

Nonlinear Analysis 45 (2001) 651-659

www.elsevier.nl/locate/na

Relaxation of multidimensional variational problems with constraints of general form

Farhad Hüsseinov*

Department of Economics, Bilkent University, 06533 Bilkent, Ankara, Turkey

Received 1 October 1996; accepted 15 July 1999

Keywords: Multidimensional variational problem; Relaxation of variational problem; Convex hull; Young–Fenchel conjugate; Piece-wise affine function; Weak convergence

This paper is devoted to further development of an idea of a well-known theorem of Bogolubov [2]. Here we construct a relaxation of multidimensional variational problems with constraints of rather general form on gradients of admissible functions; it is assumed that the gradient of an admissible function belongs to an arbitrary bounded set. This relaxation involves as a class of admissible functions the closure of the class of admissible functions of the original problem in the topology of uniform convergence, and uses a theorem characterizing this closure, which is proved in [15]. The case when the gradient of an admissible function is constrained within a bounded closed convex body is studied in the works [13,15,19].

The study of multidimensional variational problems was started in 1970s by Ekeland and Temam [13]. The existing literature on relaxation of variational problems, including two monographs by Buttazzo [3] and Dacorogna [9], and the review paper by Marcellini [18] containing a considerable list of references, is quite rich. However, the author failed to find a setting similar to that of the paper. For the most recent results on relaxation and related topics see [1,4-8,11,14].

This paper deals with the case where an integrand depends on a scalar function of several variables. At the end of the paper we will make a conjecture on generalization of the main relaxation result of the paper to the case of an integrand depending on a vector function of several variables. We also make a conjecture on generalization of

^{*} Tel.: +90-04-312-266-4040; fax: +90-04-312-266-4960.

E-mail address: farhad@bilkent.edu.tr (F. Hüsseinov).

the above-mentioned theorem on characterization of the closure, which is an important tool in the proof of the main result, for the vectorial case.

 R^n will stand for *n*-dimensional Euclidean space of points $t = (t_1, \ldots, t_n)$. Let Ω be an arbitrary bounded open set in R^n . Denote by $C(\overline{\Omega})$ the space of all real continuous functions on $\overline{\Omega}$ with the norm

$$||x(\cdot)||_{C(\overline{\Omega})} = \max_{t\in\overline{\Omega}} |x(t)|.$$

Denote by $W_{\infty}^{1}(\Omega)$ the Sobolev space of all essentially bounded measurable functions on Ω , with essentially bounded first generalized partial derivatives. It is well known that a function $x(\cdot)$ from $W_{\infty}^{1}(\Omega)$ is continuous on Ω and possesses the ordinary first derivatives $\partial x/\partial t_i$ (i = 1, ..., n) almost everywhere (a.e.) on Ω (see [13,20]). If domain Ω satisfies additional conditions (e.g., if Ω is Lipschitzian), then $W_{\infty}^{1}(\Omega) \subset C(\overline{\Omega})$. Let $\overline{W}_{\infty}^{1}(\Omega) = W_{\infty}^{1}(\Omega) \cap C(\overline{\Omega})$. So, if Ω is sufficiently regular, then $\overline{W}_{\infty}^{1}(\Omega) = W_{\infty}^{1}(\Omega)$. Denote by $B_r(0)$ a ball in \mathbb{R}^n with the center at the origin and radius r. Given a set $V \subset \mathbb{R}^n$ and a positive number r let $V_r = \{v \in V: \operatorname{dist}(v, \partial V) \ge r\}$, where ∂V is the boundary of V.

Recall that function $x(\cdot): \overline{\Omega} \to R$ is said to be piece-wise affine, if it is continuous and there exists a partition of $\overline{\Omega}$ into a subset of measure zero and a finite number of open sets, on which $x(\cdot)$ is affine. A continuous function on $\overline{\Omega}$ is said to be almost piece-wise affine, if its restriction to an arbitrary strict interior subdomain of Ω is piece-wise affine.

Let X, Y be topological spaces, and I, J be functionals defined on X and Y, respectively. The variational problem $\inf\{J(y): y \in Y\}$ is said to be a relaxation of the problem $\inf\{I(x): x \in X\}$, if there exists a continuous mapping $i: X \to Y$, such that: (i) i(X) is dense in Y, (ii) $J(i(x)) \leq I(x)$ for each $x \in X$, and (iii) for an arbitrary $y \in Y$ there exists a sequence $x_k \in X$ ($k \in N$) such that $i(x_k) \to y$ and $J(y) \geq \lim_{k\to\infty} I(x_k)$. Moreover, if functional J is lower semicontinuous, then a relaxation is called a lower semicontinuous relaxation (see [16]).

Let $f: \overline{\Omega} \times R \times R^n \to R$ be a continuous function, U be an arbitrary bounded set in R^n with an affine hull R^n , $\Gamma \subset \partial \Omega$ and $\phi: \Gamma \to R$ be some fixed function. Consider the following problem of multidimensional variational calculus, which we will refer to as problem (P):

$$J(x(\cdot)) = \int_{\Omega} f(t, x(t), \operatorname{grad} x(t)) d(t) \to \inf,$$
(1)

 $\operatorname{grad} x(t) \in U$ a.e. in Ω , (2)

$$x(t) = \phi(t) \quad \text{for } t \in \Gamma,$$
 (3)

where $x(\cdot) \in \overline{W}_{\infty}^{1}(\Omega)$. The case when $\Gamma = \emptyset$, i.e., when the boundary condition (3) is absent, will be referred to as problem (P₀).

A function $x(\cdot) \in \overline{W}_{\infty}^{1}(\Omega)$ is called admissible in problem (P)((P₀)), if it satisfies conditions (2), (3) ((2)). The set of all admissible functions in problem (P)((P₀)) will

be denoted by $E(U, \phi)(E(U))$. Thus

$$E(U) = \{x(\cdot) \in \overline{W}_{\infty}^{1}(\Omega): \text{ grad } x(t) \in U \text{ a.e. in } \Omega\},\$$
$$E(U,\phi) = \{x(\cdot) \in E(U): x(\cdot)|_{\Gamma} = \phi\}.$$

The space $\overline{W}^{1}_{\infty}(\Omega)$ and its subsets E(U), $E(U, \phi)$ will be considered with the metric of uniform convergence.

Along with problem (P) we consider the following problem (problem (PR)):

$$J_R(x(\cdot)) = \int_{\Omega} f_U^{**}(t, x(t), \operatorname{grad} x(t)) d(t) \to \inf, \qquad (1')$$

$$x(t) = \phi(t) \quad \text{for } t \in \Gamma,$$
 (3')

where $\overline{co} U$ is the closed convex hull of U and $f_U^{**}(t,x,\cdot) = (f(t,x,\cdot) + \delta(\cdot|U))^{**}$. Here

$$\delta(u|U) = \begin{cases} 0 & \text{for } u \in U, \\ +\infty & \text{for } u \in R^n \setminus U \end{cases}$$

is the indicator function of U, and ** designates the operation of taking second Young– Fenchel conjugate (see [17, p. 183]). In case of $\Gamma = \emptyset$ problem (PR) will be denoted as (P₀R).

The above-mentioned assertion on closure consists of the following:

$$\overline{E(U)} = E(\overline{co} U),$$

i.e. the closure in the uniform metric of a class of functions continuous on Ω with gradients from the bounded set U coincides with the class of functions continuous on $\overline{\Omega}$ and with gradients from the closed convex hull of U. Moreover, if condition (4) of Theorem 1 below is satisfied, then Theorem 1' from Hüsseinov [15] implies the following coincidence

$$E(U,\phi) = E(\overline{co} U,\phi).$$

Theorem 1. Let $U \subset \mathbb{R}^n$ be an arbitrary bounded set in \mathbb{R}^n with the affine hull \mathbb{R}^n . Suppose that there exists an admissible function $y_0(\cdot) \in E(\overline{co} U, \phi)$ in problem (PR) such that

$$\operatorname{grad} y_0(t) \in U_0 \quad a.e. \text{ in } \Omega, \tag{4}$$

where U_0 is a closed set contained in the interior of $\overline{co} U$. Then, for an arbitrary function $x(\cdot) \in E(\overline{co} U, \phi)$ admissible in problem (PR), there exists a sequence of functions $x_k(\cdot)$ ($k \in N$), admissible in problem (P), uniformly converging to $x(\cdot)$, and such that

$$\lim_{k\to\infty} J(x_k(\cdot)) = J_R(x(\cdot)).$$

In particular, when the boundary condition (3) is absent, i.e. for problem (P_0) , condition (4) in Theorem 1 is satisfied automatically.

The following lemma will be used in the proof of Theorem 1.

Lemma. Let T be a topological space, U be an arbitrary bounded set in $\mathbb{R}^n, U_0 \subset U$ be a compact set contained in the interior of $\overline{co} U$ or a segment, and $f: T \times \mathbb{R}^n \to \mathbb{R}$ be a continuous function. Then a restriction of function $f_U^{**}(\tau, u)$ to $T \times U_0$ is continuous.

Proof. Since $f_U^{**} = f_{\overline{U}}^{**}$, we suppose, without loss of generality, that U is closed. Fix a point $(\tau_0, u_0) \in T \times U_0$ and a positive number ε . It is easily seen that, there exists a neighborhood $S(\tau_0)$ of point τ_0 such that

$$|f(\tau, u) - f(\tau_0, u)| < \varepsilon \quad \text{for } \tau \in S(\tau_0), \quad u \in \overline{co} \ \overline{U}.$$
(5)

It is well known that

$$f_U^{**} = \min\left\{\sum_{i=1}^{n+1} \lambda_i f(\tau, u_i): \sum_{i=1}^{n+1} \lambda_i u_i = u, \ u_i \in U, \ \sum_{i=1}^{n+1} \lambda_i = 1, \ \lambda_i \ge 0\right\}.$$

From this and (5) we obtain that

$$f_U^{**}(\tau, u) = \sum_{i=1}^{n+1} \bar{\lambda}_i f(\tau, \overline{u}_i) \ge \sum_{i=1}^{n+1} \bar{\lambda}_i f(\tau_0, \overline{u}_i) - \varepsilon \ge f_U^{**}(\tau_0, u) - \varepsilon.$$

Symmetrically,

$$f_U^{**}(\tau_0, u) \ge f_U^{**}(\tau, u) - \varepsilon.$$

Consequently,

$$|f_U^{**}(\tau_0, u) - f_U^{**}(\tau_0, u)| < \varepsilon \quad \text{for } \tau \in S(\tau_0) \quad u \in \overline{co} \ U.$$

Since $f_U^{**}(\tau_0, \cdot)$ is a convex and lower semicontinuous it is continuous on U (in both the cases stipulated in the lemma). Therefore, there exists a number $\delta > 0$ such that

$$|f_U^{**}(\tau, u) - f_U^{**}(\tau_0, u_0)| < \varepsilon \text{ for } u \in U_0, \quad ||u - u_0|| < \delta.$$

The last two inequalities imply that

$$|f_U^{**}(\tau, u) - f_U^{**}(\tau_0, u_0)| < 2a$$

for $\tau \in S(\tau_0)$, $||u - u_0|| < \delta$. Therefore, function $f_U^{**}|_{T \times U_0}$ is continuous at the point (τ_0, u_0) .

Proof of Theorem 1. Let $x(\cdot) \in E(\overline{co} \overline{U}, \phi)$ be an admissible function in problem (PR) and $\varepsilon > 0$. Consider the sequence of functions $x_k(t) = ((k-1)/k)x(t) + (1/k)y_0(t)$ $(k \in N)$. Clearly, $x_k(\cdot) \in E(\overline{co} U, \phi)$ and

$$x_k(\cdot) \to_k x(\cdot)$$
 uniformly on Ω , (6)

 $\operatorname{grad} x_k(t) \to_k \operatorname{grad} x(t) \quad \text{for a.a. } t \in \Omega,$ (7)

$$\operatorname{grad} x_k(t) + B_{r_k}(0) \subset U \quad \text{for a.a. } t \in \Omega,$$
(8)

where r_k , $(k \in N)$ are positive numbers.

It follows from relations (6), (8) and the lemma that

$$\|x_{k}(\cdot) - x(\cdot)\|_{C(\overline{\Omega})} < \frac{\varepsilon}{4},$$

$$|J_{R}(x_{k}(\cdot)) - J_{R}(x(\cdot))| < \frac{\varepsilon}{4}$$
(9)

for sufficiently large indices k.

Let k_0 be such that (9) holds for k_0 . Let $\bar{x}(\cdot) = x_{k_0}(\cdot)$, $r = r_{k_0}/2$. By Theorem 1' from Hüsseinov [15], there exists a sequence of almost piece-wise affine functions $y_k(\cdot) \in E(\overline{co} \ U, \phi)$ uniformly converging to $x(\cdot)$. Then the sequence of vector functions grad $y_k(\cdot)$ ($k \in N$) weakly converges to vector function grad $\bar{x}(\cdot)$ in Banach space $L_1^n(\Omega)$ of summable *n*-vector functions on domain Ω . By Mazur's Theorem (Corollary 3.14 from Dunford and Schwartz [12, p. 457]) it follows that there exist convex combinations $z_m(\cdot) = \sum_{k=N_m+1}^{N_{m+1}} \alpha_k^m y_k(\cdot)$ ($m \in N$) of functions $y_k(\cdot)$ ($k \in N$), where $\alpha_k \ge 0$, $\sum_{k=N_m+1}^{N_{m+1}} \alpha_k^{(m)} = 1$ and N_m ($m \in N$) is a strictly increasing sequence of integers such that

$$\operatorname{grad} z_m(t) \to \operatorname{grad} \bar{x}(t) \quad \text{for a.a. } t \in \Omega.$$
 (10)

Thus, the functions $z_m(\cdot)$ are almost piece-wise affine, $z_m(\cdot) \in E((\overline{co} U)_r, \phi)$ (m = 1, 2, ...), the sequence $z_m(\cdot)$ $(m \in N)$ uniformly converges to $\bar{x}(\cdot)$, and condition (10) is satisfied. From that we obtain

$$\|z_m(\cdot) - \bar{x}(\cdot)\|_{C(\overline{\Omega})} < \frac{\varepsilon}{4},$$

$$|J_R(z_m(\cdot)) - J_R(\bar{x}(\cdot))| < \frac{\varepsilon}{4}$$
 (11)

for sufficiently large *m*. Fix one of such indices m_0 and denote $\bar{z}(\cdot) = z_{m_0}(\cdot)$. We obtain from relations (9) with $k = k_0$ and (11) with $m = m_0$

$$\|\bar{z}(\cdot) - x(\cdot)\|_{C(\Omega)} < \frac{\varepsilon}{2},$$

$$|J_R(\bar{z}(\cdot)) - J_R(x(\cdot))| < \frac{\varepsilon}{2}.$$
 (12)

So, function $\overline{z}(\cdot)$ is almost piece-wise affine, $\overline{z}(\cdot) \in E((\overline{co} U)_r, \phi)$ and satisfies relations (12).

Denote $M = 1 + \max |x(t)|$. Since integrand f is continuous on compact $K = \overline{\Omega} \times [-M, M] \times \overline{U}$, there exists a positive number $\delta'_0 < \varepsilon/2$ such that

$$|f(t_1, x_1, u_1) - f(t_2, x_2, u_2)| < \frac{\varepsilon}{2}$$
(13)

for $(t_1, x_1, u_1), (t_2, x_2, u_2) \in K$, $||t_1 - t_2|| < \delta'_0, ||u_1 - u_2|| < \delta'_0.$

In sequel, we shall omit the index U in notation f_U^{**} . By the lemma function f^{**} is continuous on compact $K_r = \overline{\Omega} \times [-M, M] \times (\overline{co} U)_r$. Hence, there exists $\delta_0 \in (0, \delta'_0)$ such that

$$|f^{**}(t_1, x_1, u_1) - f^{**}(t_1, x_1, u_1)| < \frac{\varepsilon}{2}$$
(14)

for $(t_1, x_1, u_1), (t_2, x_2, u_2) \in K_r$, $||t_1 - t_2|| < \delta_0$, $||u_1 - u_2|| < \delta_0$. Since the functions $x(\cdot)$ and $\overline{z}(\cdot)$ are continuous on Ω , there exists $\delta \in (0, \delta_0/2)$ such that

$$|x(t_1) - x(t_2)| < \delta_0, \quad |\bar{z}(t_1) - \bar{z}(t_2)| < \frac{\delta_0}{2} \quad \text{for } ||t_1 - t_2|| < \delta.$$
 (15)

Denote by Δ_j $(j \in N)$ the simplices of affineness of function $\overline{z}(\cdot)$, $a_j = \operatorname{grad} z(t)$ for $t \in \operatorname{int} \Delta_j$ $(j \in N)$. Without loss of generality, we assume that diam $\Delta_j < \delta$ $(j \in N)$. Fix $t_j \in \Delta_j$ $(j \in N)$. It is well known that

$$f^{**}(t_j, \bar{z}(t_j), a_j) = \inf \left\{ \sum_{i=1}^{n+1} \alpha_i^j f(t_j, \bar{z}(t_j), v_i^j) \colon \sum_{i=1}^{n+1} \alpha_i^j v_i^j = a_j, \ v_i^j \in U, \ \sum_{i=1}^{n+1} \alpha_i^j = 1, \ \alpha_i^j \ge 0 \right\}.$$

Then for some numbers $\alpha_i^j > 0$ $(i=1,2,\ldots,n+1)$, $\sum_{i=1}^{n+1} \alpha_i^j = 1$ and affinely independent vectors v_i^j $(i=1,2,\ldots,n+1)$ from U

$$\left| f^{**}(t_j, \bar{z}(t_j), a_j) - \sum_{i=1}^{n+1} \alpha_i^j f(t_j, \bar{z}(t_j), v_i^j) \right| < \frac{\varepsilon}{2},$$

$$\sum_{i=1}^{n+1} \alpha_i^j v_i^j = a_j.$$
(16)

Put $u_i^j = v_i^j - a_j$ (i = 1, 2, ..., n + 1) and denote $\sum_j = co\{u_1^j, ..., u_{n+1}^j\}$. Since, vectors u_i^j (i = 1, 2, ..., n + 1) are affinely independent and $\sum_{i=1}^{n+1} \alpha_i^j v_i^j = 0$, where $\alpha_i^j > 0$ (i = 1, 2, ..., n + 1) then \sum_j is an *n*-dimensional simplex with the interior containing zero. Denote $D_j = \sum_j^0$ polar of the simplex \sum_j , $s_j(\cdot)$ – support function of set $\{u_1^j, ..., u_{n+1}^j\}$.

Partition simplex Δ_j into at most countably many simplices $\Delta_1^j, \Delta_2^j, \ldots$, homothetic to D_j and such that diam $\Delta_k^j < \delta \operatorname{diam} D_j$. Denote by d_k^j the similarity coefficients of simplices Δ_k^j and D_j and put

$$s_k^j(t) = \begin{cases} s(t - t_k^j) - d_k^j & \text{for } t \in \Delta_k^j, \\ 0 & \text{for } t \in \overline{\Omega} \setminus \Delta_k^j \end{cases}$$

and $\sigma_i(\Delta_k^j) = \{t \in \Delta_k^j: s_k^j(t) = \langle t - t_k^j, u_k^j \rangle - d_k^j\}$ (i = 1, 2, ..., n + 1), for arbitrary indices *j*, *k*, where $t_k^j \in \Delta_k^j$ is the image of the origin under the homothety $D_j \to \Delta_k^j$. Obviously, function $s_k^j(\cdot)$ is piece-wise affine and

$$-\delta \le s_k^J(t) \le 0. \tag{17}$$

Put

$$s(t) = \sum_{j,k} s_k^j(t)$$
 and $z(t) = \overline{z}(t) + s(t)$.

Since

grad
$$z(t) = \operatorname{grad} \bar{z}(t) + u_i^j = a_j + u_i^j = v_i^j \in U$$
 for $t \in \sigma_i(\Delta_k^j)$

656

and simplices $\sigma_i(\Delta_k^j)$ $(i = 1, 2, ..., n + 1; j, k \in N)$ cover domain Ω , then function $z(\cdot)$ is admissible in problem (P), i.e. $z(\cdot) \in E(U, \phi)$.

Utilizing inequalities (15)-(17) and Proposition 2 from Hüsseinov [15] we estimate the difference

$$\left| \int_{\Delta_{k}^{j}} f^{**}(t, \bar{z}(t), \operatorname{grad} \bar{z}(t)) d(t) - \int_{\Delta_{k}^{j}} f(t, z(t), \operatorname{grad} z(t)) dt \right|$$

$$= \left| \int_{\Delta_{k}^{j}} f^{**}(t, \bar{z}(t), \operatorname{grad} \bar{z}(t)) d(t) - \sum_{i+1}^{n+1} \int_{\sigma_{i}(\Delta_{k}^{j})} f(t, \bar{z}(t) + s_{k}^{j}(t), v_{i}^{j}) d(t) \right|$$

$$\leq \left| \operatorname{mes}(\Delta_{k}^{j}) f^{**}(t_{j}, \bar{z}(t_{j}), a_{j}) - \sum_{i=1}^{n+1} \alpha_{i}^{j} \operatorname{mes}(\Delta_{k}^{j}) f(t_{j}, \bar{z}(t_{j}), v_{i}^{j}) \right| + \varepsilon \operatorname{mes}(\Delta_{k}^{j})$$

$$= \operatorname{mes}(\Delta_{k}^{j}) \left[\left| f^{**}(t_{j}, \bar{z}(t_{j}), a_{j}) - \sum_{i=1}^{n+1} \alpha_{i}^{j} f(t_{j}, \bar{z}(t_{j}), v_{i}^{j}) \right| \right] \leq 2\varepsilon \operatorname{mes}(\Delta_{k}^{j}). \quad (18)$$

Summing up inequalities (18) by j,k we obtain

$$|J_{f^{**}}(\bar{z}(\cdot)) - J(\bar{z}(\cdot))| < 2\varepsilon \operatorname{mes}(\Omega).$$
(19)

It is clear from (17) that

 $\|\bar{z}(\cdot)-z(\cdot)\|_{C(\overline{\Omega})}<\frac{\varepsilon}{2}.$

From this and from the first of inequalities (12) it follows that

 $\|z(\cdot)-x(\cdot)\|_{C(\overline{\Omega})}<\varepsilon,$

and from (19) and from the second of inequalities (12) that

$$|J_R(x(\cdot)) - J(z(\cdot))| < \varepsilon[1 + 2 \operatorname{mes}(\Omega)].$$

The theorem is proved. \Box

Theorem 1 and Lemma 4 from Hüsseinov [15] imply the following result.

Theorem 2. Let U be a bounded set in \mathbb{R}^n with an affine hull \mathbb{R}^n , and assumption (4) of Theorem 1 be satisfied. Then problem (PR) is a lower semicontinuous relaxation of problem (P).

For $U \subset \mathbb{R}^{m \times n}$ the closure of the quasiconvex hull is defined as (see [10, Definition 2.2]):

 $\overline{Qco} U = \{ \xi \in \mathbb{R}^{m \times n} : f(\xi) \le 0, \forall f : \mathbb{R}^{m \times n} \to \mathbb{R}, \text{ quasiconvex and } f|_U = 0 \}.$ We denote for $U \subset \mathbb{R}^{m \times n}$

 $E(U) = \{x(\cdot) \in W^1_{\infty}(\Omega; \mathbb{R}^m) : Dx(t) \in U \text{ a.e. in } \Omega\},\$

where Dx(t) denotes the Jacobi matrix of $x(\cdot)$ at t. We conjecture the following coincidence: $\overline{E(U)} = E(\overline{Qco} U)$, where $\overline{E(U)}$ denotes the closure of E(U) in uniform metric of $\overline{W}^{1}_{\infty}(\Omega; \mathbb{R}^{m})$.

Consider the following two variational problems. The first is the problem (\mathscr{P}) obtained from (P) by treating f as a function $\mathbb{R}^{m \times n} \to \mathbb{R}$, $\operatorname{grad} x(t)$ replaced by Dx(t) the Jacobi matrix of $x(\cdot) : \Omega \to \mathbb{R}^m$ at t, and $\phi(\cdot) : \Gamma \to \mathbb{R}^m$. The second problem is

$$J_R(x(\cdot)) = \int_{\Omega} Qf_U(t, x(t), Dx(t)) \, \mathrm{d}t \to \inf,$$
$$x(t) = \phi(t) \quad \text{for } t \in \Gamma,$$

where $Qf_U(t,x,\cdot)$ is the quasiconvex envelope (i.e. the maximal quasiconvex function not exceeding f) of the function $f(t,x,\cdot)+\delta(\cdot|U)$, $\delta(\cdot|U)$ being the indicator function of U.

Conjecture. Let $U \subset \mathbb{R}^{m \times n}$ be an arbitrary bounded set with $\overline{Qco} U$ having an interior point. Suppose that there exists an admissible function $y_0(\cdot) \in E(\overline{Qco} U, \varphi)$ in problem $(\mathscr{P}R)$ such that $Dy_0(t) \in U_0$ a.e. in Ω , where U_0 is a closed set contained in the interior of $\overline{Qco} U$, then for an arbitrary vector function $x(\cdot) \in E(\overline{Qco} U, \varphi)$ admissible in problem $(\mathscr{P}R)$, there exists a sequence of vector-functions $x_k(\cdot)$ ($k \in N$) admissible in problem (\mathscr{P}) , uniformly converging to $x(\cdot)$ and such that

 $\lim J(x_k(\cdot)) = J_R(x(\cdot)).$

Acknowledgements

I am grateful to an anonymous referee for helpful comments.

References

- [1] L. Ambrosio, G. Dal Maso, On the relaxation in $BV(\Omega; \mathbb{R}^m)$ of quasi-convex integrals, J. Funct. Anal. 109 (1992) 1.
- [2] N.N. Bogolubov, Sur quelques methods dans la calculus des variations, Amer. Math. Pure. Ser. 4 (1930) 249–271.
- [3] G. Buttazzo, Semicontinuity, Relaxation, and Integral Representations in the Calculus of Variations, Longman Scientific and Technical, Harlow, 1989.
- [4] G. Bouchitte, G. Buttazzo, Relaxation for a class of nonconvex functionals defined on measures, Ann. Inst. H. Poincare, Anal. Non Linearie 10 (1993) 345–361.
- [5] G. Buttazzo, G. Dal Maso, An existence result for a class of shape optimization problems, Arch. Rational Mech. Anal. 122 (1993) 183–195.
- [6] G. Buttazzo, G. Dal Maso, A. Garonni, A. Malusa, On relaxed formulation of shape optimization problems, Adv. Math. Sci. Appl. 7 (1997) 1–24.
- [7] L. Carbone, R. De Arcangelis, On the relaxation of some classes of unbounded integral functionals, Matematiche (Catania) 51 (1996) 221–252.
- [8] E.A. Corbo, R. De Arcangelis, Comparison results for some types of relaxation of variational integral functionals, Ann. Mat. Pura Appl. 164 (1993) 155–193.
- [9] B. Dacorogna, Direct Methods in the Calculus of Variations, Springer, New York, 1989.

- [10] B. Dacorogna, P. Marcellini, Cauchy–Dirichlet problem for first order nonlinear systems, J. Funct. Anal. 152 (1998) 404–446.
- [11] R. De Arcangelis, L. Carbone, On integral representation, relaxation and homogenization for unbounded functionals, Atti Accad. Naz. Lincei, Mat. Appl. 8 (1997) 129–135.
- [12] N. Dunford, J.T. Schwartz, Linear Operators, Vol. 1, Interscience Publishers, New York, 1958.
- [13] I. Ekeland, R. Temam, Convex Analysis and Variational Problems, North-Holland, Amsterdam, 1976.
- [14] I. Fonseca, P. Marcellini, Relaxation of multiple integrals in subcritical Sobolev Spaces, J. Geom. Anal. 7 (1997) 57–81.
- [15] F.V. Hüsseinov, On the question of extension of multidimensional variational problems, Izv. Acad. Sci. USSR, Ser. Math. 50 (1986) 3–21; English transl., Math. USSR Izv. 28 (1987) 1–19.
- [16] A.D. Ioffe, V.M. Tikhomirov, Relaxation of Variational Problems, Trudy Moskov. Mat. Obshch. 18 (1968) 187–246.
- [17] A.D. Ioffe, V.M. Tikhomirov, Theory of Extremal Problems, Nauka, Moscow, 1974.
- [18] P. Marcellini, Non convex integrals of the calculus of variations, in: A. Cellina (Ed.), Methods of Nonconvex Analysis (Varenna 1989), Lecture Notes in Mathematics, Vol. 1446, Springer, Berlin, 1990 16–57.
- [19] V.I. Matov, Study of one problem of multidimensional variational problem, Viestnik MGU, Ser. Mat. Mech. 1 (1978) 61–69.
- [20] S.L. Sobolev, Some Applications of Functional Analysis in Mathematical Physics, LGU, Leningrad, 1959.