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Abstract 

We describe a modified Newton type algorithm for the solution of linear inequality systems in the sense of minimizing 
the /, norm of infeasibilities. Finite termination is proved, and numerical results are given. 0 1998 Elsevier Science B.V. 
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1. Introduction and background 

We consider the problem of finding a feasible 
point with respect to the overdetermined set of linear 
inequalities: 

ATy I c, (1) 
where A is an m X n real matrix with n > m and c 
is an n-vector. Let 

s:=c-A’y. (2) 
We would like to compute a solution y such that 
s 2 0. This problem has applications in image recon- 
struction in computerized tomography; see Herman 
(1980). A recent account of iterative methods for this 
problem along with applications can be found in the 
forthcoming book, Censor and Zenios (1997). Linear 
inequality systems are also solved as auxiliary prob- 
lems in linear and nonlinear optimization. 

In the present paper we consider a modified New- 
ton algorithm to find a solution that minimizes the 

* Fax: + 90-312-266-4126; e-mail: mustafap@bilkent.cdu.tr. 

/‘, norm of infeasibilities with respect to (1). The 
problem consists in the minimization of piecewise- 
quadratic objective function with discontinuous sec- 
ond derivatives. More precisely, we consider the 
following minimization problem for computing a 
solution that minimizes the sum of squares of infea- 
sibilities with respect to (1): 

min F(y) = $[s-ll:, 
Y 

(3) 

where s- is a vector whose ith component s;= 
min{O,s;). Clearly, if the linear inequality system (1) 
is consistent, a minimizer of F is also a feasible 
solution with respect to (1) and vice versa. The 
algorithm proposed here is adapted from a Newton 
algorithm developed by Madsen and Nielsen (1990) 
for the minimization of the Huber function in robust 
linear regression analysis. The crucial observation 
that motivated the present paper is that the Huber 
function and the E’, function are structurally identi- 
cal in the context of linear inequality systems. In the 
present paper, we apply the ideas in Madsen and 
Nielsen (1990) to the /‘, solution of linear inequal- 
ity systems. However, their finite termination analy- 
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sis is no longer applicable here because the function 
F of the present paper does not have bounded level 
sets when the underlying linear inequality system is 
consistent. This property holds for the Huber func- 
tion under a full rank assumption and is used in the 
convergence analysis in Madsen and Nielsen (1990). 
Using some general results on the minimization of 
piecewise-quadratic functions from Li and Swetits 
(1997), we give a new proof of finite termination in 
the present paper. 

The Madsen-Nielsen algorithm was developed to 
give a numerical solution to a problem in robust 
statistics. The robust estimation problem was studied 
extensively by Huber (1981). Other references on the 
solution of robust estimation problems include Clark 
and Osborne (1986) and Ekblom (1988). The Huber 
function can be considered as an alternative to least 
squares estimation. Essentially, the Huber function is 
a linear-quadratic function which treats arguments 
above (below for negative arguments) a certain posi- 
tive threshold value by a linear term. Arguments 
which are smaller in absolute value than the thresh- 
old are treated by a quadratic term exactly as in the 
least squares case. This reduces the negative effect of 
the outliers that may be present among data points. 
For more details on the statistical properties of this 
function, the reader is referred to Huber (1981). 

The approach of the present paper brings together 
several ideas of the optimization literature from the 
minimization of piecewise-quadratic functions to the 
solution of linear inequalities and linear programs. 
Piecewise-quadratic functions arise in optimization 
mainly in connection with the use of quadratic penalty 
and augmented Lagrangean functions. These func- 
tions are related by duality to proximal point meth- 
ods; see e.g. Rockafellar (1976). An early reference 
on the minimization of piecewise-quadratic functions 
is Katznelson (1965) where a Newton-type algorithm 
to solve nonlinear resistor networks was developed. 
The minimization of piecewise-quadratic functions 
can be examined under the general title of convex 
quadratic programming. An excellent survey of itera- 
tive methods for solving such problems was pro- 
vided in Lin and Pang (1987). However, this survey 
mainly focused on algorithms for strictly convex 
quadratic problems while some ideas on how to 
solve convex quadratic programs using algorithms 
for the strictly convex case were discussed. A related 

line of research in this area was carried out in a 
series of papers by Mangasarian (1981, 1984) and 
De Leone and Mangasarian (1987) where the piece- 
wise-quadratic function obtained from the applica- 
tion of quadratic penalty and augmented Lagrangean 
functions to linear inequalities and linear programs 
was minimized using a successive overrelaxation 
algorithm. However, unlike our approach, De Leone 
and Mangasarian did not directly work on the piece- 
wise-quadratic function. Instead, they minimized a 
strictly convex penalty function using slack variables 
in the system ATy 5 c. In Li and Swetits (1993) an 
algorithm similar to Katznelson’s was provided in 
the context of r-convex approximation problems. 
Both Katznelson and Li and Swetits worked under 
the assumption (or, the condition) that the 
piecewise-quadratic function is strictly convex within 
any polyhedral set created by the hyperplanes c - 
ATy. This ensures that the (generalized) Hessian is 
always non-singular. Later, in Li and Swetits (1997) 
the two authors developed a more sophisticated algo- 
rithm for piecewise-quadratic minimization problems 
where this condition is not satisfied. This is a mix- 
ture of active set and dual descent algorithm. Al- 
though it involves the use of a Newton step occa- 
sionally, in general it cannot be interpreted as a 
generalized Newton algorithm. Consequently, it re- 
quires a longer and more complicated convergence 
and finiteness analysis. Li (1997) investigated the 
application of conjugate gradient methods to the 
minimization of piecewise-quadratic functions. 

Another line of work on piecewise-quadratic min- 
imization was recently developed in Rockafellar 
(1987, 1990) with a view to solve large scale optimal 
control and stochastic programming problems using 
penalty methods. Rockafellar terms the problem ‘lin- 
ear-quadratic programming’ and proposes what he 
calls finite-envelope methods which exploit the spe- 
cial structure of the piecewise-quadratic functions. 
These methods are based on expressing the objective 
function by an ‘envelope’ formula derived from a 
Lagrangean function. Structural properties of piece- 
wise-quadratic functions have also been studied in 
Sun (1992). 

In Chen and Mangasarian (1995) the authors used 
some smooth approximations to the plus function 
x+= max{x,O} to develop new iterative methods for 
the solution of linear and convex inequalities. While 
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these functions give rise to strictly convex minimiza- Let A, denote the submatrix of A composed of 
tion problems they are only guaranteed to have a those columns corresponding to the indices in the 
minimizer under a strict interior point condition for active set I. Similarly, we use s, the denote the 
the linear inequality system. Our present approach vector with components corresponding to the active 
does not require such an assumption. indices. 

Against this background, our method is akin to 
the algorithms of Li and Swetits although it is much 
simpler. We make no assumption that the 
piecewise-quadratic function has a strictly convex 
quadratic representation in the entire domain. Our 
method uses a generalized Hessian and involves the 
computation of descent directions when the general- 
ized Hessian is singular along with a particular step 
length control. While these ideas are essentially 
adapted from early work of Madsen and Nielsen on 
robust statistics, our contributions are 

Consider first the solvability of (3) in general. 
Using Lagrangean duality, it can be shown that the 
dual problem to (3) is given as: 

s.t. Ax=O, 
x20. 

1. a more general finiteness proof than Madsen and 

Since this is a strictly convex homogeneous quadratic 
optimization problem, it always has a unique optimal 
solution. This implies that the problem (3) is well- 
defined. 

Nielsen (1990); and 
2. a demonstration of the computational viability of 

this approach. 

On the computational front we develop a stable 
and efficient implementation of the proposed algo- 
rithm and compare its performance to a standard 
library routine for linear inequalities and linear and 
quadratic programs, LSSOL from Stanford Univer- 
sity Optimization Systems Laboratory; see Gill et al. 
(1986). Results indicate a factor of three to four 
speed-up over this routine. 

It is evident that F is composed of a finite 
number of quadratic functions. In each domain D c 
R” where I(y) is constant F is equal to a specific 
quadratic function. These domains are separated by a 
union of hyperplanes. 

B={y~iR~13i:~~(y)=O}. (5) 

Given the active set I, Q, is the quadratic function 
which equals F on the subset 

In the rest of the paper, we proceed as follows. In 
Section 2 we present the problem we consider and 
introduce the piecewise-quadratic minimization prob- 
lem. Some elementary properties are discussed. In 
Section 3, we present the algorithm. Section 4 is 
devoted to the finite convergence analysis. Finally, 
in Section 5 we report numerical results on some 
randomly generated problems. 

%, = cl{ z E [w” I I(z) = I}. (6) 

We also call 5+, a Q-subset of Iw”‘. Notice that any 
y E Iw m \ B has exactly one corresponding Q-subset 
(I = I(y)), whereas a point y E B belongs to two or 
more Q-subsets. 

Q, can be defined as follows: 

+F’T(~)(~-~) +F(Y). (7) 

2. Basic properties of F Let also 

In this section we give some definitions and 
expose some basic properties of F which will be 
useful in subsequent sections. We assume throughout 
the paper that A has rank m. For y E Iw” we define 
the following active set of indices: 

V(y) =span{aTliEZ(y)}, (8) 

where ai is a column vector that denotes the ith row 
of A, and let N(y) denote the orthogonal comple- 
ment of V(y). The gradient of the function F is 
given by 

Z(y)={iIIIiInAsi(y)IO}. (4) F’(Y) = -A,~,(Y). (9) 
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For y E R” \B, the Hessian of F exists, and is 
given by 

F”( y) = A,A:. (10) 

The following simple properties of the quadratics 
Q, will be useful in the finite termination proof in 
Section 4. 

Lemma 2.1. For any y E [w” 

V(y) = (Q;z I z E R”‘}, 

and 

N( Y> = I77 1077 = q. 

Proof. This follows from the definitions (7), (8), (91, 
and (10). 0 

Lemma 2.2. Let y E R” and assume that Q, has a 
minimizer z, where I = I(y). Then the set of minimiz- 
ers M(Q,) of Q, is giuen by 

M(Q,)={~+vI+N(Y)). 

Proof. The set of minimizers of Q, is the set of 
solutions to the linear system of equations 

Q’;‘;h= -Q’,;(Y). 

Now, the lemma follows from Lemma 2.1. Cl 

3. The Newton algorithm 

The crucial design parameters of Newton’s method 
for minimizing piecewise-quadratic functions are the 
following: 

0 How to select a generalized Hessian and descent 
directions? 

??How to control the step length? 

The answer to the first question follows from the 
definition (4) of the active set which includes both 
violated and binding constraints. In other words, 
locally binding constraints are treated as locally vio- 
lated constraints and the algorithm proceeds by solv- 
ing the Newton system corresponding to a local 
quadratic representation of F. When the generalized 
Hessian is non-singular we use the unique solution to 
the Newton system as descent direction, and perform 
exact line search. The question concerning the step 

length is answered by choosing the least norm solu- 
tion as a descent direction in case the generalized 
Hessian is singular and using a restricted step length 
in this direction. 

More precisely, we consider the Newton system 

Q? = -Q;(Y)> (11) 

i.e., the system 

(A,A;)h=A,s,(y). (12) 

The above Newton system may not always have a 
non-singular matrix A, AT. However, it is always 
consistent. In the case where the matrix A, AT is 
singular, the question arises as to which solution to 
use as a descent direction. Our algorithm uses the 
following solutions of the Newton system in the two 
possible cases: 

Case 1. (I& is non-singular: in this case, let h = 
-Q;‘-‘Q;. 

Case 2. Q; is singular: in this case, compute fi, the 
solution with least 2-norm to the system (11) to be 
used a search direction. 

The following lemma which establishes that the 
above choices define a descent direction for F will 
be useful in the convergence analysis. 

Lemma 3.1. The search direction vectors h and i 
computed as described above are descent directions. 

Proof. The result is obvious in Case 1 as a result of 
the positive definiteness of Q’;. For Case 2, consider 
an eigenvalue decomposition of Q’i. Since Q’; is 
symmetric and positive (semijdefinite, it has an or- 
thogonal eigensystem, (A,,e,), i = 1,. . . ,m, say. 
Suppose that h,>O for all i= l,...,s, and A,=0 
for i=s+ l,...,m. 

Let i be the least 2-norm solution of (11). As the 
system (11) is consistent, the negative gradient - Q; 
has the expansion - Q; = Cj, t Pie;. Since the least 
norm solution of (11) is given by 

$ = $ ke;, 
, 

then, obviously, - Q;‘h^ = (Cf=, Pie,jT 
(Cf= 11 Pi/bile;> = Cs= I( p:/A;) > 0. 0 
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Regarding the line search procedure, in Case 1 the 
next iterate is found through a line search aiming for 
a zero of the directional derivative. More precisely, 
the next iterate is the point y + ah, (Y > 0, for which 
the function 

&X)=F(y+(Yh). 

is minimized. Since p is a convex univariate func- 
tion, the problem is to find a zero of the increasing 
piecewise-linear smooth function p’. The solution to 
this problem is positive since p’(O) < 0 by the delini- 
tion of h. We perform exact line search if the 
generalized Hessian is locally positive definite. Oth- 
erwise we move to the nearest breakpoint in Case 2. 
In other words, the line search in this case consists of 
simply choosing cx = (Y,, i.e., the smallest element of 
the set 

where E = {i 11 I i I m A (AT&, # 0). Clearly, the 
line search can be carried out in time proportional to 
n. 

The reason for this step length policy is the 
following. At an iterate y with I = Z( y), if the 
search direction is computed in Case 1, then the 
point y + h is a minimizer of F if I( y + h) = I (i.e., 
y + h E %?,‘I). This follows because y + h is the unique 
minimizer of the quadratic Q, and F is a convex 
function. That is, the quadratic form which contains 
the global minimizer has been identified. If I( y + h) 
# I, this is an indication that the global minimizer 
(the minimizer of F) is not in G?‘,. Then the line 
search is performed. However, if at a given iterate y, 
the matrix Q’; is positive semi-definite the global 
minimizer may be in $F, even if y + h, as computed 
from Case 2, is not an element of g,. In this case, to 
locate the global minimizer, we only move to the 
smallest breakpoint in the line search phase. If the 
global minimizer is in g,, then this move will ex- 
pand the active set of indices I (cf. Lemma 4.5). 
Continuing in this fashion, we can locate the mini- 
mizer in a finite number of steps. These ideas are 
made precise in Section 4. 

We summarize below the modified Newton algo- 
rithm: 

stop = false 
repeat 
I=l(y) 
if Qi is positive definite 
find h as the unique solution to (11) 
if y + h E %‘, then 

Y+Y+h 
stop = true 
else 
y=y+ah 
endif 
else 
if Q’,’ is positive semi-definite 
find 2, the least norm solution of (11) 
if y+h~‘Z,, then 
y+y+jl 
stop = true 
else 
y+y+“,iz 
endif 
endif 
until stop. 

4. Convergence analysis 

In this section we will show that the algorithm of 
Section 3 locates a minimizer of F in a finite 
calculation. Since the level sets of the function F are 
not necessarily bounded (as is the case with the 
Huber function) when the linear inequality system is 
consistent the finite convergence analysis in Madsen 
and Nielsen (1990) is not applicable. However, it is 
possible to give a new finite convergence proof. To 
this end, we cite without proof four technical results 
on the minimization of convex quadratic spline func- 
tions from Li and Swetits (1997). As F is a convex 
quadratic spline function, these results are directly 
applicable to our case. 

Consider the following unconstrained minimiza- 
tion of a convex quadratic spline flw): 

(13) 
Let W * be the solution set of (13). That is, W * := 
{w E R” : j-(w) =fmJ_ 

Lemma 4.1. Suppose that h(w) is a conuexfinction, 
its gradient h’(w) is Lipschitz continuous, and 0 < p 
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< 1. Then there exists a positive constant y (de- 
pending only on h and /3> such that 

<r(h(w) -h(w+tz)), (14) 

whenever t > 0 and 0 2 zTh’(w + tz) 2 p * zTh’(w). 

Lemma 4.2. Suppose thatf(wk+‘) <f(wk) for k = 
0,l , . . . . Zf there exists a subsequence { kj) such that 
lim,,,llf’(wk~)ll = 0, then lim,,, f(wk>=fmin. 

Lemma 4.3. Suppose that f(wk+‘) <f(wk) for k = 
O,l,..., and 9 is a collection of finitely many 
positive definite matrices. If there are infinitely many 
k’s such that 

(w k+l _ WI)Tf’(wk+l) = 0 

and wk’ ’ = wk - tkDkf’( wk), for Dk ~9, t, > 0, 

(15) 

then lim,,, f(wk> = fmi,,. 

Lemma 4.4. If lim,,, f(wk)=fmin, then there 
exists k * 2 1 such that, for k 2 k * , wk E E’, implies 
g,nw* z0. 

The next two technical results are also needed in 
the proof of finite termination. 

Lemma 4.5. Let y E [w” with I = Z(y). Assume that 
z E E’, is a minimizer of Qt. Then for any minimizer 
z * of Q,, we have I( z * > 7 Z(y). Furthermore, z is a 
minimizer of F. 

Proof. Let z_ * be a minimizer of Q,. Using Lemma 
2.2, we have (z * - zjTa, = 0 for any i E I( y>. 
Therefore, - bi + aTz * = -b,+aTz>Oforany iE 
I( y>. Hence, I( z * ) 3 I( y>. The last statement fol- 
lows from (7) and convexity of F. 0 

Lemma 4.6. Let y E R” with Z = Z(y). Suppose that 
F has a minimizer z E %Y,. Let y’ be generated by 
one iteration of the algorithm of Section 3 starting 
from y. Then y’ E g,, and either y’ is a minimjzer of 
F and the algorithm stops, or y’ = y + a, h with 
a, < 1 andZ(y’)IZ(y). 

Proof. Since z is a minimizer of F, this implies that 
z is also a minimizer of Q,. Hence, Ql,<z> = 0. If Ql 
is positive definite, then z must be the unique 
minimizer of Q,. Therefore, y’ = y + h = z E %Y,, and 
the algorithm stops. 

If Qy is not positive definite then y + fi is a 
minimizer of Q, where fi is the least norm solution 
of(ll).If y+hE%,,then y+iisaminimizerof 
F by definition and (71, and the algorithm stops. If 
y+iP@?,, then y’=y+:,fi with a,<l. Since 
y + fi minimizes Q,, I( y + h) 2 I( y> by Lemma 4.5. 
Hence, we have 

Z(y+crfi)>Z(y)forO~(~~l (16) 
by the definition of Z and the linearity of the prob- 
lem. The definition of implies that I( y + a@ = Z(y) 
for Ola<a,, and there exists j E E such that 
sj( y + cy, h) = 0. Now, j P Z(y) since otherwise (16) 
would be contradicted for 0 I (Y < a,. Therefore, the 
lemma is proved. 0 

Theorem 4.1. The algorithm of Section 3 computes a 
minimizer of F after a finite number of iterations. 

Proof. Let us assume that the algorithm generates an 
infinite sequence {y,}, The first step in the proof is 
to show lim, ~ x F( y”> = Fmin where Fmin denotes 
the minimum value of F. We know that the search 
directions computed as discussed in Section 3 are 
descent directions. This follows from Lemma 3.1 in 
Section 3. Hence, the algorithm generates a descent 
sequence. Therefore, the first step of the proof fol- 
lows from Lemma 4.3 if infinitely many iterates are 
generated by yk+’ = yk + akhk where hk is the 
unique solution to (11) and (Y k is obtained from 
exact line search. However, this argument is not 
sufficient since it may happen that yk+ ’ = yk + cx:h” 
where 6” is the minimum norm solution of (11) for k 
large enough. 

Therefore, we have the following claim. 

Claim. lim,,, F( yk) = Fmin. 
Assume that there exists k, such that yk+’ =yk 

+rufhk for krk,. Let jk=yk+Ak, If ($“- 
yk)‘F’(yk+‘) 2 i<j” - Y~)~F’( yk> by Lemma 4.1, 
there exists a positive constant y such that 

(9” -.Y’)~F’( Y”) 

2 

llfikll 
I y(F(yk) -F(Y~+‘)). 
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Since (ik) is a bounded sequence, there exists a K 

such that Ili”II I K. Therefore, we have 

( jk - yk)TF’( y”) 2 AK F( y”) - F( yk+‘) . 

( 17) 

If (Qk-yk)rF’(yk+’ >.+(j+-yk)rF’(yk)<O 
then 

g(B) := (+yk)TF’(yk+ e(9k-yk)) 

1 
<,(?;k-yk)TF’(yk), forOIf3Ia,k, 

(18) 

since g(B) is a monotone function of 8. By the 
Mean Value Theorem, there exists 0 I tIk I a: such 
that 

F(~~)-F(~~+‘) = -g(e,)+ --&; 

( Bk - Yk)TF’( Y”) 

= ;a:( yk -Qk)%( Y”). 

(19) 

Therefore, we have from (19) 

ikT~,AThk < -$ F( y”) - F( yk+‘)). PO) 

From (17) we get 

ikTA,ATik c fi~/F( y”) - F( ykfl) . (21) 

Combining these two inequalities, we have, for k 2 

ko 

iikTA,ATik5 ($ + J;~)j/F(yi)F(r”“) 

+(F(Y’) -F(Y’+‘))). (22) 

Since A, AT is symmetric positive semidefinite, there 
exists a positive constant Sk (depending only on 
A,AT) such that (cf. Luo and Luo, 1994) 

tvTA,ATw2 6,1JA,ATwl12, for w E R”. (23) 

Since there are only finitely many distinct I, we can 
choose 6, = 6 > 0 such that (23) holds for all k. 

Therefore, for k 2 k,, 

llF’( yk)l12 = 11 A,A:i;‘l? 
1 

< _$rA ATi;k -8 II 

1 2 GK 
I- ,f--- 

6 ( i al 4 

X +(Y”> -F(Y~+‘) + (F(Y”) ( 

-F( Y*+‘))). 

Since lim ,,,(F(yk> - F(ykf’) = 0, we obtain 
lim k_,~cx~llF’(yk)ll=O.N~~ dk=Afik and,assume 
lim k-,x IIF’(yk)ll = cl > 0, which requires that 
lim k-r a: = 0. However this is impossible since 
{dk} is a sequence uniformly bounded above. Hence, 
we have lim, _I IIF’(yk>ll=O. By Lemma 4.2, 
lim k-l F(yk)=Fmi,. 

If there is no k, such that ykf’ = yk + a:ik for 
k 2 k,, then there exists a subsequence (ki} such that 

Y kf’ = yk + akhk for k = kj, j = 1,2,. . . . Since 
A, AS is nonsingular in this case, and there are only 
finitely many different I values, by Lemma 4.3, 
lim k _ r F( yk> = Fmin. This completes the proof of 
the claim. 

By Lemma 4.4 there exists k * such that for 
k 2 k * y k E g, with I = I( y k, implies g, n W * # 
0. Let k 2 k * and yk E gl. Now, from Lemma 4.6 it 
follows that either yk + h’ (or, yk + ilk> is a mini- 
mizer and the algorithm stops, or I( yk+ ‘) is an 
extension of l(yk) with yk+’ =yk+’ =yk + crfik. 
Hence, the above argument can be repeated with yk 
replaced by ykf ‘. Since the active set has finite 
cardinality, the algorithm must terminate in a finite 
number of iterations with a minimizer of F. This is 
clearly a contradiction and the theorem is proved. 
0 

5. Experimental results 

In this section we report our computational expe- 
rience with the Newton algorithm. We have coded 
the algorithm in Fortran for dense matrices using an 
already existing robust linear regression code in 
Madsen and Nielsen (1990). 

The major effort in the algorithm is spent in 
solving the system (11). We use the AAFAC pack- 
age of Nielsen (1990) to perform this. The solution is 
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obtained via an LDLT factorization of the matrix 
C’ = A, AT, so D and L are computed directly from 
the active columns of A, i.e., without squaring the 
condition number as would be the case if Ck was 
first computed. The efficiency of the Newton algo- 
rithm depends critically on the fact that the differ- 
ence between the active set I( yk> and I( y km ‘) is 
caused by a few elements. This implies that the 
factorization of Ck can be obtained by relatively few 
up- and down-dates of the factorization of Ck- ‘. 
Including the cost of th,e matrix vector multiplica- 
tions A,s, and Ah (Ah), and the line search the 
computational cost of a typical iteration is propor- 
tional to (m* + 2 mn + n). Occasionally, a refactor- 
ization is performed. The refactorization is an 0(m3) 
process. This consists in the successive updating 
LDLT +- LDLT -t aju~ for all j in the active set 
(starting with L = I, D = 0). It is considered only 
when some columns of A leave the active set, i.e., 
when downdating is involved. If many columns leave 
we may refactorize because it is cheaper. This part of 
the code is based on ideas from Fletcher and Powell 
(1974) and Gentleman (1973). 

The stopping criteria in the Newton algorithm are 
implemented as follows. The iterate y + h is consid- 
ered to be in %?, if 

[Vi E I(y) : s;(y) - ( ATh); I T] 

and 
[Vi g I( y) : s,(y) - ( ATt$ > T]. 

Here, r= O(~~lIcll~) is used to take into account 
effects of rounding errors; eM denotes unit roundoff 
of the computer. 

n=mti 
3wi- ~~ -7 

250 
‘I*~ + + + 

c 

200 - -----I + 

E” 150 
++ 

0 

++ 

++ 

100: + 1 
Fig. 1, Run time results of the new method and LSSOL (n/m = 2). 
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Fig. 2. Iteration results of the new method and LSSOL (n / nr = 2). 

We compare the new method with the library 
routine LSSOL from Stanford University Systems 
Optimization Laboratory available in the NAG (1987) 
subroutine library. LSSOL contains implementations 
of a numerically stable active set strategy and the 
simplex method for the solution of linear and 
quadratic programs and least squares problems. It 
can also find a feasible solution to a system of linear 
inequalities by minimizing the sum of infeasibilities. 
Since it does not exploit sparsity of A, it makes a 
fair comparison to our method. 

To illustrate the performances of the new method 
and LSSOL, we generated two sets of consistent 
systems of dense linear inequalities randomly. In the 
first set, we keep the ratio n/m constant at two and 
increase m from 100 to 500 in steps of 10. We 

Fig. 3. Run time results of the new method and LSSOL (n/m = 4). 
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Fig. 4. Iteration results of the new method and LSSOL (n/m = 4). 

generate 10 problem instances for each pair (m,n) 
and solve these instances using the Newton method 
and LSSOL, respectively. This results in the solution 
of 410 problems by both methods. In the second set 
of problems, we keep the ratio n/m constant at four 
and vary m from 100 to 250 in steps of five. Hence, 
we solve 310 problems by both methods. In Figs. 
l-4 we report the average statistics of these runs. In 
Figs. 1 and 3 we plot the average run time in CPU 
seconds while in Figs. 2 and 4 we plot the average 
number of iterations of the Newton method and 
LSSOL along with the number of refactorizations of 
A, AT in connection with the computations of the 
factors L and D. 

The absolute level of infeasibility upon termina- 
tion of the Newton algorithm is measured as the 

/Z-norm of the vector ( ATy - c>+ where t+= 
max(O,t) and the plus operator is applied component- 
wise. This measure was found to be always less than 
or in the vicinity of 10 -13 in all test runs. These 
results demonstrate that the Newton algorithm is able 
to find an accurate feasible solution to linear inequal- 
ities efficiently. It attains a speed-up of three to four 
over LSSOL as the problem size is increased. This is 
a result of two factors: 

1. 

2. 

The Newton method displays a slow growth rate 
in the number of iterations as the problems get 
larger. 
The Newton method uses an almost constant 
number of refactorizations as the problem size is 
increased. 

It seems that a sparse implementation of the Newton 
method will be a worthwhile research effort in the 
future. 
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