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Abstract

A shortest-route formulation of the mixed-model assembly line balancing problem is presented. Common tasks

across models are assumed to exist and these tasks are performed in the same stations. The formulation is based on an

algorithm which solves the single-model version of the problem. The mixed-model system is transformed into a single-

model system with a combined precedence diagram. The model is capable of considering any constraint that can be

expressed as a function of task assignments. Ó 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

The assembly line balancing problem has been
a focus of interest to the production/operations
management community for the last four decades.
Although there are numerous studies published on
the various aspects of the problem, the number of
studies on mixed-model assembly lines are rela-
tively small. The complex mathematical nature of
the problem hinders the attempts to obtain solu-
tion procedures.

Single-model lines are used to assemble large
numbers of a product whereas multi-model lines

are used to assemble di�erent models of the same
general product in batches with large lot sizes.
Mixed-model lines are used to assemble di�erent
models of a product; the models are launched to
the line one after another. This paper deals with
the mixed-model assembly lines which are the most
frequently encountered type in industry due to the
pressure of producing several models to attain
higher customer satisfaction. Formally, a mixed-
model assembly line balancing problem can be
stated as follows: Given P models, the set of tasks
associated with each model, the performance times
of the tasks, and the set of precedence relations
which specify the permissible orderings of the tasks
for each model, the problem is to assign the tasks
to an ordered sequence of stations such that
the precedence relations are satis®ed and some
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performance measure is optimized. The complex
mathematical nature of the problem makes it dif-
®cult to solve; for example, with a single model
and tasks with no precedence relations, it is easy to
reduce the problem into a bin-packing problem
which is NP-hard in the strong sense. In this note
we present a shortest-route formulation of the
mixed-model assembly line balancing problem that
leads to the optimal solution. It is assumed that a
set of common tasks across the models exists. Al-
though the performance times of these common
tasks may vary across models, they are performed
in the same stations. The performance measure is
the sum of the idle times associated with each
model. The framework allows various constraints
being considered simultaneously.

The ®rst researcher who constructed a mathe-
matical model of the assembly line balancing
problem and suggested a solution procedure was,
to the best knowledge of the authors, Salveson
(1955). Later, numerous optimum-seeking algo-
rithms and heuristic procedures that attempt to
solve di�erent versions of the problem have been
developed; interested reader should see the review
papers of Baybars (1986) and Ghosh and Gagnon
(1989). The shortest-route formulations of the
problem that have appeared in the literature are as
follows. Klein (1963) presented the ®rst shortest-
route formulation of the single-model assembly
line balancing problem. The network had directed
arcs representing possible assignments of tasks to
stations, and each path from source to sink rep-
resented a possible line design. Gutjahr and
Nemhauser (1964) developed an algorithm to solve
the single-model version of the problem based on
®nding the shortest-route in a directed network.
The model was considerably superior to the model
of Klein (1963) in the sense that only a portion of
the feasible orderings was generated. Mansoor
(1967) presented an adjustment to the Gutjahr and
Nemhauser (1964) algorithm to obtain the optimal
solution after considering only a fraction of the
`shortest-route' calculations. Roberts and Villa
(1970) extended the Gutjahr and Nemhauser
(1964) algorithm to solve the mixed-model version
of the problem. Nodes were generated similarly for
each model in the problem, and the nodes of the
network consisted of the Cartesian product of the

nodes of each model. Thus, the size of the tree
grows very rapidly with increases in the number of
tasks and models. Finally, Chakravarty and Shtub
(1985) presented a shortest-route formulation for
the mixed-model, unpaced line in which setup,
inventory holding and labor costs were considered.
Precedence relations of the di�erent models were
re¯ected in a combined precedence diagram which
was transformed into a serial system based on the
concepts of multi-echelon inventory and holding
costs. The serial system was then solved with a
shortest-route algorithm.

The model proposed in this note is heavily
based on the algorithm of Gutjahr and Nemhauser
(1964). The mixed-model version of the problem is
transformed into a single-model version with a
combined precedence diagram. Common tasks
between the models are assumed to exist and these
tasks are assigned to the same stations. The re-
sulting network is considerably smaller than the
one of the shortest-route formulation of Roberts
and Villa (1970); this is partly due to the constraint
of assigning the common tasks to the same sta-
tions.

The paper is organized as follows: In Section 2,
we present the shortest-route formulation of the
mixed-model assembly line balancing problem.
The model is further clari®ed on an illustrative
example in Section 3. Some concluding remarks
are given in Section 4.

2. Shortest-route formulation

2.1. Assumptions

The assumptions of the model are listed below:
1. Task performance times of each model are

known constants.
2. Precedence diagrams for each model are

known.
3. No WIP inventory bu�er is allowed between

stations.
4. Parallel stations are not allowed.
5. Common tasks exist between models which

must be assigned to the same stations.
Let tim denote the performance time of task i of

model m; i � 1; . . . ;N ;m � 1; . . . ; P , where N and
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P are the total number of tasks and models in the
problem, respectively. The last assumption above
is especially valid if the common tasks of di�erent
models require the same tools and equipment.
However, the performance times of these common
tasks can di�er for di�erent models. In other
words, tim may not equal to tin for i � 1; . . . ;N and
m; n � 1; . . . ; P ; m 6� n.

Typically there are several tasks common to
the various models manufactured on a mixed-

model assembly line with similar precedence re-
lations among these tasks. Thus, we will utilize
the similarity between the precedence relations of
di�erent models. Thomopoulos (1970) used the
concept of a combined precedence diagram to
transform di�erent models into an equivalent
single model. The combined diagram is con-
structed by taking the union of the nodes and the
precedence relations of the diagrams of all the
models. The construction of the combined dia-

Fig. 1. Precedence diagrams for: (a) model A, (b) model B, (c) the combined diagram.
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gram is straightforward with precedence matrices;
a precedence matrix is an upper-triangular matrix
with the abth entry equal to 1 if the processing of
task b requires the completion of task a. Other-
wise the entry is zero. In the precedence matrix of
the combined diagram, the abth entry is equal to
1 if the abth entry of any of the precedence ma-
trices of the models is equal to 1. Furthermore, if
there are any implied precedence relations, then
the related entries in the combined precedence

matrix should also be 1. Note that there should
be no con¯ict in the precedence relations across
the models; for example, if a model requires the
completion of task a before task b, then no other
model should require the completion of task b
before task a. A simple example is given in Fig. 1
to illustrate the process of constructing a com-
bined diagram. The numbers within the circles
represent tasks and the arrows connecting the
circles specify the precedence relations. In Fig. 2,

Fig. 2. Precedence matrices of: (a) model A, (b) model B, (c) the combined diagram.
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the associated precedence matrices of the dia-
grams of Fig. 1 are depicted.

2.2. Constraints

The constraints of the model are given below:
1. All tasks must be assigned to a station.
2. No task can be assigned more than once.
3. The work content in any station for any model

cannot exceed the cycle time of that model.
4. If task a in a given model precedes task b, then

task b cannot be assigned to a station that pre-
cedes the one to which task a is assigned.
Let M denote the number of stations utilized

and STk and S denote the set of tasks in station k
and in the problem, respectively. Let also Cm de-
note the cycle time of model m and ximk � 1 if task i
of model m is assigned to station k, 0 otherwise.
The problem can now be stated as follows:

min
XP

m�1

XM

k�1

Cm ÿ
XN

i�1

ximktim

( )
s:t:[M
i�1

STi � S;

STi \ STj � ; for i; j � 1; . . . ;M and i 6� j;XN

i�1

ximk :tim6Cm for k � 1; . . . ;M and

m � 1; . . . ; P :
For each task b 2 S, if abth entry is 1 in the
combined precedence matrix, a 2 STi, b 2 STj, then
i6 j for all a 2 S.

Note that the objective function above can also
be expressed as

PP
m�1fMCm ÿ

P
i2Bm

timg where Bm

is the set of tasks of model m. Minimizing the sum
of idle times can now be expressed as the mini-
mization of M , since

P
i2Bm

tim and Cm are con-
stants for m � 1; . . . ; P .

In addition to the traditional constraints above,
non-traditional constraints such as an upper
bound on the idle time of each station or upper
bounds on the work load di�erences between
models can easily be imposed. In fact, any con-
straint which can be expressed as a function of the
task assignment can be considered.

2.3. Model

The network model developed here is based on
the shortest-route model of Gutjahr and Nem-
hauser (1964) for the single-model assembly line
balancing problem. The nodes of the network are
constructed similar to the Gutjahr and Nemhaus-
er's procedure; nodes are the states that are sets of
tasks that can be processed without prior com-
pletion of any other tasks on the combined pre-
cedence diagram. Let Ai; i � 1; . . . ; r denote the set
of tasks in node i where r is the total number of
nodes with A0 � ; and Ar representing the set of all
the tasks in the combined diagram. That is, Ar � S.
Also let sAi ;m �

P
j2Ai

tj;m for m � 1; . . . ; P . A di-
rected arc (ij) connects node i to node j if Ai � Aj,
sAj;m ÿ sAi;m6Cm for m � 1; . . . ; P , and any other
constraint expressed as a function of the task as-
signment being satis®ed. Each directed arc (ij)
from node i to node j is assigned a distance ofPP

m�1 Cm ÿ �sAj;m ÿ sAi ;m�. Note that no arc enters
node 0, the node corresponding to A0, and no arc
leaves node r, the node corresponding to Ar.

The length of a path from node 0 to node r
with M arcs, �0i; ij; . . . ; pr�, is

PP
m�1fCm ÿ �sAi ;m� �

Cmÿ �sAj;m ÿ sAi ;m� � � � � � Cm ÿ �sAr ;m ÿ sAp ;mg. This
length can be expressed as

PP
m�1fMCm ÿ sAr ;mg.

Note also that sAr ;m �
P

i2Bm
tim for m � 1; . . . ; P .

Hence, this length is the sum of the idle times over
the M stations for all the models. Since sAr ;m and
Cm are constants for m � 1; . . . ; P , ®nding the
shortest-path from node 0 to node r can be
achieved by ®nding any path from node 0 to node
r with the least number of arcs. In other words, a
path with the least number of arcs (from node 0 to
node r) yields the optimal solution of the problem.
If the kth arc on this path connects node i to node
j, then the set of tasks in station k associated with
model m is Bm \ �Aj ÿ Ai� with a work load of
sAj;m ÿ sAi;m for m � 1; . . . ; P . This proves that the
mixed-model line balancing problem can be solved
with this shortest-path formulation.

The path with the least number of arcs can be
constructed similar to the procedure given in
Gutjahr and Nemhauser (1964) as follows:
1. Determine the nodes that are connected to node

0 with an arc. There is an arc from node 0 to
node i if sAi ;m6Cm for m � 1; . . . ; P . These
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nodes are called the ®rst nodes.
2. For node i among the ®rst nodes, construct an

arc to node j if Ai � Aj, sAj;m ÿ sAi;m6Cm for
m � 1; . . . ; P . These nodes are called the second
nodes.

3. Repeat the above process until node r is ob-
tained for the ®rst time.
Additional constraints can easily be considered

in the above process; for example, if an upper
bound on the idle time of model m in any station,
Im, is imposed, then the construction of an arc
from node i to node j requires the additional
constraint Cm ÿ �sAj;m ÿ sAi;m�6 Im being satis®ed.
If a maximum work load di�erence of D between
models is imposed, then construction of an arc
from node i to node j requires the additional
constraint

j �sAj;m ÿ sAi ;m� ÿ �sAj;n ÿ sAi ;n� j 6D

for m; n � 1; . . . ; P ;m 6� n:

2.3.1. Node generation
The node generation process developed by

Gutjahr and Nemhauser (1964) for the single-
model assembly line balancing problem will be
used in this paper. Note that there are other pro-
cedures to generate the nodes of the network re-
ported in the literature; for example, Schrage and
Baker (1978) present an enumeration and ad-
dressing scheme to generate the feasible subsets.

The node generation process can be described
as follows: the tasks that are available for assign-
ment (i.e., the tasks without any predecessor in the
combined precedence diagram) are placed in Stage
1 and are considered marked. An immediate fol-
lower of a state S of a stage is de®ned as a task that
is an immediate follower of at least one of the tasks
in S and is not preceded by any tasks not in S. The
unmarked immediate followers of a state are
augmented to the current state to form the states
of the next stage. The augmentation of states and
the corresponding unmarked immediate followers
is done in stages. For any state S of stage k, the
unmarked immediate followers are placed in a list
called F(S). Let H � F �S�, the S [ H is a state for
stage k � 1. For each state of stage k, the un-
marked immediate followers are found and placed

as marked tasks for stage k � 1. When all the tasks
are marked or F(S) gets empty for the current
stage, the node generation process is complete.

The node generation process above constructs
all possible feasible states. The number of feasible
states ranges from N corresponding to a serially
ordered precedence diagram to 2N ÿ 1 corre-
sponding to a problem with no precedence rela-
tions. However, precedence relations reduce the
total number of feasible states considerably. Sid-
ney and Steiner (1986) state that the number of
feasible states is substantially reduced with the
precedence relations. They report that the total
number of feasible states is bounded from above
by a polynomial in N for ®xed-width networks.
They show that the bound on the number of fea-
sible states is �1� k1��1� k2� . . . �1� kw� where
the combined precedence diagram is partitioned
into w chains having k1; k2; . . . ; kw nodes, respec-
tively. Here, w is the minimum number of chains
needed to partition the nodes of the precedence
diagram.

3. Illustrative example

Suppose that two models A and B whose pre-
cedence diagrams are depicted in Fig. 1 are as-
sembled on the same line. The combined diagram
is also depicted in Fig. 1. Task performance times
for each model are given in Table 1. The cycle
times of models A and B are 6 and 5, respectively.

The generation of the nodes is shown in Ta-
ble 2. Initially, task 1 is placed in stage 1 and

Table 1

Task performance times of models A and B

Tasks Performance times

Model A Model B

1 2 2

2 3 ÿ
3 2 ÿ
4 1 ÿ
5 ÿ 1

6 2 3

7 3 4

8 ÿ 3

9 2 1
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considered marked. The unmarked immediate
followers of task 1 are tasks 2±5; they are placed in
list F(S) corresponding to task 1 and are also

placed in stage 2 as marked tasks. Task 1 is then
augmented to all subsets of the list F(S) that in-
clude tasks 2, 3, 4, and 5 to form the states of stage

Table 2

Generation of states of nodes

Stage Marked tasks State number State elements State times for Unmarked immediate

followersModel A Model B

0 0 ; 0 0 1

1 1 1 1 2 2 2,3,4,5

2 2,3,4,5 2 1,2 5 2 6

3 1,3 4 2 ÿ
4 1,4 3 2 ÿ
5 1,5 2 3 8

6 1,2,3 7 2 6

7 1,2,4 6 2 6

8 1,2,5 5 3 6,8

9 1,3,4 5 2 7

10 1,3,5 4 3 8

11 1,4,5 3 3 8

12 1,2,3,4 8 2 6,7

13 1,2,3,5 7 3 6,8

14 1,2,4,5 6 3 6,8

15 1,3,4,5 5 3 7,8

16 1,2,3,4,5 8 3 6,7,8

3 6,7,8 17 1,2,6 7 5 ÿ
18 1,5,8 2 6 ÿ
19 1,2,3,6 9 5 ÿ
20 1,2,4,6 8 5 ÿ
21 1,2,5,6 7 6 ÿ
22 1,2,5,8 5 6 ÿ
23 1,2,5,6,8 7 9 ÿ
24 1,3,4,7 8 6 ÿ
25 1,3,5,8 4 6 ÿ
26 1,4,5,8 3 6 ÿ
27 1,2,3,4,6 10 5 ÿ
28 1,2,3,4,7 11 6 ÿ
29 1,2,3,4,6,7 13 9 ÿ
30 1,2,3,5,6 9 6 ÿ
31 1,2,3,5,8 7 6 ÿ
32 1,2,3,5,6,8 9 9 ÿ
33 1,2,4,5,6 8 6 ÿ
34 1,2,4,5,8 6 6 ÿ
35 1,2,4,5,6,8 8 9 ÿ
36 1,3,4,5,7 8 7 ÿ
37 1,3,4,5,8 5 6 ÿ
38 1,3,4,5,7,8 8 10 ÿ
39 1,2,3,4,5,6 10 6 ÿ
40 1,2,3,4,5,7 11 7 ÿ
41 1,2,3,4,5,8 8 6 ÿ
42 1,2,3,4,5,6,7 13 10 ÿ
43 1,2,3,4,5,6,8 10 9 ÿ
44 1,2,3,4,5,7,8 11 10 ÿ
45 1,2,3,4,5,6,7,8 13 13 9

4 9 46 1,2,3,4,5,6,7,8,9 15 14 ÿ
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Fig. 3. Network of the example problem constructed only with the cycle time constraints.
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2. For each state in stage 2, the corresponding F(S)
list is found; this list is empty for some states. The
procedure terminates in stage 4 since F(S) is empty
for all the states of that stage. The total number of
states generated is 46 which is considerably less
than 29 ÿ 1 � 511 that corresponds to the number
of feasible states with no precedence relations.

Fig. 3 depicts the network that is constructed
with the constraint of sAj;m ÿ sAi;m6Cm for m � 1; 2.
Nodes 1±5, 7±11, 14 and 15 comprise the ®rst
nodes, since sAi ;m6Cm for m � 1; 2 for these nodes.
Note that node 6 is not among the ®rst nodes since
sA6;1 � 7 > C1, although sA6;2 � 2 < C2. From node
1, 18 new nodes can be constructed with A1 � Aj

and sAj;m ÿ sA1;m6Cm for m � 1; 2. Similarly, from
node 2, 6 new nodes can be constructed; these 24
new nodes comprise the second nodes. Node 46
that represents all the tasks in the problem is ®rst
obtained with 4 arcs; thus, the optimal solution has
4 stations. Table 3 shows the tasks in these 4 sta-
tions associated with each model.

We have solved the same problem using the
shortest-route formulation of Roberts and Villa
(1970). In the formulation, feasible states are
generated for each model and the set of states for
the problem is obtained from the Cartesian prod-
uct of these feasible states. For model 1 and 2, we
obtain 16 and 13 feasible states, respectively, as
shown below.

For model 1: (1), (1,2), (1,3), (1,4), (1,2,3), (1,2,4),
(1,2,6), (1,3,4), (1,2,3,4), (1,2,3,6), (1,2,4,6), (1,3,4,7),
(1,2,3,4,6), (1,2,3,4,7), (1,2,3,4,6,7), (1,2,3,4,6,7,9)

For model 2: (1), (1,5), (1,6), (1,7), (1,5,6),
(1,5,7), (1,5,8), (1,6,7), (1,5,6,7), (1,5,6,8), (1,5,7,8),
(1,5,6,7,8), (1,5,6,7,8,9)

The Cartesian product of these states results
in 16 ´ 13� 208 states as follows: [(1), (1)], [(1),
(1,5)],. . ., [(1,2,3,4,6,7,9), (1,5,6,7,8,9)]. In the re-
sulting network, node 208 that represents all the

tasks in the problem is ®rst reached with 3 arcs;
thus, the optimal solution has 3 stations. Table 4
shows the tasks in these 3 stations associated with
each model. Note that task 6 which is a common
task among the models is assigned to di�erent
stations; the assumption of assigning the common
tasks to the same stations of our model results in a
solution with one extra station. However, the
number of nodes in the network of Roberts and
Villa (1970) is considerably higher (more than 4.5
times). As the number of models in the problem
increases, the di�erence between the sizes of the
networks will be signi®cantly larger, since the
Cartesian product will increase the network size
quite rapidly. However, the increase in the size of
the network of our model will be relatively slower
as discussed in Section 2.3.1. Note also that as-
signing the common tasks to the same stations can
also be a practical requirement for tasks that re-
quire special tools/®xtures; Sparling and Milten-
burg (1998) also make this assumption in their
study on U-line balancing problem.

Note that in the optimal solution of our model
the work load di�erence in station 4 between the
models is 3. If a maximum work load di�erence of 2
is imposed, then the arc from node i to node j re-
quires the additional constraint j �sAj;1 ÿ sAi ;1�
ÿ �sAj;2 ÿ sAi;2� j 6 2. The corresponding network is
depicted in Fig. 4 in which the optimal solution still
requires 4 stations. Note that nodes 2, 6, 7, 12 and
18 are missing, since the arcs constructed on these
nodes violate the maximum work load di�erence
constraint. Thus, the network in Fig. 4 consists of
41 nodes. Table 5 shows the tasks in the 4 stations.

4. Concluding remarks

shortest-route model for the mixed-model
assembly line balancing problem is developed.

Table 3

Optimal task assignment of the network in Fig. 3

Station Tasks Model A Model B

Tasks Work load Tasks Work load

1 1 1 2 1 2

2 2,6 2,6 5 6 3

3 3,4,7 3,4,7 6 7 4

4 5,8,9 9 2 5,8,9 5

Table 4

Optimal task assignment for Roberts and Villa model

Station Model A Model B

Tasks Work load Tasks Work load

1 1,2,4 6 1,6 5

2 3,7 5 5,7 5

3 6,9 4 8,9 4

202 E. Erel, H. Gokcen / European Journal of Operational Research 116 (1999) 194±204



Fig. 4. Network of the example problem constructed with the cycle time constraints and a maximum work load di�erence of 2 time

units.
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The model is based on the shortest-route model
developed by Gutjahr and Nemhauser (1964) for
the single-model assembly line balancing prob-
lem. The model is capable of considering any
constraint that can be expressed as a function of
the tasks assignments. The size of the network
grows as N increases; however, assigning com-
mon tasks of di�erent models to the same sta-
tions and the constraints that can be imposed by
the designers limit the increase. Thus, it is more
e�cient than the shortest-route formulation of
Roberts and Villa (1970) in which the nodes of
the network consists of the Cartesian product of
the nodes of each model. The model proposed in
this note is a new shortest-route model of the
mixed-model version in which a combined pre-
cedence diagram is utilized. It can be used as a
framework to develop heuristic procedures to
solve the mixed-model assembly line balancing
problem.
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