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This paper is devoted to further developement of an idea of a well-known theorem
of Bogolubov [2]. Here we construct a relaxation of multidimensional variational prob-
lems with constraints of rather general form on gradients of admissible functions; it is
assumed that the gradient of an admissible function belongs to an arbitrary bounded set.
This relaxation involves as a class of admissible functions the closure of the class of
admissible functions of the original problem in the topology of uniform convergence,
and uses a theorem characterizing this closure, which is proved in [15]. The case when
the gradient of an admissible function is constrained within a bounded closed convex
body is studied in the works [13,15,19].
The study of multidimensional variational problems was started in 1970s by Ekeland

and Temam [13]. The existing literature on relaxation of variational problems, including
two monographs by Buttazzo [3] and Dacorogna [9], and the review paper by Marcellini
[18] containing a considerable list of references, is quite rich. However, the author failed
to And a setting similar to that of the paper. For the most recent results on relaxation
and related topics see [1,4–8,11,14].
This paper deals with the case where an integrand depends on a scalar function of

several variables. At the end of the paper we will make a conjecture on generalization
of the main relaxation result of the paper to the case of an integrand depending on a
vector function of several variables. We also make a conjecture on generalization of
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the above-mentioned theorem on characterization of the closure, which is an important
tool in the proof of the main result, for the vectorial case.
Rn will stand for n-dimensional Euclidean space of points t = (t1; : : : ; tn): Let K be

an arbitrary bounded open set in Rn: Denote by C(K) the space of all real continuous
functions on K with the norm

‖x(·)‖C(K) = max
t∈K

|x(t)|:

Denote by W 1
∞(K) the Sobolev space of all essentially bounded measurable functions

on K; with essentially bounded Arst generalized partial derivatives. It is well known
that a function x(·) from W 1

∞(K) is continuous on K and possesses the ordinary Arst
derivatives @x=@ti (i=1; : : : ; n) almost everywhere (a.e.) on K (see [13,20]). If domain
K satisAes additional conditions (e.g., if K is Lipschitzian), then W 1

∞(K)⊂C(K): Let
W

1
∞(K) = W 1

∞(K) ∩ C(K). So, if K is su2ciently regular, then W
1
∞(K) = W 1

∞(K).
Denote by Br(0) a ball in Rn with the center at the origin and radius r: Given a set
V ⊂Rn and a positive number r let Vr = {v ∈ V : dist(v; @V ) ≥ r}; where @V is the
boundary of V:
Recall that function x(·) : K → R is said to be piece-wise a2ne, if it is continuous

and there exists a partition of K into a subset of measure zero and a Anite number of
open sets, on which x(·) is a2ne. A continuous function on K is said to be almost
piece-wise a2ne, if its restriction to an arbitrary strict interior subdomain of K is
piece-wise a2ne.
Let X; Y be topological spaces, and I; J be functionals deAned on X and Y; respec-

tively. The variational problem inf{J (y): y ∈ Y} is said to be a relaxation of the
problem inf{I(x): x ∈ X }; if there exists a continuous mapping i : X → Y; such that:
(i) i(X ) is dense in Y; (ii) J (i(x)) ≤ I(x) for each x ∈ X; and (iii) for an arbitrary y ∈ Y
there exists a sequence xk ∈ X (k ∈ N ) such that i(xk) → y and J (y) ≥ limk→∞ I(xk):
Moreover, if functional J is lower semicontinuous, then a relaxation is called a lower
semicontinuous relaxation (see [16]).
Let f : K × R × Rn → R be a continuous function, U be an arbitrary bounded set

in Rn with an a2ne hull Rn; M⊂ @K and � : M → R be some Axed function. Consider
the following problem of multidimensional variational calculus, which we will refer to
as problem (P):

J (x(·)) =
∫
K
f(t; x(t); grad x(t))d(t) → inf ; (1)

grad x(t) ∈ U a:e: in K; (2)

x(t) = �(t) for t ∈ M; (3)

where x(·) ∈ W
1
∞(K): The case when M = ∅; i.e., when the boundary condition (3) is

absent, will be referred to as problem (P0):
A function x(·) ∈ W

1
∞(K) is called admissible in problem (P)((P0)); if it satisAes

conditions (2), (3) ((2)). The set of all admissible functions in problem (P)((P0)) will
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be denoted by E(U;�)(E(U )): Thus

E(U ) = {x(·) ∈ W
1
∞(K): grad x(t) ∈ U a:e: in K};

E(U;�) = {x(·) ∈ E(U ): x(·)|M = �}:
The space W

1
∞(K) and its subsets E(U ); E(U;�) will be considered with the metric

of uniform convergence.
Along with problem (P) we consider the following problem (problem (PR)):

JR(x(·)) =
∫
K
f∗∗
U (t; x(t); grad x(t))d(t) → inf ; (1′)

x(t) = �(t) for t ∈ M; (3′)

where coU is the closed convex hull of U and f∗∗
U (t; x; ·)=(f(t; x; ·)+�(·|U ))∗∗: Here

�(u|U ) =

{
0 for u ∈ U;

+∞ for u ∈ Rn\U
is the indicator function of U; and ∗∗ designates the operation of taking second Young–
Fenchel conjugate (see [17, p. 183]). In case of M = ∅ problem (PR) will be denoted
as (P0R):
The above-mentioned assertion on closure consists of the following:

E(U ) = E(coU );

i.e. the closure in the uniform metric of a class of functions continuous on K with
gradients from the bounded set U coincides with the class of functions continuous on
K and with gradients from the closed convex hull of U: Moreover, if condition (4)
of Theorem 1 below is satisAed, then Theorem 1′ from H(usseinov [15] implies the
following coincidence

E(U;�) = E(coU; �):

Theorem 1. Let U ⊂Rn be an arbitrary bounded set in Rn with the a2ne hull Rn:
Suppose that there exists an admissible function y0(·) ∈ E(coU; �) in problem (PR)
such that

grad y0(t) ∈ U0 a:e: in K; (4)

where U0 is a closed set contained in the interior of coU: Then; for an arbitrary
function x(·) ∈ E(coU; �) admissible in problem (PR); there exists a sequence of
functions xk(·) (k ∈ N ); admissible in problem (P); uniformly converging to x(·); and
such that

lim
k→∞

J (xk(·)) = JR(x(·)):

In particular, when the boundary condition (3) is absent, i.e. for problem (P0);
condition (4) in Theorem 1 is satisAed automatically.
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The following lemma will be used in the proof of Theorem 1.

Lemma. Let T be a topological space; U be an arbitrary bounded set in Rn; U0 ⊂U
be a compact set contained in the interior of coU or a segment; and f : T×Rn → R be
a continuous function. Then a restriction of function f∗∗

U (#; u) to T×U0 is continuous.

Proof. Since f∗∗
U =f∗∗

U
; we suppose, without loss of generality, that U is closed. Fix

a point (#0; u0) ∈ T ×U0 and a positive number $: It is easily seen that, there exists a
neighborhood S(#0) of point #0 such that

|f(#; u)− f(#0; u)|¡$ for # ∈ S(#0); u ∈ coU : (5)

It is well known that

f∗∗
U =min

{
n+1∑
i=1

'if(#; ui):
n+1∑
i=1

'iui = u; ui ∈ U;
n+1∑
i=1

'i = 1; 'i ≥ 0

}
:

From this and (5) we obtain that

f∗∗
U (#; u) =

n+1∑
i=1

N'if(#; u i) ≥
n+1∑
i=1

N'if(#0; u i)− $ ≥ f∗∗
U (#0; u)− $:

Symmetrically,

f∗∗
U (#0; u) ≥ f∗∗

U (#; u)− $:

Consequently,

|f∗∗
U (#0; u)− f∗∗

U (#0; u)|¡$ for # ∈ S(#0) u ∈ coU:

Since f∗∗
U (#0; ·) is a convex and lower semicontinuous it is continuous on U (in both

the cases stipulated in the lemma). Therefore, there exists a number �¿ 0 such that

|f∗∗
U (#; u)− f∗∗

U (#0; u0)|¡$ for u ∈ U0; ‖u− u0‖¡�:

The last two inequalities imply that

|f∗∗
U (#; u)− f∗∗

U (#0; u0)|¡ 2$

for # ∈ S(#0); ‖u − u0‖¡�. Therefore, function f∗∗
U |T×U0 is continuous at the point

(#0; u0):

Proof of Theorem 1. Let x(·) ∈ E(coU ; �) be an admissible function in problem
(PR) and $¿ 0: Consider the sequence of functions xk(t)=((k−1)=k)x(t)+(1=k)y0(t)
(k ∈ N ): Clearly, xk(·) ∈ E(coU; �) and

xk(·) →k x(·) uniformly on K; (6)

grad xk(t) →k grad x(t) for a:a: t ∈ K; (7)

grad xk(t) + Brk (0)⊂U for a:a: t ∈ K; (8)

where rk ; (k ∈ N ) are positive numbers.
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It follows from relations (6), (8) and the lemma that

‖xk(·)− x(·)‖C(K) ¡
$
4
;

|JR(xk(·))− JR(x(·))|¡ $
4

(9)

for su2ciently large indices k:
Let k0 be such that (9) holds for k0: Let Nx(·) = xk0 (·); r = rk0 =2: By Theorem 1′

from H(usseinov [15], there exists a sequence of almost piece-wise a2ne functions
yk(·) ∈ E(coU; �) uniformly converging to x(·): Then the sequence of vector
functions grad yk(·) (k ∈ N ) weakly converges to vector function grad Nx(·) in Banach
space Ln1(K) of summable n-vector functions on domain K: By Mazur’s Theorem
(Corollary 3:14 from Dunford and Schwartz [12, p. 457]) it follows that there exist
convex combinations zm(·) =

∑Nm+1
k=Nm+1 ,

m
k yk (·) (m ∈ N ) of functions yk(·) (k ∈ N );

where ,k ≥ 0;
∑Nm+1

k=Nm+1 ,
(m)
k = 1 and Nm (m ∈ N ) is a strictly increasing sequence of

integers such that

grad zm(t) → grad Nx(t) for a:a: t ∈ K: (10)

Thus, the functions zm(·) are almost piece-wise a2ne, zm(·) ∈ E((coU )r ; �) (m =
1; 2; : : :); the sequence zm(·) (m ∈ N ) uniformly converges to Nx(·), and condition (10)
is satisAed. From that we obtain

‖zm(·)− Nx(·)‖C(K) ¡
$
4
;

|JR(zm(·))− JR( Nx(·))|¡ $
4

(11)

for su2ciently large m: Fix one of such indices m0 and denote Nz(·)= zm0 (·): We obtain
from relations (9) with k = k0 and (11) with m= m0

‖Nz(·)− x(·)‖C(K) ¡ $
2
;

|JR(Nz(·))− JR(x(·))|¡ $
2
: (12)

So, function Nz(·) is almost piece-wise a2ne, Nz(·) ∈ E((coU )r ; �) and satisAes rela-
tions (12).
Denote M = 1 + max |x(t)|: Since integrand f is continuous on compact K = K ×

[−M;M ]× U; there exists a positive number �′0 ¡$=2 such that

|f(t1; x1; u1)− f(t2; x2; u2)|¡ $
2

(13)

for (t1; x1; u1); (t2; x2; u2) ∈ K; ‖t1 − t2‖¡�′0; ‖u1 − u2‖¡�′0:
In sequel, we shall omit the index U in notation f∗∗

U : By the lemma function f∗∗

is continuous on compact Kr =K× [−M;M ]× (coU )r . Hence, there exists �0 ∈ (0; �′0)
such that

|f∗∗(t1; x1; u1)− f∗∗(t1; x1; u1)|¡ $
2

(14)
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for (t1; x1; u1); (t2; x2; u2) ∈ Kr’‖t1−t2‖¡�0; ‖u1−u2‖¡�0: Since the functions x(·) and
Nz(·) are continuous on K, there exists � ∈ (0; �0=2) such that

|x(t1)− x(t2)|¡�0; |Nz(t1)− Nz(t2)|¡ �0
2

for ‖t1 − t2‖¡�: (15)

Denote by Pj (j ∈ N ) the simplices of a2neness of function Nz(·); aj=grad z(t) for t ∈
int Pj (j ∈ N ): Without loss of generality, we assume that diamPj ¡� (j ∈ N ): Fix
tj ∈ Pj (j ∈ N ): It is well known that

f∗∗(tj; Nz(tj); aj)

= inf

{
n+1∑
i=1

, j
i f(tj; Nz(tj); v

j
i ):

n+1∑
i=1

, j
i v

j
i = aj; v

j
i ∈ U;

n+1∑
i=1

, j
i = 1; , j

i ≥ 0

}
:

Then for some numbers , j
i ¿ 0 (i=1; 2; : : : ; n+1);

∑n+1
i=1 ,

j
i =1 and a2nely independent

vectors v j
i (i = 1; 2; : : : ; n+ 1) from U∣∣∣∣∣f∗∗(tj; Nz(tj); aj)−

n+1∑
i=1

, j
i f(tj; Nz(tj); v

j
i )

∣∣∣∣∣¡ $
2
;

n+1∑
i=1

, j
i v

j
i = aj: (16)

Put u j
i = v j

i − aj (i = 1; 2; : : : ; n+ 1) and denote
∑

j =co{u j
1 ; : : : ; u

j
n+1}: Since, vectors

u j
i (i = 1; 2; : : : ; n + 1) are a2nely independent and

∑n+1
i=1 ,

j
i v

j
i = 0;where , j

i ¿ 0 (i =
1; 2; : : : ; n+ 1) then

∑
j is an n-dimensional simplex with the interior containing zero.

Denote Dj=
∑0

j polar of the simplex
∑

j; sj(·) – support function of set {u j
1 ; : : : ; u

j
n+1}:

Partition simplex Pj into at most countably many simplices Pj
1;P

j
2; : : : ; homothetic

to Dj and such that diamP j
k ¡� diamDj: Denote by d j

k the similarity coe2cients of
simplices Pj

k and Dj and put

s jk (t) =

{
s(t − t jk )− d j

k for t ∈ Pj
k ;

0 for t ∈ K\Pj
k

and 2i(P
j
k) = {t ∈ Pj

k : s
j
k (t) = 〈t − t jk ; u

j
k〉 − d j

k } (i = 1; 2; : : : ; n + 1); for arbitrary
indices j; k; where t Jk ∈ Pj

k is the image of the origin under the homothety Dj → Pj
k :

Obviously, function s jk (·) is piece-wise a2ne and

− � ≤ s jk (t) ≤ 0: (17)

Put

s(t) =
∑
j; k

s jk (t) and z(t) = Nz(t) + s(t):

Since

grad z(t) = grad Nz(t) + u j
i = aj + u j

i = v j
i ∈ U for t ∈ 2i(P

j
k)
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and simplices 2i(P
j
k) (i= 1; 2; : : : ; n+ 1; j; k ∈ N ) cover domain K, then function z(·)

is admissible in problem (P), i.e. z(·) ∈ E(U;�).
Utilizing inequalities (15)–(17) and Proposition 2 from H(usseinov [15] we estimate

the diRerence∣∣∣∣∣
∫
Pj

k

f∗∗(t; Nz(t); grad Nz(t)) d(t)−
∫
Pj

k

f(t; z(t); grad z(t)) dt)

∣∣∣∣∣
=

∣∣∣∣∣
∫
Pj

k

f∗∗(t; Nz(t); grad Nz(t)) d(t)−
n+1∑
i+1

∫
2i(P

j
k )
f(t; Nz(t) + s jk (t); v

j
i ) d(t)

∣∣∣∣∣
≤

∣∣∣∣∣mes(Pj
k)f

∗∗(tj; Nz(tj); aj)−
n+1∑
i=1

, j
i mes(P

j
k)f(tj; Nz(tj); v

j
i )

∣∣∣∣∣+ $ mes(Pj
k)

=mes(Pj
k)

[∣∣∣∣∣f∗∗(tj; Nz(tj); aj)−
n+1∑
i=1

, j
i f(tj; Nz(tj); v

j
i )

∣∣∣∣∣
]
≤ 2$ mes(Pj

k): (18)

Summing up inequalities (18) by j; k we obtain

|Jf∗∗(Nz(·))− J (Nz(·))|¡ 2$ mes(K): (19)

It is clear from (17) that

‖Nz(·)− z(·)‖C(K) ¡
$
2
:

From this and from the Arst of inequalities (12) it follows that

‖z(·)− x(·)‖C(K) ¡$;

and from (19) and from the second of inequalities (12) that

|JR(x(·))− J (z(·))|¡$[1 + 2mes(K)]:

The theorem is proved.

Theorem 1 and Lemma 4 from H(usseinov [15] imply the following result.

Theorem 2. Let U be a bounded set in Rn with an a2ne hull Rn; and assumption (4)
of Theorem 1 be satis7ed. Then problem (PR) is a lower semicontinuous relaxation
of problem (P):

For U ⊂Rm×n the closure of the quasiconvex hull is deAned as (see [10, DeAnit-
ion 2:2]):

QcoU = {4 ∈ Rm×n: f(4) ≤ 0; ∀f : Rm×n → R; quasiconvex and f|U = 0}:
We denote for U ⊂Rm×n

E(U ) = {x(·) ∈ W 1
∞(K;Rm): Dx(t) ∈ U a:e: in K};
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where Dx(t) denotes the Jacobi matrix of x(·) at t. We conjecture the following co-
incidence: E(U ) = E(QcoU ); where E(U ) denotes the closure of E(U ) in uniform
metric of W

1
∞(K;Rm):

Consider the following two variational problems. The Arst is the problem (P) ob-
tained from (P) by treating f as a function Rm×n → R; grad x(t) replaced by Dx(t)
the Jacobi matrix of x(·) : K → Rm at t; and �(·) : M → Rm: The second problem is

JR(x(·)) =
∫
K
QfU (t; x(t); Dx(t)) dt → inf ;

x(t) = �(t) for t ∈ M;

where QfU (t; x; ·) is the quasiconvex envelope (i.e. the maximal quasiconvex function
not exceeding f) of the function f(t; x; ·)+�(·|U ); �(·|U ) being the indicator function
of U:

Conjecture. Let U ⊂Rm×n be an arbitrary bounded set with QcoU having an interior
point. Suppose that there exists an admissible function y0(·) ∈ E(QcoU; ’) in problem
(PR) such that Dy0(t) ∈ U0 a:e: in K; where U0 is a closed set contained in the
interior of QcoU , then for an arbitrary vector function x(·) ∈ E(QcoU; ’) admissible
in problem (PR); there exists a sequence of vector-functions xk(·) (k ∈ N ) admissible
in problem (P); uniformly converging to x(·) and such that

lim J (xk(·)) = JR(x(·)):
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