
Information Pmcessing & Management. Vol. 33, No. 3, pp. 353-376, 1997
0 1997 Elsevier Science Ltd

All rights reserved. Printed in Great Britain
0306-4573/97 $17+0.00

PII: SO306-4573(96)00073-S

VERTICAL FRAMING OF SUPERIMPOSED SIGNATURE FILES
USING PARTIAL EVALUATION OF QUERIES

SEYIT KOCBERBERA’ and FAZLI CAN’*
’ Department of Computer Engineering and Information Science, Bilkent University, Bilkent, 06533

Ankara, Turkey, and ’ Department of Systems Analysis, Miami University, Oxford, OH 45056, U.S.A

(Received 20 October 1995: accepted 3 December 1996)

Abstract-A new signature file method, Multi-Frame Signature File (MFSF), is introduced
by extending the bit-sliced signature file method. In MFSF, a signature file is divided into
variable sized vertical frames with different on-bit densities to optimize the response time
using a partial query evaluation methodology. In query evaluation the on-bits of the lower on-
bit density frames are used first. As the number of query terms increases, the number of query
signature on-bits in the lower on-bit density frames increases and the query stopping
condition is reached in fewer evaluation steps. Therefore, in MFSF, the query evaluation time
decreases for increasing numbers of query terms. Under the sequentiality assumption of disk
blocks, in a PC environment with 30 ms average disk seek time, MFSF provides a projected
worst-case response time of 3.54 seconds for a database size of one million records in a
uniform distribution multi-term query environment with l-5 terms per query. Due to partial
evaluation, this desired response time is guaranteed for queries with several terms. The
comparison of MFSF with the inverted file approach shows that MFSF provides promising
research opportunities. 0 1997 Elsevier Science Ltd

1. INTRODUCTION

Recent developments in the data storage technology, e.g., optical disks, enable the storage of
formatted and unformatted data, such as text, voice and image in the same database. The
growing size of the databases necessitates the development of efficient file structures and search
techniques for such multi-media environments (Aktug & Can, 1997; Salton, 1989).

A signature file reflects the contents of database records in terms of bit strings. Signature files
provide a space efficient fast search (index) structure by eliminating a great majority of the
irrelevant records by comparing the record signatures and the query signature without retrieving
the actual records. In this paper, an instance of any kind of data will be referred to as a record.
An attribute of a record, without loss of generality, will be referred to as a rerm. In signature
approach, record terms are encoded in a bit string called a record signature. During the
generation of signatures each term is hashed into a bit string of size F by setting S bits to 1 (on-
bit) where F>S. The result is called a ferm signature. Record signatures are obtained either by
concatenating or superimposing the signatures of the record terms.

Several signature generation and signature file methods have been proposed to obtain a
desirable response time and space overhead. A survey of the signature file methods can be found
in Aktug & Can (1997) and Faloutsos (1992). The use of various forms of bitmaps as a basic
tool for improving the search algorithms in medium sized information retrieval systems is
described in Bookstein & Klein (1990). In this study, we consider only vertically partitioned
superimposed signatures and conjunctive queries. In superimposed signature files, the length of
the record signature (F) and term signatures are the same and F>>S. In this environment a
record is defined as ‘relevant’ if it contains all query terms.

For a database of N records, the signature file can be viewed as an N by F bit matrix.
Sequential Signature Files (SSF) require retrieval and processing of all N.F bits in the signature
file. However, off-bits of a query signature have no effect on the result of the query processing,

* To whom all correspondence should be addressed.

353

354 Seyit Kocberber and Fazli Can

since only the on-bits of the query signature are compared with the corresponding record
signature bits. Therefore, the result of the signature file processing can be obtained by
processing only the record signature bits corresponding to the on-bits of a query signature.

To retrieve the record signature bits corresponding to a bit position without retrieving other
bits, the signature file is vertically partitioned and the bits of a vertical partition are stored
sequentially as in bit-sliced signature files (BSSF) (Roberts, 1979) and generalized frame-sliced
signature files (GFSSF) (Lin & Faloutsos, 1992). Vertical partitioning a signature file improves
performance by reducing the amount of data to be read and processed. The partially evaluated
bit-sliced signature file (P-BSSF) method improves performance of the BSSF method by using
a subset of the query signature on-bits in a multi-term query environment (Kocberber & Can,
1995a; Kocberber & Can, 1995b).

In the formal development of the P-BSSF method, the number of bit-slices to be processed
is determined by a stopping condition which minimizes the response time and it is independent
of the number of query terms, i.e., the same number of bit-slices are processed for all queries.
Therefore, the average number of bit-slices processed per query term decreases for an increasing
number of query terms. However, in practice, to ensure all query terms contribute to the query
evaluation, at least one bit-slice is processed for each query term. Therefore, (in practice) the
lower bound of the number of bit-slices processed per query term is one. In the P-BSSF method
for the queries with many terms, if the bit-slices are stored contiguously on the disk, only one
disk access will be sufficient per query term contrary to the two disk accesses of the Inverted
File (IF) method without in memory search structures (Zobel et al., 1992).

In this paper a new signature file method, Multi-Frame Signature File (MFSF), is proposed.
MFSF improves the performance by dividing the signature matrix into variable sized vertical
frames (with different on-bit densities) which provides a desirable response time in a multi-term
query environment. For query evaluation with MFSF, the stopping condition defined for P-BSSF
(Kocberber & Can, 1995b) is adapted which provides decreasing response time for increasing
number of query terms in MFSE In multi-media environments, search conditions on text and
images are expressed in a single query (Zezula et al., 1991) which cause an increase in the
number of query terms. Therefore, the access method of such an environment should provide
acceptable response times for a high number of query terms. At the same time, a general purpose
access method should also provide acceptable response times for queries containing a few query
terms. Our study shows that the new method introduced in this paper provides desirable
performance across the spectrum.

We compared the performance of MFSF with other vertical (signature) partitioning methods.
The analysis shows that, with no space overhead, MFSF provides up to 17% and 85% query
processing time improvement with respect to the P-BSSF and GFSSF organizations,
respectively. With a database of 152,850 library MARC records we tested the method and
compared its theoretically expected and practical behavior under various conditions and showed
its scaleability for very large databases. Under the sequentiality assumption of disk blocks,
MFSF provides a projected worst-case response time of 3.54 seconds for a database size of one
million records in a uniform distribution multi-term query environment with l-5 terms per
query. The comparison of MFSF with the inverted file approach shows that MFSF provides
promising research opportunities.

The organization of the paper is as follows. Section 2 gives a description of existing vertically
partitioned signature file methods. Section 3 compares the IF method and P-BSSF in terms of
the number of disk accesses. Section 4 describes the proposed MFSF. Section 5 provides a
model for query processing operations and gives estimated performance of MFSF obtained with
simulation runs and the results of comparisons with other vertical partitioning methods, Section
6 presents the results of the experiments with real data. Section 7 provides a theoretical
comparison of the IF method and MFSF and gives future research topics. Finally, Section 8
provides the conclusions.

2. VERTICALLY PARTITIONED SIGNATURE FILES

The query evaluation with signature files is conducted in two phases. To process a query with
signature files, first a query signature is produced using query terms. Then, this query signature

Superimposed signature files 355

Record Terms Term Signature
computer 0100010010
information 0000100101

Record Signature 0100110111

Query Query Signature Result
access 0 1 0 0 0 1 0 0 0 1 False Drop
information 0 0 0 0 1 0 0 1 0 1 True Match
retrieval 1000101000 NoMatch

(F=lO,S=3)
Fig. I. Signature generation and query processing with superimposed signatures.

is compared with the record signatures. If a record contains all of the query terms, i.e., the record
is relevant to the query, the record signature will have on-bits in the corresponding bit positions
of all on-bits of the query signature. Therefore, the records whose signatures contain at least one
0 bit (off-bit) in the corresponding positions of on-bits of the query signature are definitely
irrelevant to the query (the record does not match the query). Thereby in the first phase, the
signature file processing phase, most of the irrelevant records are eliminated.

Due to hashing and superimposition operations used in obtaining signatures, the signature of
an irrelevant record may match the query signature. These records are called false drops. The
false drop probability is minimized when the optimality condition is satisfied, i.e., half of a
record signature bits are on-bits (Christodoulakis & Faloutsos, 1984; Roberts, 1979). In the
second phase of the query processing, the false drop resolution phase, these possible false drop
records are resolved by accessing the actual records (Aktug & Can, 1997; Faloutsos, 1992;
Kocberber & Can, 1995b; Lin & Faloutsos, 1992; Roberts, 1979; Sacks-Davis et al., 1985).

To illustrate signature extraction and query processing with superimposed signatures an
example is provided in Fig. 1. Query signature on-bits shown in bold font have a ‘0’ bit at the
corresponding record signature positions. Since the 1st and 7th bits of the record signature are
‘0’ while the signature of the query ‘retrieval’ has ’ 1’ at these positions, the record is irrelevant
to this query. The record signature matches the signatures of the queries ‘access’ and
‘information’. The on-bit positions set by the query term ‘access’ (2nd, 6th, and 10th) are also
set by the record terms ‘computer’ and ‘information’ (2nd, 5th, 6th, 8th, 9th, and 10th).
Therefore, although the record does not contain the term ‘access’, the record seems to qualify
the query (i.e., it is a false drop).

The superimposed signature file approach represents each record with a fixed size bit string
which facilitates parallel processing of search requests (Couvreur et al., 1994; Grandi et al.,
1992; Lee, 1986; Pogue & Willett, 1987). Vertical partitioning of a signature file provides
conducting the signature file processing phase of the query evaluation by retrieving a small
fraction of the signature file (Aktug & Can, 1997; Faloutsos, 1992; Kocberber & Can, 1995b;
Kocberber, 1996a; Lin & Faloutsos, 1992; Roberts, 1979). Parallel processing of vertically
partitioned signature files is also studied in the literature (Grandi et al., 1992).

Brief descriptions of the available vertical partitioning methods BSSF (Roberts, 1979).
Extended Bit-Sliced Signature File (B’SSF) (Lin & Faloutsos, 1988), Generalized Frame-Sliced
Signature File (GFSSF) (Lin & Faloutsos, 1992) and P-BSSF (Kocberber & Can, 1995b) are
given below. Later in Section 4 we also provide a graphical representation of these methods and
MFSF. The meanings of the important symbols and full names of the frequently used method
acronyms of the paper are provided in Table 1.

2.1. BSSF

In BSSF each term sets S bits of a bit string that is F bits long. The value of S is determined
such that the optimality condition is satisfied (Christodoulakis & Faloutsos, 1984; Roberts,
1979). BSSF requires retrieval of W(Q),.N bits instead of F.N bits where W(Q), is the expected

356 Seyit Kocberber and Fazli Can

number of on-bits in the query signature (query weight) of a t term query. Usually, W(Q),eF;
hence the amount of retrieved and processed data is reduced. Therefore, the response time of
BSSF is less than the response time of SSF except for very small N values (Roberts, 1979).

Query processing with BSSF is demonstrated in Fig. 2. The database contains five records and
six unique terms. The term signatures, the records with the record signatures, and sequential
storage of these record signatures are shown at the top of Fig. 2. The bits in the horizontal boxes
are stored sequentially from the left to the right.

BSSF storage of the signature file is shown in the middle of Fig. 2. The bits in the vertical
boxes are stored sequentially from the top to the bottom. A record pointer table (RPT) is needed
to store the addresses of the records. For SSF the record pointers can be stored with the record
signatures.

Evaluation of the query ‘access’ is illustrated at the bottom of Fig. 2. To evaluate the query
three bit slices (2nd, 6th, and IOth), shown with dark gray background color in BSSF, are read.
The result of the signature file processing is also a bit string of length five where an on-bit
indicates that the corresponding record is found relevant to the query. Only the first and second
bits of the result bit string are on-bits. Therefore, the first and second record pointers are
obtained by accessing RPT and then the actual (corresponding) records are read and compared
with the query. Since the first record does not contain the query term ‘access’, it is a false
drop.

Table I. Meanings of important symbols (defining equation no.) and full names of frequently used
method acronyms

Symbol Meaning

b,

;d,
k
111

n

OPS
t
6w

2,e
D
Jw)
F
F,
FQ
IP
N
p,
P .,,C
PB
RB
RT,
s
s,
SP
T blllql
T red
T rrw,\e
r,C.Ml
T *eel
r,,,,,
TR
w
W(P),,.!,
W ll,L
Acronym
GFSSF
MFSF
P-BSSF

on-bit density of sth bit slice used in query evaluation (Eq. 6)
number of frames in a MFSF
false drop probability after processing i bit slices (Eqs. 6, 9)
number of frames in a GFSSF
number of bits to be set by each term in a GFSSF frame
number of frames selected to set bits in GFSSF
average on-bit density in rth frame (Eq. 5)
number of query terms
maximum number of terms that can be used in queries
expected total number of on-bits in all frames of a t term query signature (Eq. 4)
size of a disk block (bytes)
average number of distinct terms in a record
expected number of query terms
size of a signature (bits)
size of rth frame of F (bits) in MFSF
expected number of false drops after processing i bit slices (Eq. 2)
improvement percentage (Eq. 19)
number of records in database
probability of submission of a t term query
size of a record pointer (bytes)
number of record pointers in record pointer buffer
average number of disk block accesses required to retrieve a record
response time for a t term query (Eq. 14)
number of bits set by each term
number of bits set by each term in rth frame in MFSF
sequentiality probability of logically consecutive disk blocks
time required to perform bit operations between two memory words (ms)
time required to read a disk block
time required to resolve a false drop
time required to scan a record to test it with query
time required to position read head of disk
time required to process one bit-slice
expected response time (Eq. 15)
variance oft
expected number of on-bits in rrh frame for a t term query (Eq. 4)
size of a memory word (in bytes)
Meaning
Generalized Frame-Sliced Signature File
Multi-Frame Signature File
Partially Evaluated Bit-Sliced Signature File

Superimposed signature files 357

2.2. B’SSF: the enhanced version of BSSF

For BSSF, the optimality condition requires a larger S value for a larger signature size (F)
(Roberts, 1979). Increasing S also increases the query weight and the number of retrieved bit
slices. Consequently, except for small F values, increasing F also increases the response time in
the BSSF method.

In the B’SSF method, the optimality condition is relaxed and the response time is minimized
for single term queries instead of minimizing the false drop probability (Lin & Faloutsos, 1988).
An optimized B’SSF configuration for a minimum response time may have a smaller S value
than a BSSF requires. The value of S decreases for increasing F value. Therefore, the response
time of B’SSF decreases for increasing F value. The formula to tind the optimum S value can
be found in Lin & Faloutsos (1988).

2.3. GFSSF

Current auxiliary storage seek time is much larger than the read time per disk block. GFSSF
provides improvement over B’SSF (Lin & Faloutsos, 1988) by minimizing the number of seek
operations (Lin & Faloutsos, 1992). GFSSF optimizes the signature file parameters to minimize
the response time for a given number of query terms.

In GFSSF, a signature is divided into k frames, each of size s bits (s=Fk). Each term first
randomly selects n (lln9) frames, then randomly sets m (lQrz%) bits (not necessarily
distinct) in each of the selected frames (Lin & Faloutsos, 1992). In this method, the size of a

Term Term Signature
access 0100010001
computer 0100010010
database 0011000010
information 0 0 0 0 1 0 0 1 0 1
retrieval 1000101000
signature 0100100010

Records
SSF

1, I
RI =(computer, information }

R2 =(access)
R3 = { information, retrieval) 1000101101

R4 = (signature)
R5 = (computer, database)

0 0 0 I 0 I I

0 0 0 0 0 0 0 ~l~~~l~~~l 1 0 0 1 1 I 0

0 0 0 I 0 0 1

0 I I 0 0 0 I

Actual Records
I I commuter information

0I000 10001

I
read slice 2 read slice 6 and bitwise read slice IO and bitwise AND

AND with slice 2 with the result of the last step

(N=5, F= lO,S=3)
Fig. 2. SSF and BSSF organizations and BSSF query processing example.

358 Seyit Kocberber and Fazli Can

frame is s.N bits and each frame is stored separately as a SSF. The methods SSF, BSSF, and
B’SSF are special cases of GFSSF (Lin & Faloutsos, 1992) and GFSSF outperforms all of its
special cases.

2.4. P-BSSF

In the B’SSF method, the response time is minimized for single term queries. In a multi-term
query environment, which is the case in real environments, the optimized configuration of a
B’SSF unnecessarily requires processing of additional bit slices for the queries with more than
one term (Kocberber & Can, 1995b).

P-BSSF solves this problem by using a partial query evaluation technique. The response time
is minimized in a multi-term query environment by employing the partial evaluation strategy
and by considering the submission probabilities of the queries with different numbers of terms
(Kocberber & Can, 1995b). The technique employs a stopping condition that tries to complete
the signature file processing phase of query evaluation without using all on-bits of the query
signature, i.e., by partial evaluation. The aim of the stopping condition is to reduce the number
of expected false drops to an acceptable level that will also provide the lowest response time
within the framework of P-BSSF (Kocberber & Can, 1995b).

In P-BSSF the signature file query evaluation stops when the time required to evaluate a bit
slice becomes equal to (or greater than) the time required to resolve the false drops which will
be eliminated by processing this bit slice. This stopping condition minimizes the response time
of P-BSSF and is expressed as follows (Kocberber & Can, 1995b).

T,li,,=FDi*(l - o~).T,,s,,,, (1)

FD,=N.op’ (2)

op=l -(I -S/flD (3)

where T,,,, is the time required to process one bit-slice, i is the number of the processed bit-
slices, FD; is the number of expected false drops after processing i bit-slices, T’,,,,,, is the time
required to resolve a false drop, up (on-bit density) is the ratio of the number of on-bits to the
total number of bits in the signature file, N is the number of records in the database, and D is
the average number of distinct terms in a record.

3. IF VERSUS P-BSSF

P-BSSF performs better than other vertical partitioning methods such as BSSF and GFSSF
(Kocberber & Can, 1995b). Therefore, in the following discussion, we compare the IF method
and the P-BSSF method in terms of number of disk accesses (seek requests) since it is expected
that the response time will be proportional to the number of seeks. Our aim is to show that P-
BSSF is not inferior to the IF method and this provides the motivation of this study since our
new MFSF method outperforms P-BSSF.

In the IF method, each term is associated with a list of identifiers (or pointers) of the records
containing this term. At least one disk access is required per query term to read the posting list
of the term (we ignore chained long posting lists). Also, to obtain the locations of the posting
lists, a term lookup table must be maintained and it should be searched for query processing. If
we assume only one disk access will be required to obtain the location of the posting list of a
query term, each query term will require two disk accesses (second disk access is to retrieve the
posting list and we assume that the pointers to the actual records are stored in main memory)
(Zobel et al., 1992).

In P-BSSF no lookup table is needed (note that term signatures are directly generated from
actual terms). To obtain the pointers of the records that satisfy the search query, the bit slices
corresponding to the on-bits of the query signature must be accessed and bitwise ANDded. We
assume one disk accesses will be required to retrieve a bit-slice (we ignore chained bit slices as

Superimposed signature tiles 359

D=25.l,N=lti,t=l

Fig. 3. Estimated number of disk accesses for P-BSSF for N= lo5 and N= IO’ (D value is taken from the
experiments of Section 5). *The fractional parts become zero due to rounding. Actual values are greater

than zero.

in the posting lists of the IF method). Since the pointers to the actual records are stored in main
memory, only one disk access will be required to read a false drop record.

The number of expected false drops decreases as the number of processed bit-slices increases
(see equation (2)). However, the stopping condition of P-BSSF puts an upper bound to the
number of processed bit-slices such that after this point additional bit-slice processing just
increases the response time (Kocberber & Can, 1995b). To show the relation between the
signature file parameters F, S, D, N, the number of processed bit-slices (i), and FD we provide
estimated number of disk accesses for N= lo5 and N= lo6 for P-BSSF in Fig. 3.

To simplify the signature file optimization procedure we optimized the signature tile
parameters for single term queries (t= 1) and used the same configuration for multi-term queries
with the stopping condition. The stopping condition minimizes the total number of disk
accesses, which is equal to (S+FD). (Note that P-BSSF obtains better response times by
considering the submission probabilities of queries with different numbers of query terms.)

At the upper parts of Fig. 3 (for t= l), the optimum S values and the number of disk accesses
decreases for increasing F values. Since each term sets fewer number of bits for increasing F,
the op decreases and signature file processing requires fewer disk accesses.

The same signature file configuration is used for multi-term queries. S disk accesses are
required for ES and the expected FD values are the same. To make sure that each query term
contributes to the query evaluation, at least one bit-slice is processed for each query term.
Therefore, for t>S even the number of expected false drops is less than one, we assume t bit
slices are used in the query evaluation. For this reason, the expected FD values decreases for
increasing t values.

For F= 1000 and N= lo’, P-BSSF requires fewer disk accesses than IF for the queries
containing more than three terms. For the same op value, the number of expected false drops
increases for increasing N. Therefore, the number of processed bit slices, hence the number of
disk accesses, increases for increasing N.

For F=2000, Nr 106, and t>2, P-BSSF requires fewer disk accesses than IF. If F is increased
to 10,000, for t=2 P-BSSF requires only 3.5 disk accesses which is less than four disk accesses
of IF. Note that higher F values will require fewer disk accesses while the space overhead of P-
BSSF increases.

4. PROPOSED SIGNATURE FILE METHOD

The probability of a particular bit of a bit slice being on-bit is the op. Low op provides rapid
reduction in the expected number of false drops. Thus, the stopping condition defined for P-

360 Seyit Kocberber and Fazli Can

Table 2. Properties of vertical signature. file partitioning methods

Properties/signature file methods BSSF B’SSF GFSSF P-BSSF MFSF

On-bit density (op) ~0.5 is allowed No Yes Yes Yes Yes
Optimized in multi-term query env. No No No Yes Yes
Partial evaluation strategy defined No No No Yes Yes
Obtaining the optimum configuration Exact Exact Heuristic Exact Heuristic

BSSF is reached by processing fewer number of bit slices (Kocberber & Can, 1995b).
For a given D value, op can be reduced by either increasing F or decreasing S (see equation

(3)). For P-BSSF, the value of S is selected to obtain the minimum response time in a multi-term
query environment. Therefore, decreasing S will produce insufficient on-bits in the query
signature of low-weight queries and the number of false drops will increase for these queries.
This will also increase the response time.

The performance of P-BSSF can be improved if the op can be reduced while providing
enough on-bits in the query signature of low weight queries. We propose a new signature
generation and query evaluation method, MFSF, which improves the performance of P-BSSF
without increasing the space overhead (F value). MFSF decreases the response time in multi-
term query environments by dividing the signature file into variable sized sub-signature files,
frames of bit slices. Each frame is a separate BSSF with its own F and S parameters and the
optimality condition is relaxed. In MFSF each frame may have a different on-bit density. A
summary of the vertical partitioning methods is given in Table 2.

4.1. MFSF

A MFSF is a combination off sub-signature files, frames, such that F=F, + F2... + F, (fG’).
Since the bit slices of a BSSF are stored separately, dividing the signature file into sub-signature
files can be accomplished conceptually without changing the physical storage structure of the
BSSF method. Each term sets S, bits in the rth frame such that
S=S,+S2...+S,(O<S,<F,,l~r~j).

Since each frame is a BSSF, we use the same formulas as were used for BSSF and compute
the expected query weights of the frames (IV(Q),,,,) and the expected total query weight (w,) for
a t term query as follows.

B’(Q),,.,,= F;(1 - (1 - “Y,,,‘, for 1 lrlf (4)

w,= ,$, WQ),,,,

The op values of the frames are

op,=l-(l- VF) D for 1 SrSf. r (3

Graphical representations of SSF, BSSF, B’SSF, P-BSSF, GFSSF, and MFSF are illustrated
in Fig. 4. A horizontal box represents the sequential storage of the bits in the box. First are stored
the bits of the first box, then the bits of the second box and so on. A vertical box represents the
sequential storage of the bits in the box from the top to the bottom. The op values of the bit
strings are represented with the gray level of the box. A darker area has higher op than the lighter
one. Note that the highest op is 0.5 (case a and case b).

4.2. False drop computation for MFSF

We define fdi as the false drop probability if i bit-slices (ilw,) are used in the signature file
processing phase of a query evaluation. fdi is computed by multiplying the op of the bit slices
used for the query evaluation as follows.

Superimposed signature files 361

f
bit slice

I
I

II II . . . f
bit slice

a. SSF b. BSSF c. B’SSF/P-BS5
Generated and processed differently

bit slice of s bits of the

d. GFSSF e. MFSF

Note: In MFSF different gray levels indicate different on-bit densities.
Fig. 4. Graphical representation of SSF and vertical partitioning methods.

fdi= sh, b.s

where b,=op, if the sth slice used for query evaluation is selected from the rth frame.
If the number of bit slices used for query evaluation, i, is less than total query weight (i<w,),

which is usual in the partial evaluation approach, the selection order of the bit slices used for
the query evaluation may change the false drop probability. Therefore, the frames of MFSF are
ordered in non-decreasing op value such that

op,5op,+, for lsr<:f (7)

holds for all frames.
In the query evaluation the on-bits of the lower op frames are used first. This rule is specified

as

b,Sb,+, for l(s<w, (8)

and ensures that the stopping condition is reached in fewest evaluation steps. As the number of
query terms increases, the expected number of query signature on-bits in the lower op frames
increases. Therefore, the stopping condition will be reached in fewer evaluation steps and the
query evaluation time will decrease for increasing number of query terms (later we provide a
numerical example for this).

If we consider only one frame, say frame r, and all query signature on-bits of this frame are
used in the query evaluation, the false drop probability of this frame becomes op rw(Q”r~” (note that

We),,,, is the expected query weight of rth frame for a t term query). If d on-bits are used from
a frame, say the h+ 1st frame, the inequalities (7) and (8) ensure that all of the query signature
on-bits of the lower numbered frames (the first h frames) were already used in the query
evaluation. Therefore, the number of bit slices used in the query evaluation, i, is computed by
adding the query weights of these lower numbered frames and d.

i=d+ rt, w(Q),,..,, where h <f,O%ds w(Q),,,+ ,.,)

Similarly, the false drop probability can be computed by multiplying the false drop

362 Seyit Kocberber and Fazli Can

probabilities of the first h frame and opff,, since only d on-bits are used from h+ 1st frame.

fd,=op;f+,. fI, op,w’Q)c,.,~ (9)

If there is only one frame, i.e., f= 1, then h=O, d=i, and fdi=op’. In this case, a MFSF
converges to a P-BSSF. Consequently, B’SSF and P-BSSF are special cases of MFSF.

4.3. Stopping condition for MFSF

To derive the stopping condition for MFSF, first we obtain a general stopping condition for
vertically partitioned signature files and then we will apply this formula to MFSF. We define
RFDi+,, the number of reduced false drops, as the number of false drops which will be
eliminated by processing an additional bit slice after processing i bit slices. We derive the
formula for RFD,, , as follows.

RFDi+, = FDi - FDi+, (10)
=N.op’ - N.op’+’

=N.op’(l -op)

At the stopping step (i) time required to process one bit slice (Tslice) must be equal to (or
greater than) the time required to resolve RFD, false drops. Therefore, the stopping condition
becomes

L~=RFD~+I.T,,~~,. (11)

This stopping condition is independent of the false drop computation method and is explained
as follows: at the stopping step the false drops which will be eliminated by processing the next
bit slice can be checked by accessing the actual records in equal or less time than eliminating
these false drops by using the signature file.

To obtain the stopping condition for MFSF we derive the formula to compute RFD,+,. The
false drop probability after processing i+ 1 bit slices is fdi+, =fdi.bi,, where bi+, is the false drop
probability of i+ 1 st bit slice used in signature file processing. All query signature on-bits of the
first h frames and d on-bits of h+ 1st frame are used to process i bit slices (see equation (9)).
Therefore, if there is an unused on-bit in h+ 1st frame, i.e., if d< W(Q)Ch+,,,), b,, , will be equal
to oph+,. If all on-bits of h+ 1st frame are already used, i.e., d=W(Q)(,,+,.,), the i+ 1st on-bit will
be selected from h+2nd frame if h+ 2nd frame exists (h+25). By considering this discussion
the value of bi+, is determined as follows.

b,

i

OP/,+I ifd<WQh,+,.,,
t+l

=
op,,+* otherwise (if h + 2 >f query evaluation is completed)

where h<f, 05dlW(Q)o+,.,,, and i=d+ ri, W(Q),,,,,.

RFDi+, for MFSF is computed as follows.

RFD,, , = Njdi - Nfdi.bi+,

RFDi+,=Nfdie(l -bi+,)

(12)

We obtain the following stopping condition for MFSF by substituting RFD,,, in equation (11).

L,=N..f&(l - bi+ l).Tresolve (13)

To prove the stopping condition given in equation (13) is valid in subsequent steps we have
to consider the following theorem.

Theorem. The number of false drops eliminated in successive evaluation steps, RFD (the
number of Reduced False Drops), decreases.

Proof. RFD,,, is the number of false drops that can be eliminated by processing one more bit

Superimposed signature tiles 363

slice after processing i bit slices for Ili<w,, where w, is the expected total query weight for a
t term query.

Now show that RFD,, , > RFD,,2

NY441 -b,+,)>Nf4+,41 - b,+J

N$fJl - b,+,)>N$i;b,+,~(l - b,+J

(1 -b,+,)>b,+,.(l -b,+J

Since b,+,“b,+2 for 1 %i< w, - 1 (see inequality 8)

1 -h+, 2 1 - b,+2>(1 - bi+&bi+, holds and RFD is decreasing.
Since the cost of processing a bit slice is the same in all frames, the above proof guarantees

that once the stopping condition given in equation (13) is satisfied, it will be valid in subsequent
steps.

4.4. Searching the optimum configuration

We define the response time as the time needed to find the first relevant record to the query,
if any, as defined in Kocberber & Can (1995b); Lin & Faloutsos (1988)and Lin & Faloutsos
(1992). In query processing index structures are used to eliminate the irrelevant records.
However, usually, the actual records relevant to the query are further processed before
presenting them to the user. For example, a report generator has to access actual records after
processing the search index to print them. Similarly, information retrieval applications display
the first screen of the relevant records and access the remaining relevant records upon user
requests. Also, in the client-server computing technology, like the cursor processing in
commercial relational database systems, the server sends relevant records of a query in batches
upon the requests of the client. Therefore, our response time definition, which requires
processing of the search index and finding the first relevant record, coincides with real
applications. We assume FD, record accesses will be performed to find the first relevant record
to the query. In this way all false drop records must be accessed and eliminated before all true
matches. This is a worst-case assumption since it assumes that false drops are accessed first and
we used this approach in our response time calculations.

To find the first relevant record, the signature file processing phase must be completed which
requires retrieval and processing of i bit slices (i is determined by using the stopping condition
given in equation (13). The response time for a t term query with i slice processing and FD,
actual record accesses is computed as follows.

RT,=I”T,r,,,+ FDi.Tr,,,I,, (14)

Before passing let us consider the following question: “How would equation (14) change if
the criterion were not to find the first relevant record, but all relevant records?’ For a query with
NR relevant records, to find all such records (i.e., to determine the relevant record pointers)
FD, + NR record accesses are needed and equation (14) becomes RT,= i.q,,,+ (FD, + NR).T,,,,,,.

Note that, NR is independent of signature file parameters, i.e., NR record accesses are always
needed independent of the number of processed bit-slices. In other words, the product NR.T,,,,,,.,
is always need to be added to the minimized response time in equation (14); therefore,
minimizing equation (14) also minimizes the response time even the criterion is finding all
relevant records.

Since MFSF optimizes the response time in a multi-term query environment, we consider the
submission probabilities of queries with different numbers of query terms as follows in
determining the (expected) response time, TR.

TR= :z P<RT, (15)

where RT,, given in equation (14), is the time required to evaluate a t term query, P, is the
probability of submission of a t term query, and t,,, is the maximum number of terms that can
be used in a query.

364 Seyit Kocberber and Fazli Can

Algorithm SearchContiiguration
fc Select randomly the number of frames (I Sf< F).
Set F, values randomly (1 5 r <j) where F = J$ + &+*.+Ff.

SetS,valuesto l(1 5rz2.f).
Mark all frames and all operations in the frames as not-tried.
minimum-response-time t infinity.
while there are not-tried frames

(r t Select randomly a not-tried frame (1 5 r sj).
Select randomly a not-tried operation among the operations split, increase S,, decrease S,,

increase F,., decrease Fr for frame r
if a not-tried operation exist

(if the selected operation is applicable
[Apply the operation and obtain candidate configuration.

if response time, TR, of the candidate configuration is less than minimum-response-time
(Accept the candidate as the new configuration, minimum-response-time c TR.

Mark all frames and all operations in the frames as not-tried.

else
Mark the selected operation in frame r as tried.

Mark the selected operation in frame r as tried.

else
Mark frame r as tried.

Fig. 5. Algorithm to search optimal framing scheme.

The values of the parameters N and D involved in the response time computation depend on
the database instance. Therefore, minimizing the response time, TR, with the stopping condition
given in expression (13) requires determination of parameters J F, and S, (1 SrSj) for a given
F value. The heuristic search algorithm outlined in Fig. 5 is used to search the optimum
configuration and to determine the TR value for this case.

The algorithm starts with a randomly determined initial multi-framed scheme. A candidate
configuration is obtained by changing the value of a randomly chosen parameter. Since the
algorithm minimizes the response time for a given F value, Join Frames, Increase F,, and
Decrease F, operations of the algorithm require random selection of another frame, p, and
adjusting the F,> value of this frame accordingly. In the algorithm, joining of two frames to form
one frame is initiated when decrease S, is selected and the S, value in the selected frame is one.
After obtaining the candidate configuration, the consistency of the parameters is ensured such
as 1 %+F, holds for 1 Irsf. To prevent trapping in a local minima, a sufficient number of
initial configurations must be tried. The results given in this paper are obtained with 20 initial
trials.

The convergence time of the algorithm depends on the number of initial frames randomly
selected at the beginning of the algorithm. To speed up the convergence time we limit the
maximum number of frames in the initial configuration to 20, which gives similar results with
a higher number of initial frames. The average convergence time of the algorithm for one
randomly selected initial configuration measured by elapsed time on a 33 MHz 486 DX personal
computer is 2.34 seconds. Since we tried 20 randomly selected initial configurations, the
average elapsed time required to obtain the optimized configuration for a given F value is 46.8
seconds.

4.5. Example MFSF conjguration

To illustrate the computation of TR values of P-BSSF and MFSF, we provide a numerical
example in Fig. 6. The configurations are obtained by using the values of our experimental

Superimposed signature files 365

parameters (later provided in Section 5). The optimized configuration and the stopping step, i,
for P-BSSF are obtained as proposed in Kocberber & Can (1995b).

Except t= 1, the response time of P-BSSF remains unchanged for an increasing number of
query terms. In MFSF, for an increasing number of query terms, since the stopping condition is
reached in fewer evaluation steps the response time decreases.

5. PERFORMANCE ESTIMATION AND EVALUATION

Various performance measures were used in the literature. Some of them are the number of
seek operations (Kent ef al., 1990) the signature reduction ratio (Lee & Leng, 1989) the
computation reduction ratio (Lee et al., 1995) and the response time (Kocberber, 1996a; Lin &
Faloutsos, 1992; Roberts, 1979; Salton, 1989). Some of these measures are not applicable to all
indexing methods. For example, the signature reduction ratio is meaningless for the IF method.
Consequently, there may be difficulties in the performance comparisons between the methods if
a common performance measure is not used. Since the primary goal of all information retrieval
methods is to obtain a desirable response time, we used the response time as a performance
measure. In this way we can compare the performance of MFSF with any other indexing method
and estimate its performance in real life.

To estimate the response time of MFSF, we modeled the operations involved in evaluating a
query with signature files. The values of the database parameters are obtained by inspecting
152,850 MARC records from the Bilkent University Library collection (BLISS-l). The database
contains 166,216 unique terms. We used MARC records since they are widely used to store and

MFSF Configuration
f=4, F,=451,Sl=1,0pl=0.055

F2 = 254, S2 = 1, op2 = 0.096
F3 = 137, S3 = 1, op3 = 0.172
F4 = 358, S4 = 4, op4 = 0.25 1

P-BSSF Configuration
S=6,op=O.l21,i=7

TRforP -BSSF=0.2~1156.6+0.2~1099.9+0.2~1099.9+0.2~1099.9+0.2~1099.9=1111.2ms
Fig. 6. Example response time calculations for MFSF and P-BSSF. *i stands for the number of slices used

to reach the stopping condition.

366 Seyit Kocberber and Fazli Can

Table 3. Parameter values for the simulation runs and experiments

Variable

t mrr =5
&,,=8192
D=25.7
N= 152,850
p<,,c=4
PB=2048
RB=l
Tb,,,,p=0.00098
T-,=5.77
T,,,=4.5
T,,,=30
w,i,e=4

Meaning

maximum number of terms in a query
size of a disk block (bytes)
average number of distinct terms in a record
number of records
size of a record pointer (bytes)
number of record pointers in the record pointer buffer
average number of disk block accesses to retrieve a record
time required to perform bit operations between two memory words (ms)
time required to read a disk block (ms)
average time required to match a record with query (ms)
average time required to position the read head of disk (ms)
size of a memory word (bytes)

distribute the bibliographic information about various types of materials such as books, films,
slides, videotapes, etc.

A 33 MHz, 486 DX personal computer with a hard disk of 360 Mbyte running under DOS 5.0
is used to test the performance of the proposed method. We prefer to use the DOS environment
since it provides exclusive control of all resources. Also, controlling the sequentiality probability
(defined in the next section) is easy in the DOS environment. A current multi-user system can
offer computing powe; and I/O speed equivalent to our experimental environment if not better.
So the results of the experiments can be achieved in multi-user environments without a
performance degradation. The values of the variables are determined experimentally and they
are given in Table 3.

5.1. Modeling the query processing operations

The basic operation to be modeled is reading a specified amount of data from the auxiliary
storage. Data are written and read in blocks and the physical layout of the data on the auxiliary
storage affects the reading time. Therefore, we incorporate the sequentiality probability, SP, into
the estimation of the time required to read b logically consecutive disk blocks (Kocberber &
Can, 1995b; Lin & Faloutsos, 1992). SP is the probability of reading the next logically
consecutive disk block without a seek operation. We estimate the time required to read d
logically consecutive disk blocks as follows (Kocberber & Can, 1995b).

Read(d)=(l+(d- l)$l -SP)).T,,,+d.T,, (16)

where Tsk and TrCd,, are average times required to position the read head of the disk to the desired
block (i.e., it includes the rotational latency time) and to transfer a disk block to memory,
respectively. The first disk block of each request will always require a seek operation.

To process a bit slice, the bit slice must be read and ANDed with the result of the processed
bit slices. By assuming two bit slices will be stored in main memory, the time required to process
a bit slice, Tsllce, is computed as follows.

(17)

where Bsize is the size of a disk block and W,, is the size of a memory word, both in bytes. Tbitop
is the time required to perform a bitwise AND operation between two memory words and store
the result in one of the words.

Usually, data records are variable lengths and a lookup table is used to find the record pointer
of the actual record (see Fig. 2). Since MARC records are variable lengths, we needed a lookup
table and we modeled one obtaining a record pointer as follows. At the database initialization
stage PB record pointers, each occupying Psi,= bytes, are read into a buffer of PB.P,, bytes.
Since this is a one time cost, it is excluded from the response time calculations. The probability
of finding a requested record pointer in the buffer is approximately equal to PB/N. For databases

Superimposed signature files 361

with fixed length records or when all record pointers are stored in the main memory, PB must
be equal to N, i.e., the cost of finding the record pointers is zero.

To check a record, the record pointer is obtained, the record is read, and the record is scanned
to test whether it matches the query. The false drop resolution time for one record, T,,,,,,, is
computed as follows.

T recOIVe = (1 - PBW.Read() + Read(RB) + KC,, (18)

where the first component of TX,,,, is the time needed to read the necessary record pointers, RB
is the average number of disk blocks that must be accessed to read a record, and T,,, is the time
required to compare a record with the query.

5.2. Pe$ormance measurement and comparison with simulation runs

5.2.1. Pe$ormance measurement. We used the improvement percentage (IP) value in the
comparison of the performance of MFSF with GFSSF and P-BSSF. Note that BSSF and B’SSF
are special cases of both P-BSSF and GFSSF. Therefore, we exclude BSSF-MFSF and B’SSF-
MFSF cases in the comparisons. The improvement percentage provided by MFSF with respect
to GFSSF (GFSSF-MFSF) is defined in terms of the response times of the methods involved
as

~~,FSSF-.FSF=1~~(TR,,SS, - TRMFSF~~T&FSSF~

and a similar definition is used for the P-BSSF-MFSF case.

(19)

The same T,,,,,,, value is used in response time calculations of GFSSF, P-BSSF, and MFSF.
The GFSSF method uses a different storage structure. Therefore, TFlice for GFSSF is computed
by considering the frames of GFSSF. The false drop probability computation method proposed
in Lin & Faloutsos (1992) requires extensive computations to optimize a configuration.
Therefore, we computed the false drop probability of GFSSF by using the approximation
proposed in Kocberber & Can (199%). The false drop probability computation method proposed
in Kocberber & Can (199%) converges to the false drop computation method of B’SSF for a
frame size of one bit. B’SSF is a special case of both GFSSF and MFSF and in most of the
inspected cases, GFSSF converges to B’SSF producing a frame width of one bit. Therefore, this
approximation works well for GFSSF.

The optimization method of GFSSF is defined for a given number of query terms (Lin &
Faloutsos, 1992). Since there may be queries with different numbers of query terms in a multi-
term query environment, we obtained TR value for GFSSF as follows. First, we obtained the
optimized configuration of GFSSF t= 1 as proposed in Lin & Faloutsos (1992). Then, we
computed TR value of this configuration by considering the probability distribution of the
number of query terms (P, values) in the inspected multi-term query environment. We repeated
the same computations for t = 2, t= 3, t= 4, and t = 5 and we obtained five different TR values. We
selected the minimum TR value among these five as the TR value of the inspected case. In other
words, in our comparisons our treatment of GFSSF is more than fair. In most of the inspected
cases, the configuration optimized by taking t= 1 gives minimum response time in a multi-term
query environment.

To simulate a multi-term query environment, P, values are determined by assuming a bounded
normal distribution from left and right. The changes in P, values are modeled by changing
variance, V(t), and the expected number of query terms, E(t), values (1%~5). P, values for the
inspected V(t) and E(t) values are given in Table 4. The difference among P, values, hence the
effect of changing E(t) values, decreases for V(t) values greater than or equal to 10.
Consequently, P, values are approximately equal for these distributions (V(t)510) and they are
modeled by the uniform distribution (UD) where all P, values are equal to 0.2 and invariant of
the change in E(t). Therefore, we consider only V(t) = 1 and V(t) = 5. The case V(t) =0 implies an

368 Seyit Kocberber and Fazli Can

Table 4. P, Values for V(f)= 1 and V(t)=5

p, V(f) = 1 v(f)=5

E(r)= 1 E(f)=2 E(r)=3 E(r)=4 E(r)=5 E(t) = 1 E(f)=2 E(r)=3 E(r)=4 E(t)=5

p, 0.553 0.258 0.061 0.006 0.000 0.311 0.23 1 0.161 0.105 0.064
PZ 0.35 1 0.412 0.246 0.066 0.009 0.284 0.257 0.218 0.173 0.129
p3 0.088 0.259 0.388 0.260 0.089 0.211 0.233 0.241 0.233 0.211
p4 0.008 0.065 0.244 0.410 0.350 0.129 0.173 0.218 0.257 0.284
PS 0.000 0.006 0.061 0.258 0.552 0.065 0.106 0.162 0.232 0.312

environment with queries only with I number of terms, i.e., P,= 1. Since it is unrealistic we omit
this case.

The response times, and consequently the IP values, of the inspected methods are affected by
the values of the parameters N, F, SP, t,,, and P,(l%G). Due to the space limitation,
comparing the performance of the methods in all possible domains of the parameters is
impractical. We measure the performance of the methods by allowing change in one parameter
and keeping others unchanged. The values of unchanged variables are selected such that, if
possible, the performance improvement near the selected value is quite stable.

5.2.2. Effect of number of query terms, signature size andplacement of disk blocks. IP values
for varying V(t) and E(t) values are plotted in Fig. 7. In general the effect of the framing on the
performance of MFSF increases as the possibility of queries with various number of query terms
increases, i.e., more P,(1 5Et,,,) cases assume non-zero probability values. For example, for
V(t)= 1 and E(t)= 1 (P, =0.553 and P2=0.351 and other P, values are negligible) the IP value for
GFSSF-MFSF case is 35.37%. In the UD case all P, values are equal to 0.2 and the IP value
for the GFSSF-MFSF case increases to 70%. Since the UD cases exhibit an average
performance, we will use only the UD case in the following comparisons.

Improvement percentage values for varying signature sizes are plotted in Fig. 8. Large
databases (NZ106), with signature sizes less than 800 bits, corresponding to a space overhead
less than 20%, produce many false drops and the response time is relatively high. Therefore, for
practical purposes, we consider F values greater than 800 for such large databases. For F>800,
the IP value varies between 11% and 12.7% for the P-BSSF-MFSF case and between 65% and
70% for the GFSSF-MFSF case. This shows that, except for small F values (F<800), the
performance improvement is quite invariant to changing F values.

To inspect the effect of SP on the IP values for changing F values we included the extreme
cases for SP in Fig. 8. Except for small F values, the same relative performances were obtained
for all SP values.

We want to revisit the effect of the number of query terms on performance one more time. As
shown in Fig. 7, the effect of multi-framing a signature file increases if the possibility of queries

1 2
:t,

4 5

(sp= l,F= 1200,~= 106)

- - *X - -GFSSF-MFSF V(t)=5
GFSSF-MFSF V(t)=1

-P-BSSF-MFSF UD
- - - - P-BSSF-MFSFV(+S

Fig. 7. IP values of GFSSF-MFSF and P-BSSF-MFSF versus varying E(r)- and V(r)-values.

Superimposed signature files 369

200 400 600 800 1000 1200 1400 1600 1800

(F) Signature Size (in bits)

(N = 106, UD Query Case)
Fig. 8. IP values of GFSSF-MFSF and P-BSSF-MFSF versus varying F values.

with a different number of query terms increases. The maximum number of query terms is
limited by r,,,, in our optimization model. We plot the IP values for increasing r,,,, values in Fig.
9. In this figure high t,, values are included to provide a theoretical comparison and may be
hard to observe in practical settings. However, such cases are becoming more realistic due to
multi-media applications (Zezula et al., 1991). For r,,,= 1, i.e., when there are only single term
queries, all methods obtain the same response time and IP values are zero. For increasing I,,
values, the number of queries with a different number of query terms increases. This increases
the performance of MFSF over P-BSSF and GFSSF. Note that rmax value used in other
comparisons (t,,,= 5) is below the saturation point (t,,,= 10) where IP values of P-BSSF-MFSF
and GFSSF-MFSF cases are 16.9% and 84.78%, respectively.

5.2.3. Effect ofdufabuse size. The performance improvement values for changing N values
are plotted in Fig. 10. For N values near 2000, IP values of P-BSSF-MFSF reach 10% and vary
between 11% and 12.7% for increasing N values. IP values of GFSSF-MFSF rise to 65% for
N=30,000 and vary between 65% and 70% for increasing N values. Therefore, accept for very
small N values (N<2000), MFSF performs better than GFSSF.

In the P-BSSF-MFSF case, for Ns65,536, a bit slice fits in a disk block, the same IP values
are obtained for changing SP values. For larger N values negligible variations in IP values are
observed for changing SP values. In the GFSSF-MFSF case, smaller SP values cause IP values
to increase more rapidly for increasing N values. The reason of such a performance decrease for
GFSSF is that the effect of reducing seek operations decreases for lower SP values. As a result,
except for very small database sizes (NC 30,000), the performance improvement of MFSF over
P-BSSF and GFSSF is invariant to the changes in N and SP.

The simulation runs show that, excluding very small databases and signature sizes, MFSF
always outperforms GFSSF and P-BSSF in all parameter domains. For small N values, the
difference between the response times of the methods becomes negligible.

T GFSSF-MFSF

(SP= 1, F= 1200, N= 106,UDQueryCase)
Fig. 9. IP values of GFSSF-MFSF and P-BSSF-MFSF versus varying t,,, values.

370 Seyit Kocberber and Fazli Can

P-BSSF-MFSF SP=I .O

5 -20 1. I0.000 20,000 30,000 40,000 50,000

b -40 -.

-60 -.

-80 -
(N) Number of Records

(F = 1200, UD Query Case).
Fig. 10. IP values of GFSSF-MFSF and P-BSSF-MFSF for varying N values,

There are two important findings of this analysis which verify our intuitive expectations: (i)
the response time of MFSF decreases for an increasing number of query terms, (ii) the
performance of MFSF increases for an increasing number of queries with a different number of
terms (i.e., with more non-zero P, values).

6. REAL DATA EXPERIMENTS

We tested the response time of MFSF by using the same test data used to obtain the database
statistics provided in Table 3. The purpose of these experiments are to observe the actual
behavior of the method, see the agreement between theory and practice, and make projections
for large databases. The test database, BLISS-l, contains 152,850 MARC records and the size
of the data file is 91 Mbyte. In BLISS-l average record length is 613 bytes and on the average
each record contains 25.7 distinct terms. The MARC records are aligned according to disk block
boundaries such that reading of each record during false drop resolution requires only one disk
block access (RB=l) unless the MARC record is larger than a disk block. This alignment
increases the size of the data file by 10%.

6.1. Determining the query signature on-bits used in the query processing

If the query signature on-bits used in the query processing are selected randomly, for the
queries with high numbers of query terms, the partial evaluation strategy may ignore some query
terms by using none of their on-bits. To make sure that each query term contributes to the query
evaluation, we selected the on-bits used in the query evaluation in a round-robin (RR) approach,
i.e., the first on-bit is selected from the first query term, the second on-bit is selected from the
second term, and so on. In MFSF, generally, each term sets only one bit in the lower numbered
frames and the on-bits of a lower numbered frame are used first. Therefore, in MFSF, the RR
method and random selection of the query signature on-bits for query evaluation produce similar
results.

For small N and high I values, which is unlikely in real life, the stopping condition may
require using less number of bit slices than the number of query terms. For such cases, to
guarantee the contribution of each query term to the query evaluation, using additional bit slices
may be required after the stopping condition is reached. However, since the size of bit slices will
be small for small N values the increase in the response time will be small,

Although the observed and estimated average op values of the bit slices of MFSF agree, we
observed higher op values than the estimated value at the bit positions where a high frequency
term (a term occurring in many records) sets bits. When possible, to prevent using bit slices with

Superimposed signature files 371

Table 5. P, values for LW, UD, and HW query cases

Query Case p, p, p, p4 p,

Low Weight (LW) 0.30 0.25 0.20 0.15 0.10
Uniform Distribution (UD) 0.20 0.20 0.20 0.20 0.20
High Weight (HW) 0.10 0.15 0.20 0.25 0.30

high op value in the query evaluation, we sorted the on-bits of a query term in non-decreasing
op value. The RR bit selection method uses on-bits of each query term in this order. Sometimes,
this may ensue using an on-bit from a higher numbered frame before using the on-bits of the
same term in the lower numbered frames. Since this policy may prevent using the bit slices with
high op values, the number of observed false drops and the response time decreases.

6.2. Query generation and performance measurement

To test the performance of MFSF, three different query cases are considered: Uniform
Distribution (UD), Low Weight (LW), and High Weight (HW) queries. P, (1565) values for
these distributions are given in Table 5.

We generated a query set containing 1000 zero hit queries randomly by considering the
occurrence probabilities of the number of query terms for each query case. For example, since
the occurrence probability of a one term query is 0.1 in the HW query case, the HW query set
contains 100 (0.1.1000) one term queries. The observed false drops and response time values are
obtained by taking the average of the false drops and response times obtained by each query in
the query sets. Since there is no relevant record to zero hit queries, all false drops must be
eliminated to find the first relevant record. This coincides with the analytical response time
definition used to test the performance of MFSF with simulation runs.

6.3. Results for false drops and query processing time

The expected (denoted by Exp) and the observed (denoted by Obs) average false drop values
of MFSF for the query cases are given in Table 6. The expected and observed response times
of the query cases are plotted in Fig. 11. In the experiments of this study the term signature
generation algorithm used in Kocberber & Can (1995b) for P-BSSF is replaced with a more
versatile one that avoids generating the same signature for different terms and is provided in
Appendix C of Kocberber (1996a). Since the expected response times of the query cases are
very close, we give only the HW case which provides the lowest response times.

The observed average false drop values, hence the observed response time values, are greater
than the expected values. For increasing F values the expected and observed false drop values
come closer. For Fs800, we obtain too many false drops. Consequently, the response time is
very high and using a signature file of this size is impractical. This is consistent with our
simulation results.

Table 6. Expected and observed average false drop
values for the query cases LW, UD, and HW

LW UD HW

F Exp Obs Exp Obs Exp Obs

1000 0.60 5.19 0.64 2.73 0.47 2.81
1200 0.54 2.60 0.43 2.08 0.43 2.24
1400 0.39 1.66 0.37 1.66 0.41 I .29
1600 0.46 I .55 0.40 1.12 0.31 0.84
1800 0.39 I .28 0.33 0.81 0.24 0.47

372 Seyit Kocberber and Fazli Can

Y ,

1000
20%

1200
24%

1400 1600
28% 32%

(SP = 1, N = 152,850)

1800
36%

(F) Signature Size (in bits)
Space Overhead

Fig. 11, Expected and observed response time versus F.

A small fraction of the records in the test database are very large; for example, there are 584
MARC records containing more than 75 terms which constitute 0.38% of the test database and
the largest record contains 166 unique terms. These large records increase the observed response
time by increasing the number of false drops. We tested the effect of these records on the
response time by removing them from the test database. The signature file parameters for the
reduced databases are optimized by using new average number of unique terms and taking
F= 1200. The results for the UD query case are given in Table 7. The percentage deviation from
the expected response time is computed as

Deviation of TR = 1 OO(TRobserved - TRExpccted)lTRExpectedr and Percentage Deviation of FD is
computed similarly.

The difference between the expected and observed response time values decreases
dramatically as the maximum number of unique terms in the records (second column of Table
7) decreases. Since these large records constitute a small fraction of the database, they can be
stored in a separate file and searched separately to provide a faster response time.

6.4. Scaleability of MFSF: projection for large databases

A desirable indexing method must be scaleable, i.e., adaptable for large databases. To test the
change in the observed response time for increasing database sizes (N value), we performed a
series of experiments in the UD query environment. The results of the experiments are plotted
in Fig. 12. The test databases for the experiments were obtained by considering only the first N
records of the original database. The signature file parameters f, F,, and S, (1 s&j) were
optimized for each run by considering the tested N value for SP= 1 and F= 1200.

To keep the number of false drops, FD, the same for increasing N values the number of bit
slices used in the first phase of a query evaluation increases. This also increases the response
time. However, each additional bit slice causes an exponential increase in the upper bound for
the N value which produces at most the same number of false drops. For example, to obtain

Table 7. Results of limiting maximum number of terms in the records (F= 1200, SP= I)

Expected Observed Deviation (o/o)

N Max D Avg. D Standard Deviation of D FD TR(ms) FD TR(ms) FD TR

152,850 166 25.70 11.12 0.43 303 2.08 541 384 79
152,686 100 25.60 10.72 0.42 302 1.46 440 248 46
152,266 75 25.44 10.24 0.40 301 1.34 402 235 34
149,408 50 24.82 9.26 0.35 296 0.93 342 166 16
140,901 40 23.64 8.12 0.47 284 0.86 308 83 8

Superimposed signature files 373

04
0 25.000 50,000 75,000 100,000 125.000 lSO.000

Number of Records (N)
(SP = 1, F = 1200, UD).

Fig. 12. Response time per record versus N.

FLkO.1 with op=O.Ol one bit slice is sufficient up to N= 10 (this means 0.1 bit slice processing
for each record), two bit slices are sufficient up to N= 100 (this means 0.02 bit slice processing
for each record), and so on (see equation (2)). Therefore, during query-document signature
matching the time spend for each record of the database decreases for increasing N value.

To retrieve the bit slices of MFSF with minimum disk block accesses, the bit slices were
aligned according to the disk block boundaries. In the experiments, a disk block is sufficient to
store a bit slice up to N=65,536 (8.8192). For 65,5371Ns131,072, two disk blocks must he
read to retrieve a bit slice. At the lower bound of this interval (N=65,537) the time spend to read
the processed bit slices increases sharply due to reading additional disk blocks while N increases
only by one. Consequently, the ratio of response time to the number of records (77&V) increases
for N values that cause to retrieve an additional disk block to read a bit slice. The rise in TRlN
will increase for decreasing SP value since the number of seeks will also increase at these
boundary N values. However, TRIN value (i.e., response time per record) will decrease for
increasing N value since the number of bit slices processed for each record decreases
exponentially for increasing N as illustrated by the discussion of the previous paragraph.

We can project the result of this experiment to predict the observed response time for larger
databases by assuming TRIN ratio will not be greater than 3.54 micro seconds for larger
databases. Note that this value is the TRIN figure observed for the complete database, i.e., for
N= 152,850. By assuming TR/N= 3.54 micro seconds, we projected the observed response time
for N= lo6 as 3.54 seconds. Note that this is a pessimistic (worst-case) projection since the TRIN
ratio (response time/record) decreases for increasing N.

7. DISCUSSION AND FUTURE WORK

IF methods and signature file methods are efficient search indices. There are theoretical
(Zobel et nl., 1992) and experimental comparisons (Couvreur et al., 1994; Kocberber & Can,
1996b) of these methods. However, the performance of IF and signature file methods in terms
of efficiency depend on many parameters such as the database instance, the computer used in the
experiments, disk space allocation methods, and the amount of available main memory. Due to
the absence of well defined fair comparison environments the results of the comparisons become
questionable. Another difficulty is that both methods have configuration parameters providing
fine tuning of the performance of the methods. Signature files especially have many
configuration parameters which provide adaptation of the method to various environments.

We confine the scope of this work to define the theoretical base of the MFSF method and
show that it is the best vertically partitioning method among the BSSF, B’SSF, P-BSSF, and
GFSSF methods. In the rest of this section, we provide a brief theoretical comparison of IF and
MFSF in terms of number of disk accesses required to respond a query. Our aim is to show that
MFSF opens new promising research directions rather than proving MFSF performs better than

374 Seyit Kocberber and Fazli Can

IF. In the following discussion, we assume a posting list of IF and a bit slice of MFSF are
represented with a bit string without implying the same storage structure will be used for both
methods. Also, we assume that the pointers to the actual records are stored in main memory.

Our experiments show that for F= 1200, SP= 1, and N= 152,850 depending on the number of
query terms, only four or five disk accesses are needed to complete the signature file processing.
Note that higher F values will require fewer disk accesses while the space overhead of MFSF
increases. For BLISS-l if only 3442 large records are processed with a different method, the
observed number of false drops per query was reduced to 0.93 (see Table 7). Only five or six
disk accesses are sufficient to respond a query independent of the number of relevant records to
the query. Since IF requires two disk accesses for each query term, for F= 1200, SP= 1, and
N= 152,850, MFSF will require fewer disk accesses than IF for queries containing three or more
terms.

As we stated before, usually, each term sets only one bit in the lower numbered frames of
MFSF. Increasing the F value reduces op values of these frames. Lower op values provide
reaching the stopping condition in fewer evaluation steps. For example, for F= 10,000 and
N= 152,850, accessing only three bit slices will be sufficient to complete the signature file
processing for the queries containing up to three terms. If the bit-slices of MFSF are
compressed, increasing F will increase the space overhead slightly since the bit slices will be
more sparse.

In our future research we will inspect increasing F value and storing the bit slices in a
compressed form. If F value is increased until most of the compressed bit slices of a MFSF fit
a disk block, no additional seek operation will be required for any SP value and MFSF can
obtain the same performance in multi-user environments where SP can be considered as zero.
Our initial experiments regarding this provide promising results (Kocberber & Can, 1996b).

To reduce the number of observed false drops to a negligible value, in our future research, we
will incorporate the variation in the number of record terms in the signature file optimization
process instead of using average D value, as used in Grandi et al. (1992); Kocberber & Can
(1995b); Kocberber & Can (1996b); Lin & Faloutsos (1988); Lin & Faloutsos (1992); Roberts
(1979) and Sacks-Davis et al. (1985). Using individual D values of the records in the signature
file optimization process will decrease the gap between the expected and observed response time
values by decreasing the observed response time while increasing the expected response time
(due to more precise computation). To obtain better performance in the databases with non
uniform record term frequencies, the database will be divided into sub-files by distributing the
records among the sub-files according to the length of the records. Then, each sub-file will be
searched by using the best method for the sub-file such as SSF, GFSSF, and MFSF. Another
research topic will be the adaptation of MFSF to parallel processing environments and its
performance evaluation.

8. CONCLUSION

A new signature file method, MFSF, is presented. The new method improves the performance
in a multi-term query environment by dividing the signature file into variable sized vertical
frames with different op. A partial evaluation strategy that dynamically avoids the complete use
of the on-bits of query signatures is used which can be employed in other vertical partitioning
methods. The analysis shows that MFSF provides significant (up to 85%) performance
improvement over GFSSF in a multi-term query environment.

The performance of MFSF is also measured with a prototype information retrieval system
with a database of 152,850 MARC records and using a disk drive with 30 ms seek time. By
using the results obtained for the test database, we projected the worst-case response time for
a database with lo6 records as 3.54 seconds with a 24% space overhead in a uniform distribution
multi-term query environment with l-5 terms per query. This is a very promising result.

Unlike a recent work on vertical partitioning (Lin & Faloutsos, 1992~. 285), in MFSF the
response time decreases with an increasing number of query terms. This is due to our framing
and partial query evaluation strategy that reduces the expected number of false drops to an

Superimposed signature files 375

acceptable value in fewer bit slice evaluations for increasing numbers of query terms.

Furthermore, the response time of MFSF is independent of the number of hits to the queries.
Since the stopping step is determined dynamically according to the number of records in the
database during query evaluation, the need for MFSF reorganization for growing database size
will be infrequent. These are desirable characteristics.

We leave comparing MFSF with other retrieval methods such as IF (Zobel et al., 1992), linear
hashing with superimposed signatures (Zezula et al., 1991), multi-level signature file methods
(Sacks-Davis et al., 1985), multi-organizational scheme (Kent ef al.. 1990), and multi-level
superimposed coding method (Lee et al., 1995) as future work. We believe that, due to
decreasing response time for an increasing number of query terms, MFSF will perform better
than these methods for some application domains where queries with many terms are usual such
as multi-media databases (Zezula et al., 1991).

Acknowledgemenrs-We are grateful to a referee for insightful comments that improved the presentation

REFERENCES

Aktug, I)., & Can, F. (1997). Signature files: An integrated access method for formatted and unformatted databases,
submitted to ACM Camp. Surveys (under revision).

Bookstein, A., & Klein, S. T. (1990). Using bitmaps for medium sized information retrieval systems. Information
Processing & Management, 26(4), 525-533.

Christodoulakis, S.. & Faloutsos, C. (1984). Design considerations for a message file server. /E/X Trans. on Software
Engineering, 10(2), 201-210.

Couvreur, T. R., Bezel, R. N.. Miller, S. F., Zeitler, D. N., Lee, D. L., Singhal. M., Shivaratri, N.. & Wong, W. Y. P.
(1994). An analysis of performance and cost factors in searching large text databases using parallel search systems.
Journal of American Society for Information Science, 45(7), 443464.

Faloutsos, C. (1992). Signature files. In W.B. Frakes and R. Baeza-Yates (Eds) Information refrieval dafa structures and
algorithms, (pp. 44-65). Englewood Cliffs, NJ: Prentice Hall.

Grandi, F., Tiberio, P., & Zezula, P. (1992). Frame-sliced partitioned parallel signature files. In Proceedings of the /Srh
Inrernutional ACM-SIGIR Conference. Copenhagen, Denmark, pp. 286-297.

Kent, A.. Sacks-Davis, R., & Ramamohanarao, K. (1990). A signature file scheme based on multiple organizations for
indexing very large text databases. Journal offhe American Socieq for information Science, 41(7). 508-534.

Kocberber, S.. & Can, E (1995a). Optimization of bit-sliced signature files in multi-term query environments, In
Proceedings of the 10th International S.vmposium 011 Computer and Information Sciences, Ephesus, Turkey, Pp.
161-168.

Kocberber, S.. & Can, F. (1995b). Partial evaluation of queries for bit-sliced signature files. lnformntiorl Processing
Letrers (to appear).

Kocberber, S., & Can, F. (I 995~). Generalized vertical partitioning of signature files. Technical Report BU-CEIS-95 13.
Department of Computer Engineering and Information Science. Bilkent University, Ankara, Turkey (http:/
/www.cs.bilkent.edu,tr/tech-reports/l995~U-CElS-95l3.ps.z).

Kocberber, S. (1996a). Partial query evaluation for vertically partitioned signature tiles in very large unformatted
databases. Ph.D. dissertation, Department of Computer Engineering and Informarion Science, Bilkent University,
Ankara, Turkey (http://www.cs.bilkent.edu.tr/theses/html).

Kocberber, S., & Can, F. (l996b). Fast information retrieval using compressed multi-fragmented signature liles
Technical Report BU-CEIS-9625, Department of Computer Engineering and Information Science, Bilkent University,
Ankara, Turkey (http://www.cs.bilkent.edu.tr/tech-repors/l996/BU-CEIS-9625.ps.z).

Lee. D. L. (1986). A word parallel, bit-serial processor for superimposed coding. In Proceedings qfrhe 2nd Inrernatiorud
Conference on Dora Engineering, Los Angeles, California, pp. 352-359.

Lee, D. L., Kim, Y. M., & Patel, G. (1995). Efficient signature file methods for tex(retrieval. IEEE Transacrions on
Knowledge and Data Engineering, 7(3). 423-435.

Lee, D. L.. & Leng, C. W. (1989). Partitioned signature files: Design issues and performance evaluation. ACM
Trunsacrions on Information Sysfems. 7(2), 158-l 80.

Lin. Z. &. Faloutsos. C. (1988). Frame-sliced signature tiles. Technical Report CS2146 and UMIACS-TR-88-88.
Computer Science Department, University of Maryland.

Lin. Z., & Faloutsos, C. (1992). Frame-sliced signature files. IEEE Transacrions on Knowledge and Datu Engineering,
4(3). 281-289.

Pogue, C. A., & Willett, P. (1987). Use of text signatures for document retrieval in a highly parallel environment.
ParrdIe/ Computing. IO, 259-268.

Roberts. C. S. (I 979). Partial-match retrieval via the method of superimposed codes. Proceedings of the IEEE, 67(12).
I624- 1642.

Sacks-Davis, R., Kent, A., & Ramamohanarao, K. (1985). Performance of multikey access method based on descriptors
superimposed coding techniques. fnformarion Systems, 10(4), 391403.

Salton. G. (1989). Automatic text processing: The trtmsformarion analysis, anal rerrieval of in,formarion by computer.
Reading. MA: Addison-Wesley.

376 Seyit Kocberber and Fazli Can

Zezula, P., Rabitti, F.. & Tiberio, P. (1991). Dynamic partitioning of signature files. ACM Tmnsacrion on lnfomtion
Systems, 9(4), 336-367.

Zobel, J., Moffat, A., & Sacks-Davis, R. (1992). An efficient indexing technique for full-text database systems. In
Proceedings of rhe l&h VWB Conference, Vancouver, British Columbia, Canada, pp. 352-362.

