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Abstract 

An important operational problem arises during the transportation and delivery of several products, which cannot be 
mixed, in the same vehicle at regular intervals. The vehicle has compartments to keep the products separately. Therefore, a 
scheme of allocation of compartments which we call vehicle loading problem to maximize the efficiency of the system while 
the demands for the products at the destination(s) are satisfied. A mixed binary model is developed for this multi-product 
loading problem. The solution method is based on simultaneously exploring the primal and dual structures derived from 
the Lagrangian relaxation. Subset sum problems are obtained as subproblems to the partial Lagrangian. An algorithm is 
developed and its convergence is proved. The efficiency of the method is demonstrated by running randomly chosen test 
problems. An initial solution finding method is also developed. (~) 1997 Elsevier Science B.V. 
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1. Introduction 

A vehicle transports and delivers a number of prod- 
ucts, that cannot be mixed, from a source to a des- 
tination. The products have constant demand rates at 
the destination. Simultaneous depletion of the prod- 
ucts is accomplished by delivering the correct propor- 
tions. The time interval between two consecutive de- 
liveries is called the replenishment time. The replen- 
ishment time is very much interrelated to the deliv- 
ery quantities and conversely. The vehicle has com- 
partments built to keep the products separated. The 
operational problem is then to allocate the compart- 
ments to the products in such a way to maximize the 
replenishment time for a given vehicle capacity and 
compartment sizes. This will maximize the capacity 
utilization, and therefore the efficiency of the delivery 
system. 

An example of  such an operation is the transporta- 
tion and the delivery of petroleum products from a 
refinery to a number of  regional distribution centers 
(depots).  The products in this example are the reg- 
ular gasoline, premium gasoline, aviation gasoline, 
kerosene, and diesel fuel. The vehicles may be tanker- 
trucks or sea tankers. Ronen (1995) points out that 
dispatching petroleum products may involve trans- 
portation and product characteristics, and operating 
rules of transportation units, and may also include the 
use of the vehicles with compartments. 

During the transportation, different liquids or the 
chemical compounds in a single vehicle are not al- 
lowed to be mixed. Mixing of chemical compounds 
produces an undesirable product or worse causes 
catastrophic damages. A more practical example is 
the case of  transporting premium gasoline in the same 
tank with regular gasoline; mixing results in a differ- 
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ent product for which there is no use in the market. 
The same problem exists for stationary storage facili- 
ties, warehouses, etc. To avoid disasters, dangers, and 
economic losses the storage facilities are divided into 
smaller cabins, rooms, compartments, tanks to guard 
against different products coming into contact with 
each other. 

The destination may be a set of destinations with 
aggregated demand rates. Determining the destina- 
tion(s) to be supplied in a single trip of a given ve- 
hicle is investigated by Yuceer and Dogrusoz (1994). 
In this study, it is assumed that the destination(s) to 
be supplied by a given vehicle is given or predeter- 
mined. There is sufficient storage capacity at the des- 
tination(s) for every product, hence storage capaci- 
ties do not form a constraint. Further, the source is 
capable of producing and/or supplying every product 
in required quantities at all times. The demand rates 
of the products at the destination(s), assumed given, 
are constant. The destination(s) agrees to the deliv- 
ery schedule determined by the management of such 
a transportation and delivery operation as long as the 
demand for each product is met at all times. 

Since mixing the products is not allowed, this com- 
plicates finding an optimal assignment of the com- 
partments by making it a combinatorial problem. The 
problem is then to determine which compartments, 
cabins, rooms to assign to each product so that the time 
interval between two consecutive deliveries is maxi, 
mum for an efficient operation of the delivery system. 
This problem may be called as a multi-product load- 
ing (of vehicles) or multi-product storing (at storage 
facilities) problem. This problem can also be viewed 
as a max-min allocation problem. Basically it can be 
modeled as a mixed 0-1 integer (binary) program- 
ming problem. The main thrust of this research is 
to develop a model and to find an efficient solution 
method to solve problems of this type. Solving the 
problems of this type by branch-and-bound method 
easily deteriorates into complete enumeration because 
of the special structure of the constraints in the prob- 
lem. 

Similar type of loading problems have been at- 
tempted before by Christofides et al. (1976) and 
Neebe et al. (1977). There are m liquids, that can- 
not be mixed, to be loaded into n tanks so that the 
total profit from these products is maximized. They 

modeled the problem as a multiple knapsack problem 
and solved accordingly. In contrast, the problem pre- 
sented in this article tackles an operational problem 
and maximizes the replenishment time. 

Tang (1988) describes a class of max-min alloca- 
tion problems and provides a list of application areas 
in manufacturing and production. He proposes a non- 
simplex based algorithm which finds the optimum in 
O(mn 2) operations. The model described in this arti- 
cle is quite different from his model, since, contrary 
to his assumption, it is not known in advance which 
compartments will be assigned to each product. 

This problem can also be viewed as a set partitioning 
problem (but not a structured partitioning problem), 
since a number of compartments cabins, or rooms will 
be assigned to each product, and furthermore only one 
product can occupy each compartment. Set covering 
and set partitioning problems are binary programming 
problems. Fisher and Kedia (1990) present an algo- 
rithm for a mixed set covering and set partitioning 
model. They also provide a summary of the published 
research on these topics. Marsten (1974) (Fisher and 
Kedia as well) notices that the general strategy in solv- 
ing the set covering/set partitioning problems relies 
on solving the linear programming relaxation. Fisher 
and Kedia use the dual of linear programming relax- 
ation to provide lower bounds for a branch-and-bound 
algorithm. They also use the subgradient method to 
improve the Lagrangian bounds for the set partition- 
ing problem. 

A Lagrangian relaxation approach is recommended 
in the literature in solving the Generalized Assignment 
Algorithm (GAP). There exist numerous articles on 
Lagrangian relaxation in general and on GAP in partic- 
ular. A few of those are cited here. Barcia and Jorsten 
(1990) combine the Lagrangian decomposition and 
bound improving sequences in converging to optimal. 
Gavish and Pirkul ( 1991 ) provide several different re- 
laxations to Multi-Resource Generalized Assignment 
Problem and report an efficient branch-and-bound al- 
gorithm. 

A general approach in solving mixed integer pro- 
gramming problems is Cross-Decomposition method 
proposed by Van Roy(1983) and implemented by 
Van Roy (1986). Cross-decomposition method ex- 
ploits simultaneously both primal and dual structures 
of the relaxed Lagrangian. Computational experi- 
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ence with this approach has shown its efficiency. 
Holmberg (1994) investigates obtaining good lower 
bounds for the optimal objective function value of 
linear, pure integer programming problems by cross- 
decomposition. 

Section 2 presents a mixed binary model for the 
multi-product loading problem. Dynamic program- 
ming solves this problem but lacks the efficiency. 
Another solution method of Section 3 is based on the 
strategy of cross-decomposition method in develop- 
ing a solution method for the multi-product loading 
problem. The proposed algorithm however is quite 
different from the cross-decomposition algorithm. 
The algorithm generates subsetsum problems as sub- 
problems. Each subsetsum problem can be solved by 
dynamic programming, branch and bound, exhaustive 
search or any other method in the literature. Sub- 
setsum problems belong to a special class of knap- 
sack problems, since each variable has exactly the 
same coefficient in the objective function and in the 
constraint. Specialized techniques are discussed by 
Martello and Toth (1987) for knapsack problem in 
general and subsetsum problems as a special case. So- 
lution to each subsetsum problem yields the minimum 
required capacity allocation for a given replenishment 
time. A feasible compartment combination is sought 
by solving these subproblems. Based on a feasible so- 
lution obtained from these subproblems, a dual linear 
problem is solved to obtain a better feasible solution 
or an upper bound for the replenishment time. The al- 
gorithm keeps the lower bound of the interval on the 
replenishment time at a feasible solution and reduces 
the upper bound. Finding a new feasible solution re- 
duces the interval by increasing the lower bound. The 
process is repeated until no more progress is possible 
and a final interval of uncertainty is obtained. An ex- 
haustive search, developed from the primal structures 
of the partial Lagrangian, is performed in the final in- 
terval of uncertainty to obtain the optimal solution to 
the multi-product loading problem. The convergence 
of the algorithm in a finite number of steps is also 
proved. The efficiency of the algorithm is demon- 
strated by running randomly selected test problems. 
An illustration and computational results are given in 
Section 4. The case of equal size compartments and 
the results and findings of this research is summarized 
in the Section 5. In addition, a simple algorithm to 
obtain an initial solution is given in the Appendix. 

2. A model for the multi-product loading problem 

A vehicle with m compartments will transport n 
different products which are not allowed to be mixed 
from a source to a destination. It is assumed that there 
is no storage constraint at the destination. Feasibility 
requires m > n. The decision variables are given first. 

t = the common replenishment time for all n 

products, 

Dj = the delivery quantity of product j E J, 

1 if compartment i is assigned to the 
xij = product j ,  

0 otherwise, 

for all i E I and j E J, where I = { 1,2 . . . . .  m} is the 
index set for the compartments, and J = { 1,2 . . . . .  n} 
is the index set for the products. 

The parameters of the problem, assumed constant, 
are given below. 

qi = the capacity of the compartment i E I, 

dj = the demand rate of product j E J. 

Consequently the following relationships are obtained 
from these variables and/or parameters. 

Dj = tdj for all j E J is the delivery quantity, 

Aj  = ~ qixij 
iEl 

is the total capacity of the compartments allocated to 
the product j E J. Dj <_ Aj for all j E J. Then the 
cycle length to deplete quantity Aj is equal to tj = 
Aj/dj = ~'~'iE! qi/dj Xij for j E J. The common re- 
plenishment time is obtained as t = minj~j{tj}. Hence 
the problem turns into the following. 

maxt=max~min{tj}} 
I J~J 

=max~min~-"~x i j } } .  
L 

If minj {(~-~i~tqixij)/dj} is unique, then all the 
compartments will be assigned necessarily. If it is not 
unique, then the unassigned compartments ( i f  any) 
can be assigned to some products arbitrarily since 
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the objective is to maximize minj { (~--~]/et qixij)/dj}. 
In this case, alternating optimum solutions exist. In 
the simple example of a vehicle with three com- 
partments (qi) = (60,50,30) and the demand 
rates (dj) = (10,12),  the minimum ratio is not 
unique, min (50/10, 60/12) = 5. Assigning the 
remaining comaprtment produces only alternating 
optimum solutions without increasing the replen- 
ishment time; min ( ( 5 0 + 3 0 ) / 1 0 , 6 0 / 1 2 )  = 5 or 
min (50/10, ( 6 0 + 3 0 ) / 1 2 )  = 5. In order to secure 
that a compartment is allocated to one and only one 
product, the constraint '~_~jej xij = 1 for all i E I 
must be satisfied. Thus the decision model is stated 
as follows. 

max rain ( I ) 
j~J d] ~j J ' 

subject to 

~ x / j = l  for a l l i E l ,  (2) 
jEJ 

xij = 0, 1 for all i E 1 and j E J. (3) 

The objective is clearly to maximize the common re- 
plenishment time. Subsequently, a more practical for- 
mulation is obtained as follows. Problem (P): 

max z = t, (4) 

subject to 

tdj - ~ qixij "( 0 for all j E J, (5) 
iEI 

~ xlj = 1 for all i E I, 
je.t 

xij = 0, I for all i E I and j E J, 

t > 0. (6) 

The multi-product loading problem is basically a 
special class of set partitioning problem, but not a 
structured partitioning problem, since the partitioning 
is not done according to the ordering or the ranking of 
the compartments. A set ofm objects (compartments) 
will be partitioned into n (number of products) non- 
empty subsets. Since each subset of compartments can 
be used to carry one product, the number of all possi- 
ble ways of assigning m compartments into n products 
is given by n!S~, ") where ,S~ ) is a Stifling number of 
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the Second Kind and represents the number of ways of 
partitioning a set of m objects into n non-empty sub- 
sets, (Abramowitz, and Stegun (1970) ). For instance, 
the number of ways of assigning 7 compartments into 
4 products is 4!SJ ) = 24 * 350 = 8400. 

3. Solution methods 

The problem described by the expressions (4),  (5),  
(2),  (3) and (6) can be solved by dynamic program- 
ming. The state variable is defined by the vector U = 
(ul,u2 . . . . .  urn) where each 

1 if compartment i is assigned, 
tti = 0 otherwise, 

for all i E I. Further, IIUII = ~ , .~ t  ui is the number of 
assigned compartments. The number of state variables 
is 2"7 - 1 excluding the zero vector. The stage j C J 
of the dynamic programming corresponds to assign- 
ing products 1,2 . . . . .  j to some compartments and is 
defined as follows. 

Stage I. All compartment combinations of the form 
1 < IlVll _< m -  ( n -  1) and t l (U 1) = 
S,i~l qiu~ /dl. 

Stagej. All compartment combinations of the 
form j < IlVll _< ,,, - ( , z -  j )  for 2 < 
j < n, UJ = u J - k +  U k and tj(UJ) = 
min{tj_l(ut),~'~i~lqit~-k/dj} for 1 < 

k <  ( j -  1). 
Stage n. All the compartment combinations of 

the form n < liuII _< m ,  t . ( u " )  = 

min{tn_l (Un-~ ,  EiEI qit'7-k/dn)} for 1 < 
k _< ( n -  1). 

Dynamic programming generates the exact solution 
of this problem, but it is very time consuming. An 
efficient solution method will be described next and 
the computational comparison of both methods will 
be discussed in the next section. 

Consider the relaxed problem (0 - 1 requirement 
on x/j is ignored), problem (RP); 

max zR = t, (7) 

subject to 

td i - ~-~qlx O < 0 for all j E J, (8) 
iEI 

~-~xij = 1 for all i E I, (9) 
./EJ 
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xq > O for all i E l, j E J, 

t>_O 

(10) 

(11) 

and its dual, problem (RD); 

min wn = ~ ~i, 
iEl 

subject to 

(12) 

~ d j l z j  ~ 1, (13) 
jEJ 

-qiltj + ,~i >__ 0 for all i E 1, j E J, (14) 

/ x j > 0  for atl j E J,  (15) 

,~i for all i E I is unrestricted. (16) 

The dual variables/~j for j E J correspond to the set 
of constraints (8). The dual variables ,~i for i E I cor- 
respond to the set of constraints (9). The dual variable 
Ai may be interpreted as the marginal contribution of 
compartment i E I to the replenishment time. There- 
fore, ~ i~ t  ,ti is the total marginal contribution of all 
compartments, or briefly the replenishment time. The 
dual variable/xj may be interpreted as the marginal 
value (in terms of time) of the capacity allocated per 
unit volume of product j E J. 

A feasible solution to the dual problem (RD) can 
be obtained very easily by setting Itj = 1/Y]j~j dj 
for all j E J and ,~i = lxjqi = q i /~ jEI  dj for all i E I. 
The value of the dual objective function at this solu- 
tion is equal to wa = ~i~t  qi/~-]j~j dj. On the other 
hand, the optimal solution to the relaxed problem 
(RP) is equal to zR = EiEI qi /~ jEI  dj . This makes 
sense, because the total capacity would be utilized 
fully if the mixing of products were allowed. Since 
wR = zR, this dual solution is optimal. The value of 
zR constitutes an upper bound on the value of objec- 
tive function of (P). If there exists a feasible solution 
(t ,X) such that t = zR, then it is optimal. Since the 
mixing of products is not allowed, then there is a loss 
in capacity utilization (not all compartments are fully 
loaded) implies t* < zR. 

The following partial Lagrangian function is con- 
sidered for the solution of (P) and is called the prob- 
lem (LPP(A)). 

m a x s  1 - ~ x q )  j~s ] (17) 
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subject to (5), (3) and (6). 
The partial Lagrangian (17) can be decomposed 

into the following subproblem for a given t and (,t) 
and each one will be called problem (SP(t)) .  

rain ~ ~ aixij, (18) 
jEJ iEl 

subject to 

qix O>_tdj for a l l j E J  (19) 
iEl 

and (3). 
This problem can further be decomposed into 17 

knapsack problems (SPj(t))  ofthe type, for each j E 
J, 

min ~ ]  Aixq, (20) 
iEl 

subject to (3) and (19). 
The knapsack problems turn into subsetsum prob- 

lems by setting hi = qi as the result of the relationship 
between the dual variables (,ti) and the compartment 
sizes (qi) of the relaxed problem. Each subsetsum 
problem can be solved by an exhaustive search, dy- 
namic programming or branch-and-bound and pro- 
duces a solution to the partial Lagrangian (LPP(,~)) 
of Expression (17). Solving each SPj(t) yields the 
minimum capacity allocation requirement for each 
product j E J. Further, solving each SPj(t) may 
produce several alternating solutions, among those a 
feasible solution (X) is sought by trying all possibil- 
ities. A feasible solution (t, X) has the property that 
the total capacity allocated to each product will be 
at least equal to the respective minimum requirement 
determined by solving each SPj(t) (stated below for- 
mally as a Lemma). If such a solution (X), satisfying 
the expression (2) exists, then a feasible solution to 
(P) is obtained. 

Lemma 1. Let (A1,A2 . . . . .  An) be the minimum 
required capacity allocations determined by solvb~g 
each SPj(t) for a given t. Aj = ~']~i~t qix~j for each 
j E J is an assignment of compartments without 
regard to the feasibility requirement of expression 
(2). Further, let j* be the index such that Aj. = tdj. 
and Aj > tdj for all j 4: j*. Then if there is a 
feasible solution (t ,X),  then Aj. = ~ i E l  qixij* attd 
Aj <_ ~i~1 qixiy for all j -~ j*. 
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This lemma expresses the fact that the minimum al- 
location requirements on the products except the dom- 
inant product need to be relaxed for a solution of the 
general problem (P).  

Corollary 2. For arty sufficiently Small e > O, t' = 
t + e implies that the minbnum requirement A t. must 
be increased by resolvhzg SP t �9 ( t ~), the other A t 's will 
remahl the same. 

Corol lary3.  Let (AI,A2 . . . . .  An) correspond to 
minintttm capacity allocation requirements for  

t be tile mini- a given t. A t. = tdj . .  Let A j, 
mum capacity allocation which exceeds Aj . .  Then 
(A l ,  A2 . . . . .  A~ . . . . . .  An) corresponds to the mini- 
mttm capacity allocation requirements fo r  a replenish- 
ment time t' where t' = min (A~ . /d j . ,  min {a j /dy  1 

j # j*}).  Further, there are no solutions ( t t , X i )  
stlch that t < tl < t t. 

The second term of Eq. ( 1 7 ) ,  

S= ~-~ qi/  ~-~ dj(  l - ~-~ Xij) 
iEl jEJ jEJ 

may be interpreted as the potential marginal contribu- 
tion of the solution (X) to the replenishment time. If 
the solution is feasible to (P) for a given (A), then 
S is zero. It gives a measure of infeasibility when 
the solution is infeasible. If S < O, then the total ca- 
pacity requirement of the solution (t ,  X)  exceeds C 
(over utilization of the compartments), then the po- 
tential marginal contribution of the solution (X) to 
the replenishment time is negative and t should be de- 
creased. On the other hand, ifS > O, then the total ca- 
pacity requirement of the solution (t ,  X)  is less than 
C (under utilization), then the potential marginal con- 
tribution of the solution (X) is positive and t should 
be increased. If S = 0 or negligible in magnitude for 
an infeasible solution, then no useful information can 
be derived about the marginal contribution. 

Lemma 4. Let ( t, X )  correspond toan hlfeasibleso- 
lution (constraint set (4)  is not satisfied) and ( t r, X ~ ) 
correspond to a feasible solution such that t < t', then 
S > 0 .  

Proof. The delivery quantities td t < trdt for all 
j E J implies that the compartments allocated for 

the products should satisfy the following relation 
for all j E J, and at least one of them is a strict 
inequality. If all are equal, then it means a differ- 
ent combination of compartment allocations pro- 
vides a feasible solution which is contrary to the 
assumption. Summing over all j E J yields that 
~--~iEI ~"~jEJ qixit < EiEI E tEJ  qix~j. Total capacity 
required by the solution ( t , X )  is strictly less than 
that of ( t ' , X ' )  when t < t'. Multiplying by ( - 1 )  
and adding ~--~ict qi/~"~,jEJ dt to both sides yields the 
following relation. 

) 
iE! jEI 

E t E j  dj 

The right hand side of the inequality 21 is zero since 
(t ' ,  X ' )  is a feasible solution. The left hand side of the 
inequality gives the value of S for the solution (t, X). 
Thus S > 0. [] 

Corollary 5. I fS  < Oforan infeasiblesolution ( t, X)  
in the interval o f  search tLn < t < ton, then there is 
no feasible sohttion in the interval ( t, tOB ). 

Given a feasible solution ( t , X )  to LLP()  with S = 
0 and tLB < t < ton, a new feasible solution will be 
sought by solving DSP(t ,X) ,  the dual of SP(t) ,  and 
imposing an additional constraint as described below. 
Problem (DSP(t,  X)):  

min uo = ~ Vj ~ qixij, (22) 
jEJ iEI 

subject to 

>_ 1, (23) 
jEJ 

t , t > 0  for all j E J. (24) 

The optimal solution to DSP(t ,X) yields llO = t and 
for the tight constraint ~~.iEI qixijo = td~ in SP t. ( t )  
and t, t = 0 for all j # j*. The current dominant prod- 
uct in the solution is determined by the index j*, and 
a better solution (if  exists) will be determined by re- 
placing this dominant product with another one. This 
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is accomplished very easily by imposing the constraint 
I,). < 0. Let tt~ be the solution of this upper hounded 
problem, then u0 < u~ . In case of ties, the process 
is repeated until this condition is obtained. If solving 
SP(tt~) yields a feasible solution (U'o,X), then tLB = 
u~. If  this solution is infeasible and S < 0, then tub = 
u~. Furthermore, if u~ + S < tt~ or tt~ > tur~ then 
(tLn, tUB) is an untested interval or interval of  uncer- 
tainty. The optimal value of the objective function will 
be searched in the final interval of  uncertainty. Other- 
wise SP(u~ + S) will be solved again. 

The proposed algorithm finds the optimum solution 
to the multi-product loading problem. It is based on 
exploiting the primal and dual structures of relaxed La- 
grangian simultaneously. It may be described briefly 
as follows. First a feasible initial solution is obtained. 
Step 1 solves the dual problem and generates a dual 
cut. In Step 2 the subset sum problems as subproblems 
are solved to obtain a minimum capacity allocation 
requirement Aj for each product j for a given t. Step 
2 searches a feasible solution satisfying constraint set 
(4). If  such a feasible solution exists, then a new lower 
bound is obtained. Otherwise Step 3 reduces the search 
interval by reducing the upper bound or readjusts the 
replenishment time and repeats the process. The pro- 
cess is repeated until no more progress is possible. 
Then a final interval of  uncertainty is obtained and ex- 
haustive search is carried out by dividing the interval 
into smaller intervals by the corollaries of Lemma 1. 
The algorithm is described fully below. 

S(ep O. Sort the compartments in descending order 
and the demand rates in ascending order. Ob- 
tain an initial solution (to, Xo) and set k = 
0 (see the Appendix for obtaining an initial 
solution). Set hi = qi for i E 1. The lower 
bound is tLU = to, and the upper bound is 
tub = zR. ( I f  to = zR, then the solution is 
optimal, terminate.) Go to Step 1. 

Step 1. Solve DSP(tk, Xk) to obtain (r,j), then gen- 
erate the values of (~j) and u~ by imposing 
vj. < 0 where j* corresponds to the active 
constraint in (P).  Set tk = U'O and go to Step 
2. 

Step 2. Solve SP(tk) by solving each SPj(t,~) forall 
j E J. If  S > 0, then impose the condition 
that the compartments allocated to j* do not 
overlap with the compartments allocated to 
any j 4= j*. Sort the compartment alloca- 

tions with respect to the demand rates. If  a 
feasible solution (tk,Xk) is obtained by us- 
ing Lemma 1, then set k := k + 1, and tt.n = 
tk and go to Step 1. Otherwise, go to Step 3. 

Step 3. If  S = 0 or is negligible in magnitude and 
the solution is infeasible, then go to Step 3a. 
Otherwise, set t = tk + S. If  S < 0, the new 
upper bound is tUB = tk. If  tLB < t < tUB, 
then set tk = t and go to Step 2, otherwise 
go to Step 3a. 

Step 3a. Exhaustive search in the final interval of un- 
certainty: 
to = tLB, k = 0; repeat. 

Solve SPj(t,~) to obtain Aj for each 
j E J and find j* and Aj. by calculat- 
ing min {Aj/dj} .  Then find A~. by solving 
SPj. (tk + e )  for some sufficiently small a > 
0, and tk+l = min{min{Aj /d j l  j # j * } ,  

k : = k + l ;  
until (tk > tuB). 
Repeat (starting from the largest such k). 

If  5-'].j~j < C, then determine the set of 
all possible allocations for all j --P j* Ej = 
{~-~iEI qixij [ Aj < ~ i e t  qixo < C -  

E j , , j .  A j ) ,  and E/. = {Aj. }. Try all pos- 

sibilities El * E2 * . . .  * E,, to obtain a feasi- 
ble solution. The condition that the compart- 
ments should not overlap with the compart- 
ments in A j. reduces the number of elements 
in the sets. A branch-and-bound procedure 
can decrease number of evaluations of  such 
possibilities. Set k := k - 1; 
until (k = 0 or a feasible solution is ob- 
tained). 

l f a  feasible solution is obtained then it is optimal. If 
all the subintervals are tested but no feasible solution is 
obtained, then the solution corresponding to the lower 
bound tt.B is optimal. 

This algorithm converges to the optimal in a finite 
number (however, may be large) of  steps. At each it- 
eration the algorithm reduces the interval (tLB,tUB) 
by increasing the lower bound or decreasing the up- 
per bound in a positive amount by the Lemma 4 and 
its corollary. The lower bound is increased by finding 
a new feasible solution ( t ,X)  where tt.B < t < tun. 
The algorithm always keeps the lower bound at a fen- 
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sible solution. The dual cut produces t > tLB after 
eliminating the ties. If ( t ,X)  is not feasible in any 
subiteration as well, then the upper bound is decreased 
down to t if S < 0. Thus, after a finite number of tri- 
als a final interval of uncertainty will be obtained. The 
exhaustive search procedure divides this interval into 
smaller non-overlapping subintervals. In each subin- 
terval, only one product is dominant, its depletion time 
determines the replenishment time. Starting from the 
subinterval of the largest replenishment time, all pos- 
sibilities are tested. If a feasible solution is obtained, 
then it is optimal. Otherwise the subinterval with the 
next largest replenishment time is tested. The process 
is repeated until all subintervals are tested. If no feasi- 
ble solution is obtained, then the solution correspond- 
ing to the tLB is optimal. This is rather an efficient 
search procedure, instead of enumerating all possibil- 
ities in the interval (tLB, tun). 

4. An illustration 

As an illustration of the method, a randomly se- 
lected problem will be considered. In this example, 
a sea-tanker of capacity of 6560 tons with 11 com- 
partments will transport and deliver five different 
products, which can not be mixed, from a source to 
a destination. The daily demand rates are given as 
follows (in tons/day): (dj) = (66,71,72,76,81)  
with a total demand rate of 366 tons/day. The 
compartment capacities are 
(844,826,764,675,661,626,  
287) (in tons). The common 
delivering these products and 
will be sought. The set of 11 

as follows: ( qi) = 
626,565,373, 313, 
replenishment time for 
the delivery quantities 
compartments will be 

partitioned into five products, and the number of all 
possibilities is equal to 29607600 (5!,S~)). 

Dynamic programming yields the solution ( 1217 = 
ql +qs ,  1252 = q6 +qT, 1275 = q4+qxo +q l l ,  1301 = 
q2+qs, 1425 = q3+q5) witht = 1425/81 = 17.593.It 
takes 1776.51 CPU seconds on a 486 based PC to find 
this solution. There are 2 il - 1 = 2047 state variables 
and it makes 465135 state evaluations. 

The proposed algorithm is used in finding an opti- 
mal solution to this problem. An initial solution is ob- 
tained by the method described in the Appendix and 
given below (the capacity of the compartments allo- 
cated and the delivery quantity of each product). This 

is not a structured partitioning as can be observed be- 
low, since the partitioning of the set of compartments 
is not done according to their ordering or rankings. An 
initial solution is obtained as: ( 1199 = q2 +qg, 1261 = 
qs+qto+qlz ,  1301 = q4 +qT, 1329 = q3 +q8, 1470= 
ql + q6) with a replenishment time of 1329/76 --- 
17.486 days. 

A lower bound on the value of the replenishment 
time is to = 17.486, and an upper bound is obtained 
by ton = 6560/366 = 17.923 days. The dominant 
product is j* = 4. The initial values of/zj  = 1/366 for 
j = 1,2, 3, 4, 5 and hi = qi/366 for i = 1,2 . . . . .  11. 
Solving DSP(t0, X0) and imposing the constraint 
v4 < 0 yields u0 = 17.761. PLP(17.761) is solved 
by first solving each SPj(17.757) by listing all 
compartment combinations the finding the mini- 
mum allocation level satisfying Aj > tdj for each 
j = 1 ,2 ,3 ,4 ,5 .  The delivery quantities at t = 17.761 
are given by the following vector: (Dj) = (tdj)  = 
( 1171.96, 1260, 75, 1278.50, 1349.53, 1438.32). 
Solving each SPj(17.761) produces the follow- 
ing minimum capacity allocation requirements for 
products; (Aj)  = (1191, 1261, 1279, 1350, 1439). 
The dominant product has the index j* = 2. The 
replenishment time is 17.761 days with these al- 
locations ( i f  feasible) by completely utilizing the 
compartments allocated to the product j = 2. Since 
6538 < 6560, S = (6560 - 6538)/366 > 0 and 
the condition that the compartments allocated to 
any product do not overlap with the compartments 
allocated to the dominant product is imposed. Solv- 
ing SPj(17.761) (except j = 2) with this condi- 
tion again yields the minimum allocation require- 
ments (Rj)  = (1191, 1261, 1301, 1390, 1439). Now 
6582 > 6560 and S = ( 6 5 6 0 -  6582)/366 = 
-0.060,  then tub = 17.761 and the process will 
be repeated with t = 17.761 - 0 . 0 6 0  = 17.701. 
The delivery quantities are given by (Di)  = 
(1168.27, 1256.77, 1274.47, 1345.27, 1433.78). 
Then the minimum allocation requirements, ob- 
tained by solving each SPj(17.701 + E), are given 
by (Aj) = (1191, 1261, 1275, 1347, 1439). The re- 
plenishment time is recalculated as t = min(18.045, 
17.761, 17.708, 17.724, 17.765) = 17.708, and the 
dominant product is j* = 3. ~-'~j~j Aj = 6513 < 6560 
implies imposing the nonoverlapping condition stated 
above and the minimum requirements then are given 
by (A j)  = (1191,1287,1275, 1390, 1450) with 
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Table I 

(aj)  (tj  = Aj/di)  min{tj], j* 

(1157,1251,1261,1335,1424) 
(1157,1251,1275,1335,1424) 
(1165,1251,1275,1335,1424) 
(1165,1251,1275,1336,14241 
(1165,1251,1275,1347,14241 
(!!65,1251,1275,1347,14251 
(!!65,1251,1275,1347,1426) 
(1165,1251,1275,1347,14391 

(17.530,17.620,17.514,17.566,17.580) 
(17.530,17.620,17.708,17.566,17.580) 
(17.652,17.620,17.708,17.566,17.580) 
(17.652,17.620,17.708,17.579,17.5801 
(17.652,17.620,17.708,17.724,17.5801 
(17.652,17.620,17.708,17.724,17.593) 
(17.652,17.620,17.708,17.724,17.605) 
(17.652,17.620,17.708,17.724,17.765) 

17.514 3 
17.530 1 
17.566 4 
17.579 4 
17.580 5 
17.593 5 
17.605 5 
17.620 5 

)--~j~j Aj = 6593. S = (6560 - 6593) /366  = -0 .090 ,  
and tun = 17.708 and t = 17.708 - 0.090 = 17.618. 
Repetition o f  the process goes as follows. The de- 
livery quantities are given by the vector (Dj) = 
( 1162.79, 1250.88, 1268.50, 1338.97, 1427.06), con- 
sequently the minimum allocation requirements are 
(A j) = ( 1 1 6 5 ,  1251, 1275, 1347, 1439), obtained by 
solving each SPj(17.618) .  The replenishment time 
is recalculated and t = min(17.652, 17.620, 17.708, 
17.724, 17.765) = 17.620. Since ~j~j Aj = 6477, 
the nonoverlapping condition is imposed and the 
minimum requirements are now given by (A./) = 
(1252, 1251, 1287, 1390, 1439). y~.j6sAj = 6619 
implies that S = ( 6 5 6 0 -  6619) /366  = -0 .161  and 
tub = 17.620 but t = 1 7 . 6 2 0 - 0 . 1 6 1  = 17.459 < 
17.486. Hence, the interval from 17.486 to 17.620 is 
left an interval o f  uncertainty. An exhaustive search 
will be carried in this interval as described below. 

At t = 17.486, (Aj) = (1157, 1251, 1261, 1329, 
14241 computation o f  the time t yields t = 
min( 17.530, 17.620, 17.514, 17.486, 17.580) = 
17.486 with j* = 4. Thus, the next lowest allocation 
to 1329 for product j = 4 will be obtained by solving 
SP4(t + e)  and it is 1335. The same reasoning is 
repeated until t becomes equal to or exceeds 17.620 
and the results are listed in Table 1. 

It is already known that there are no feasible 
solutions at t = 17.620, hence the last interval is 
ignored. In the interval at t = 17.605, the sets of  
possible allocations will be determined first. There 
may be several compartment combinations to obtain 
an allocation level, for instance 1286 = q6 + q8 or 
1286 = q7 + '78. The superscript above the allocation 
level represents the number of  different compartment 
combinations. El = {I191(21}, E2 = {1252}, E3 = 
{ 1287 (21, 1301 (2) }, E4 = { 1390 (2) }, and finally E5 = 

{1426} since j* = 5. Noticing that 1191 = q6 + q8 = 
q7 + q8 and 1252 = q6 + q7 implies that there exists 
no feasible solutions and the interval at t = 17.593 
is tested next. The sets of  allocations are as follows: 
El = {1165, 1191 (21, 1199, 1217, 1225, 1226t2)}, 
E2 = { 1251, 1252, 1275, 1286 (21, 1301 (21, 1312(2)}, 
the allocations for j = 3 are in the set E3 = 
{1275, 1286 (21, 1301 (21, 1312 (21, 1335}, and the al- 
locations f o r j  = 4 are in the set E4 = {1361, 1391, 
1409, 1426, 1444} and E5 = { 1425}. Employing a 

branch and bound finds a feasible solution in 108 
trials and t* = 17.593. Another optimal solution is 
obtained and is given below. The execution time of  
this problem is 32.10 CPU seconds. 

( Xil ) 

AI 
(x,~) 

A2 

(xi3) 

A3 

(Xi4) 

A4 

(xis) 

A5 

= (0, 1 , 0 , 0 , 0 , 0 , 0 , 0 ,  1 ,0 ,0)  

=1199  D 1 = 1 7 . 5 9 3 . 6 6 = 1 1 6 1 . 1 4 ,  

= ( 0 , 0 , 0 , 0 , 0 ,  1, 1 , 0 , 0 , 0 , 0 )  

-- 1252 D2 = 17 .593 ,71  = 1249.10, 

= ( 0 , 0 , 0 ,  1 , 0 , 0 , 0 , 0 , 0 ,  I, 1) 

= 1275 D3 = 1 7 . 5 9 3 . 7 2  = 1266.70, 

= ( I , 0 , 0 , 0 , 0 , 0 , 0 ,  1 , 0 , 0 , 0 )  

= 1409 D4 = 1 7 . 5 9 3 . 7 6  = 1337.07, 

= ( 0 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 )  

= 1425 D5 = 17 .593 ,81  = 1425. 

This delivery schedule will be repeated every 17.593 
days and the product 5 is the dominant product. 

I f  all the possibilitiesin the interval (17.486,17.620) 
is tested without this efficient method, the num- 
ber of  possibilities tested would be 99792 (= 
12 �9 3 * 12 * 11 * 21 ). This search procedure has tested 
only 108 possibilities. In the worst case it would test 
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2* 1 * 4 * 2 *  1 + 8 * 9 * 8 * 5 *  1 = 2 8 8 0 +  16=2896 
which is 2.90% of 99792-and it is approximately 
0.0098% of all 29607600 possibilities. Computational 
experience of the algorithm is tested by running sev- 
eral randomly generated problems and results are 
summarized in Table 2. 

Various practical size problems are randomly gen- 
erated and solved on a 486 based PC. In the generation 
of the random problems, the demand rate is assumed 
uniformly distributed in the interval from 20 to 100, 
and the compartment capacities are also uniform from 
the interval 150 to 950. The random numbers are then 
rounded off to the nearest integer. Average execution 
time and its standard deviation for each group of 5 
problems are given in Table 2. Because of the binary 
character of the problems, there is a high variabil- 
ity in the execution times. A further regression anal- 
ysis yields that the execution time can be expressed 
as an exponential function of n (number of products) 
and m (number of compartments) as follows: time = 
0.0002( 1.3198 n) (2.7229"). The method finds the op- 
timal solutions (optimal replenishment time and the 
optimal assignment of  the compartments to the prod- 
ucts) to the problems. Ronen (1995) points out that 
there are 13 compartments or less in the vehicles used 
in the petroleum distributing firms. Larger size prob- 
lems will require much more memory capacity and 
execution speed. 

5. Case of equal size compartments and 
conclusions 

If all the compartments are of the same size, then 
the problem is very much simplified. Let q = qi for 
i E 1, then the constraints (5) of the problem (P) will 
be reexpressed as follows: 

t d j - q ) - ~ x  0 < 0  f o r a l l j E  J, (25) 
iEI 

where the s u m  )--]~iE! Xij can be interpreted as the num- 
ber of compartments assigned to the product j ,  and 
let yj = ~iEI X(i for j E J. Then (25) is rewritten as 
follows. 

tdj - qyj < 0 for all j E J. (26) 

Further yj > tdj/q for all j E J. Since yj is an integer, 
and is the smallest integer greater or equal to tdj/q for 

all j E J, then yj = (tdj/q) for all j E J. Recalling 
that there are only m compartments available, then the 
problem (P) is transformed into the following prob- 
lem. 

max z = t, 

subject to 

jEJ 

t >__ 0. (27) 

The constraint (27) is equivalent to decomposing m 
into n non-empty subsets without regard to order. The 
number of ways of decomposing m into ll is equal to 
n!F(n  - m) where F (n  - m) is the Fibonacci number 
of (m - n). If m = 7 and n = 4, then there are only 
72 ways of assigning 7 compartments into 4 products. 
Listing of all possibilities is not practical in all cases. 
This problem is identical to voter's college or politi- 
cal districting problem in the literature. A simple al- 
gorithm exists to obtain the optimal answer. An ini- 
tial estimate of t = C/~--]~jEJ d~, and q = C/m, then 
tdj/q = mdj /~iEJ dj. Each product j E J is allo- 
cated to [mdj/~je~ dj] compartments. If the sum 
of the allocated compartments is less than m, then 
mdj/ ~ j~ j  dj - [mdj/ ~-]~j~j dj] are ranked in de- 
scending order and the index j with the largest value 
gets the first available compartment (break the ties 
arbitrarily), and the index j with the second largest 
value gets the second available compartment, and so 
on, until all the compartments are assigned. 

This article presents an operational problem. Trans- 
porting several products, which cannot be mixed, in 
a single vehicle yields a combinatorial problem as a 
special case of a set partitioning problem. 

A mixed binary programming model is developed 
to represent this operational problem mathematically. 
A solution method is developed by simultaneously 
exploiting primal and dual structures of relaxed La- 
grangian. An efficient algorithm is developed and its 
convergence in a finite number of steps is shown. Effi- 
ciency of the algorithm is tested by running randomly 
chosen problems of various sizes. Optimal solutions to 
these random problems are obtained by this method. 

A mathematically feasible solution to the problem 
however may not always be operationally meaningful. 
If the replenishment time is very short, then the ve- 
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Table 2 
Computational performance of the algorithm in CPU seconds 

529 

n m 9 10 It 12 13 

4 mean 4.11 13.68 27.55 I 01.52 
std 1.42 4.01 6.38 27.44 

5 mean 8.39 17.58 53.94 180.14 
std 4.34 5.67 ! 2.03 I 17.59 

6 mean 32.81 67.29 350.68 
std 16.29 52.91 164.48 

7 mean 215.74 
std 31.54 

399.22 
194.79 

hicle must repeat the trip to the destination(s) quite 
often and the time to transport to the destination, to 
return back to the source, loading and unloading times 
may far exceed the replenishment time. That means a 
vehicle o f  small capacity with respect to the total de- 
mand rate o f  the products. Such a situation may be 
prevented by using a vehicle of  reasonable capacity as 
compared to the total demand rate o f  the products and 
the total traveling distance in a trip. 

Appendix A. Finding an initial solution 

The following algorithm finds an initial solution to 
the problem (P) .  Some further notation is required for 
this algorithm. Let I ( j )  = {i [ xq = I } for a given j E 
J. l ( j )  is the set o f  compartments assigned to product 
j E J. Initially, l ( j )  = 0 for all j E J. l ( j ' )  N l ( j )  = 

for j 4: j ' .  Let rj = (~'~tEl(j) qt + q i ) / d j  for all 
j E J and for a given i E I.  The term rj represents the 
proposed depletion time for product j E J, if all the 
allocated compartments including qi are filled com- 
pletely. The product with the minimum depletion time 
dictates the replenishment time, then for a given num- 
ber of  compartments (from 1 to m) the term rj is min- 
imized to obtain an approximate replenishment time. 
This procedure, however, does not maximize replen- 
ishment time. Thus it only provides a lower bound on 
the value o f  the replenishment time. The algorithm is 
described as follows. 
Step O. Sort the compartments in descending order 

and the demand rates in ascending order. 
Step l. i = l ;  

repeat 
rj. = rain {rj [ j E J} (break ties arbitrar- 
ily). Set xij. = l and all o therx i j  = 0 for 

j 4: j*. Update the set l ( j * )  = l ( j * )  + {i}. 
i : = i +  I; 
until i > m. Then go to Step 2. 

Step 2. If  l ( j )  4~ 0 for all j E J, then terminate, an 
initial solution is obtained. I f  there is some 
unassigned product j E J such that I ( j )  = O, 
then count the number of  unassigned prod- 
ucts (nup) ,  and let Ju = { j l l ( j ) = O } .  
For each pair o f  ( i , j )  i f j  E J,, and i E 
{m + 1 . . . . .  m + nup} set xiy = 1, otherwise 
xq = 0. Let j* be such that xij- = 1 for 
m +  1 < i < m-l-nup. For each i ~ from 1 to m, 
find j 4: j* such that xi, j = I. Then determine 
max/, {min {q i , /d j . ,  mini { r . / -  qi , /d j }}}  
and set xi,j. = I and Xi,j = O, Xij = 1, 
xij. = 0. Update the set l ( j * )  = {i'} and 
J,, = Je, - {j*}. Hence, a feasible solution is 
obtained. 

There are some optional steps to improve the cur- 
rent initial solution by exchanging the compartments 
between two products at a time. A few more nota- 
tions are required for that purpose. Let A represent the 
amount o f  increase in t and j* be the index of  the tight 
c o n s t r a i n t  ~ iEI  qixij. = t d j ~  (break ties arbitrarily), 
nol  = Y~4EI Xij~ be the number o f  compartments allo- 
cated to the product j*. I ( j*) = {il, i2 . . . . .  i~ol }. The 
optional steps are given below. 

Repeat 

A = 0 ,  k = l ,  

repeat 
i from ik-I tO ik -- 1 ( i f ik_l  < ik-- I ) ,  
if xij ---- 1 for i 4= j*, then set wij. = l ,  W i j  ---- 0 ,  

wikj = 1, wikj. = 0 and wij = xij for all others, tt = 
minjel  { E i ~ ,  qiwi j /d j} .  If  t,~ > t, then A > 0, W k = 
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i r l  r2 r3 r4 r5 

i 12.79 11.89 11.72 1 I . I  1 
2 12.52 11.63 i 1.47 10.87 
3 11.58 10.76 10.61 20.92 
4 10.23 9.51 i 9.99 19.75 
5 10.02 18.82 19.79 19.57 
6 19.50 18.33 19.30 19.1 l 
7 19.50 18.33 19.30 19.1 I 
8 18.58 26.29 18.46 18.30 
9 ! 5.67 23.58 15.79 23.21 
10 20.41 22.74 14.96 22.42 
I 1 20.02 22.37 18.95 22.08 

10.42 then xl5 = 1 , / ( 5 )  = { I}  
20.62 then x24 = I,  1(4)  = {2} 
19.85 then x33 = 1, 1 (3)  = {3} 
18.75 then x42 = I,  1(2)  = {4} 
18.58 then xsl = I , / ( 1 )  = {5} 
18.15 then x65 = I , / ( 5 )  = { I , 6 }  
25.88 then x72 = I , / ( 2 )  = {4,7} 
25.13 then x84 = 1 , / ( 4 )  = {2,8]. 
22.75 then xgl = 1 , / ( 1 )  = {5,9} 

22.01 then xl0.3 = 1, 1 (3 )  = {3, 10} 
21.69 then xtl.3 = ! , / ( 3 )  = {3, 10, 11} 

IV, j '  = arg {tk}. (Sort the allocations in ascending 
order if tt does not decrease.) Set k := k + 1; 
until (k > no l ) ;  
if A > 0 then t ~ = max{tk} and X := Wk; l ( j * )  := 
l ( j * )  + {i}, l ( f )  := l ( j ' )  - {i}, 
until (A = 0). 

Example  6. An initial solution to the problem de- 
scribed in the Illustration will be obtained. There 
are eleven compartments with capacities; (qi) = 
(844,826,764,675,661,626,  626,565,373,313, 
287) and five products with the demand rates (d./) = 
(66 ,71 ,72 ,76 ,81) .  

Initialization: l ( j )  = 0 f o r j  = 1 ,2 ,3 ,4 ,5  and all 
xij = 0 for all i , j .  

N o w  (~'~iEI qixij)  ---- (1034, 1301, 1364, 1391, 
1470). Hence an initial solution is obtained, and 
t = min(15.667, 18.324, 118.944, 18.303, 14.148) = 
15.667 with j* = 1. 

(xil) = (0 ,0 ,0 ,0 ,  1 ,0 ,0 ,0 ,  1,0,0)  

(xi2) = (0 ,0 ,0 ,  1,0,0,  1 ,0 ,0 ,0 ,0 )  

(x,3) = (0,0,  1 ,0 ,0 ,0 ,0 ,0 ,0 ,  1, 1) 

(xi4) = (0, 1 ,0 ,0 ,0 ,0 ,0 ,  1 ,0 ,0 ,0)  

(xi5) = ( 1 , 0 , 0 , 0 , 0 ,  1 ,0 ,0 ,0 ,0 ,0 )  

This solution can further be improved by using the 
optional steps. The first iteration goes as follows, x51 
can be interchanged with xls and 

/ '1217 1287"~ 
t =rain \ 66 ' 18.324, 18.944, 18.303, 81 ,/ 

= 15.889, 

or xsl can be interchanged with x24 and 

\--~-'(1199 I 1226 18.148) t = m i n  18.324, 8.944, - - ~ ,  

= 16.132, 

or XSl can be interchanged with x33 and 

/ 1137 1261 \ 
t = m i n  ~ - - - ~ ,  18 .324 , - -~ - ,  18.303, 18.148 ) 

= 17.227, 

or xsl can be replaced by x42 and 

(1048  1287 18.944,18.303,18.148) 
t = m i n  66 ' 71 ' 

= 15.879. 

The maximum of these values is t = 17.227 and the 
amount of improvement A = 17.227-15.667 = 1.560, 
hence xsl is interchanged with x33, and the new solu- 
tion is given as follows. 

(xil)  = (0,0,  1 ,0 ,0 ,0 ,0 ,0 ,  1,0,0)  

1137 
with A1 = 1137, and tl - - -  - 17.227, 

66 
(x,2) = (0 ,0 ,0 ,  1,0,0,  1 ,0 ,0 ,0 ,0 )  

1301 
with A2 = 1301, and t2 = - -  = 18.324, 

71 
( x i 3 )  = ( 0 , 0 , 0 , 0 ,  1 , 0 , 0 , 0 , 0 ,  1, 1)  

1261 
with A3 = 1261, and t3 = ~ = 17.514, 

72 
(Xi4)  ---- ( 0 ,  1 ,0 ,0 ,0 ,0 ,0 ,  1 ,0 ,0 ,0)  

1391 
w i t h  A4  = 1391, and t4 = - -  = 18.303, 

76 
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(xi5) = ( 1 , 0 , 0 , 0 , 0 ,  1 , 0 , 0 , 0 , 0 , 0 )  

1470 
with A5 = 1470, and t5 = 8--i--" = 18.148. 

The sorting is al lowed since j* = 1, and 1301/72 = 
18.069, 1261/71 = 17.761 both exceed 17.223. The 
second iteration is given after sorting. 

(x/s)  = ( I , 0 , 0 , 0 , 0 ,  1 , 0 , 0 , 0 , 0 , 0 )  

with A5 = 1470, ts = 1470/81 = 18.148. 

An investigation shows that no further improvement 
(A = 0 now) is possible.  Therefore, this solution is 
delivered as an initial solution. 

(Xil) = (0,  0, 1 

with At 

(x,2) = (0, O, O, 

with A2 

( x u )  = (0,  0 ,0 ,  

with A3 

(xi4) = (0,  1,0, 

with A4 

(xi5) = ( 1,0,  0, 

, 0 , 0 , 0 , 0 , 0 ,  1 , 0 , 0 )  

= 1137, tt = 1 1 3 7 / 6 6 =  17.227, 

0, 1 , 0 , 0 , 0 , 0 ,  1, 1) 

= 1 2 6 1 ,  t2 = 1261/71 = 17.761, 

1 ,0 ,0 ,  1 , 0 , 0 , 0 , 0 )  

= 1301, t3 = 1 3 0 1 / 7 2 =  18.069, 

0 , 0 , 0 , 0 ,  1 , 0 , 0 , 0 )  

= 1391, t4 = 1391/76 = 18.303, 

0 ,0 ,  1 , 0 , 0 , 0 , 0 , 0 )  

with A5 = 1470, t5 = 1470/81 = 18.148. 

I f  x3t is interchanged with xls,  then 

t = m i n  (1217/66 ,  17.761, 18.069, 18.303, 1390/81) 

= 17.160, 

or if  x3t is interchanged with x24, then 

t = m i n  (1199/66 ,  17.761, 18.069, 1329/76,  18.148) 

= I7.486. 

The maximum of  those is t = 17.486, j*  = 4 and the 
amount o f  improvement is A = 17,486 - 17.227 = 
0.259 and the new solution is given below. 

(x i t )  = ( 0 ,  1 , 0 , 0 , 0 , 0 , 0 , 0 ,  1 , 0 ,0 )  

with Ai = 1199, tl = 1 1 9 9 / 6 6 =  18.167, 

(xi2) = ( 0 , 0 , 0 , 0 ,  1 , 0 , 0 , 0 , 0 ,  1, I )  

with A2 = 1261, t2 = 1261/71 = 17.761, 

(x,3) = ( 0 , 0 , 0 ,  1, 

with A3 = 

( x u )  = ( 0 , 0 ,  1,0, 

0 , 0 ,  1 , 0 , 0 , 0 , 0 )  

1301, t3 = 1301/72 = 18.069, 

0 , 0 , 0 ,  1 , 0 , 0 , 0 )  
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with A4 = 1329, t4 = 1329/76 = 17.486, 


