tile experience of the forecaster. These issues also 
warrant ft, rther investigation. 
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Appendix A 

Obtaining the theoretical expected direction and 
probability values of  the series 

The expected logarithmic exchange rate changes 
for one step ahead or more {i.e. E tAy, . , ,  )} are given 
by Eq. t a l l .  

I.,'(Ay,, rL,) = ,tt + p'(7", - / x )  (AI)  

The optimal directional change for the 1-6 months 
ahead forecasts tile sign of/-(3.y, ,  ,I, ) from Fq. (A I ). 
The v a r i a n c e s  VtAy,, , i , ) a rc  give .  in Eq. (A21: 

V(Ay, ,  ,i,1 = ~r: + ~r~.[( I - p"~) l (  I - l ' : ) l  (A2)  

The combined variances over r periods ;,re given in 
l'k I. (A3): 

" V(~v, + )  = ~'tr" + {tr-'/(I - p")} 
t - I  

X { r  - p ' [ (  I - p " ) / (  I - P- ') l}  (A3)  

The normal ly  distr ibuted rabies ( G ) f o r  the r step 
ahead forecasts arc given in l:'q. (A4 ~: 

z, = { r #  + {PIt  I - p ' ) / ( I  - p)[}{T,  - p.)}/  

{'r~r-" + { t r ' - / ( I  - p-')}  

X { r  - P-'I( I - p " ' ) / (  I - p'~)[}} '  : (A4)  

As .-:, M l o w s  a standard normal distr ibut ion prob- 
abi l i ty estimates for the directional change are 
directly obtained. That is, taking the absolute valve 
of ,-.,. ]:-,I. the probability associated with the ex- 
pected directional change was obtained from the 
cumuh|tive distribution ftmction of the standard 
normal distribution for the given values of z {i.e. 
q'([z,J)}. This probability has a minimum value of 
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0.5  {i.e. I ' - - 4 ~ : . , i ) = 0 . ~ .  v, hcn = 0 }  and a m a x i m u m  
value  o f  unit~ {i.e. 4~tlz..I) = ;> I. w h e n  Iz,I = > ~ } .  
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