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Abstract

The design of tandem production systems has been well studied in the literature with the primary focus being on how

to improve their e�ciency. Considering the large costs associated, a slight improvement in e�ciency can lead to very

signi®cant savings over its life. Division of work and allocation of bu�er capacities between workstations are two

critical design problems that have attracted the attention of many researchers. In this study, ®rst an understanding into

how the system works is to be provided. Except for the integration of two allocation problems, the basic model utilized

here is essentially the same as the previous studies. Theoretical results that characterize the dynamics of these systems

may also provide some heuristic support in the analysis of large-scale pull production systems. Ó 1999 Elsevier

Science B.V. All rights reserved.
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1. Introduction

In the last decade, there have been numerous
attempts for modelling production systems as
queuing systems for the purpose of understanding
their behavior. So far, the models in the literature
usually involved single-product systems with single
or multiple stages for tractability purposes. Cases
with multiple products, although closer to reality,
proved to be quite di�cult to tackle analytically. A
production system is usually viewed as an ar-

rangement of production stages in a particular
con®guration, where each stage consists of a single
workstation or several workstations in parallel.
These workstations may consist of workers, ma-
chines and work-in-process materials.

Performance evaluation in general is concerned
with ®nding out how well the system is functioning
provided that certain policies and parameters are
set. Typical performance measures for the evalu-
ation of production systems are throughput, av-
erage inventory levels, utilizations and customer
service levels among others. In obtaining these
measures, when analytical techniques become in-
su�cient often numerical techniques such as sim-
ulation or approximations could be used.
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An important part of production research lit-
erature appeared in the area of production lines.
During the last 30 years, performance evaluation
models have been developed for many di�erent
types of production lines using exact and approx-
imate approaches. The design of tandem produc-
tion systems has been well studied in the
production research literature with the primary
focus being on how to improve their e�ciency.
Considering the large costs associated with these
systems, a slight improvement in e�ciency can
lead to very signi®cant savings over the life of the
production system. Division of work among the
workstations and allocation of bu�er storage ca-
pacity between workstations are two critical design
factors that have attracted the attention of many
researchers and system designers. For a survey of
the research in this area, see Ref. [24].

In this study, we analyze the performance of
periodic pull production systems for theoretical
results that characterize the dynamics of these
systems. First, the previous results on the alloca-
tion problems will be summarized in Section 2.
Then, the system we considered will be described
in Section 3 together with an understanding into
how these systems work. In Section 4, the two
allocation problems and their integration for the
objective of throughput maximization will be in-
troduced. Then, the empirical results we obtained
through a series of numerical experiments will be
discussed in Section 5. Finally, in Section 6 an
allocation methodology will be proposed in order
to provide some heuristic support for the analysis
of large-scale pull production systems.

2. Review of previous results

One signi®cant aspect of production line design
is the so-called line balancing problem, i.e. allo-
cating the total work content as evenly as possible
to workstations and maximizing the utilization
through minimizing idle times as well. The solu-
tion of line balancing problem speci®es a system
con®guration capable of producing a speci®ed
amount of ®nished product with minimum re-
source requirements. The operation times can be
either deterministic or stochastic. However, line

balancing techniques are based on the assumption
of deterministic operation times. In practice, a
perfect balance of workload may be impossible
even with deterministic operation times, since, in
most cases, equal allocation of total work content
to workstations may be prevented by precedence
and technological constraints, and continuous in-
divisibility of operations. In production systems
with stochastic operation times, the balance of
workload is attained through allocating the total
work content evenly to the workstations based on
the means of operation times. However, the bal-
ance of stochastic operation times may be impos-
sible due to di�erent variability of operation times
at di�erent workstations.

It is intuitively plausible that the variation in
the operation times would decrease the mean
production (throughput) rate of the system. This
can happen in two ways: due to blocking and/or
starvation. When there is considerable variability
in the operation times at some respective work-
stations, a perfectly balanced production line may
not be optimal. Previous work on optimal alloca-
tion of workload to production lines has found
that, under certain assumptions, the mean
throughput rate of a ®nite bu�er production line is
maximized by deliberately unbalancing the work-
load of the line in an appropriate way. In partic-
ular, the optimal allocation of work follows a
`bowl phenomenon' whereby the center worksta-
tions are given preferential treatment (less work-
load) over the other workstations towards the
beginning and the ending workstations (see Refs.
[10,11]). The analogous result of Stecke and Morin
[30] is that the mean throughput rate of an in®nite
bu�er production line is maximized by balancing
the workload assigned to workstations. In other
words, as bu�er capacities increases, the degree of
unbalance in the optimal workload decreases, until
in the limit, a balanced allocation is optimal.

Hillier and Boling [11] report that the im-
provement in mean throughput rate due to un-
balancing grows up to 1.37% for a six workstation
serial production line. On the other hand, Maga-
zine and Silver [18] developed an approximation
that suggests the improvement from unbalancing
is no larger than 1.65% for exponential operation
times, regardless of the number of workstations in

480 N. Kirkavak, C. Dincßer / European Journal of Operational Research 119 (1999) 479±494



the system. One of the main insights emanating
from these studies is that balanced systems give
acceptable performance and further improvements
in mean throughput rate can be made by unbal-
ancing. However, the gains obtained from unbal-
ancing are relatively small ± in the order of 1%.
The works of El-Rayah [7] and So [28] indicate
that the bowl phenomenon is robust. That is, as
long as the balance of workload is changed in the
direction indicated by the bowl phenomenon, the
mean throughput rate function is almost ¯at near
the maximum. On the other hand, if the produc-
tion line is unbalanced in a di�erent direction, the
mean throughput rate decreases quite rapidly.

Muth and Alka� [20] examine three stage serial
production systems in a more general analytical
setting in order to give the mean throughput rate
as a function of several system parameters, subject
to certain constraints. Rao [23] considers the gen-
eralization where the coe�cient of variation of
operation times are di�erent for di�erent work-
stations. The results found by Rao [23] indicate
that unbalancing a serial production system can
lead to substantial improvements in mean
throughput rate when the variability of the stages
di�er from one to another. Optimum unbalancing
could possibly be achieved by carrying out alter-
nately the following two steps:
1. workload from interior stages should be trans-

ferred to the exterior ones (bowl phenomenon),
2. workload from more variable stages should be

transferred to less variable ones (variability im-
balance).
Step 1 is more important when the di�erences in

the coe�cient of variation of the stages are gen-
erally less than 0.5 while Step 2 predominates
when they exceed 0.5. Then, Wolisz [34] shows that
the idea of assigning less workload to more vari-
able workstations is inappropriate for a coe�cient
of variation greater than one.

For lines longer than three stages and for non-
exponential distributions, analytic approaches are
quite limited, and some studies used simulation to
study the workload allocation problem under
more general conditions. Payne et al. [21] simu-
lated production lines with di�erent patterns of
processing time variances and observed that a
great deterioration in the performance occurs ei-

ther when processing time variances are increased,
or when bu�er capacities are highly restricted. In a
similar problem, Yamazaki et al. [36] investigated
the optimal ordering of workstations that maxi-
mizes the mean throughput rate of the system.
Based on some theoretical and extensive empirical
results, they propose two rules for ordering
workstations. The ®rst rule recommends arranging
the two worst workstations (apart from each other
as far as possible) as the ®rst and the last work-
stations. A worst workstation refers to the one
either with the slowest production rate or with the
most variable operation time. The second rule ar-
ranges the remaining workstations according to
the bowl phenomenon.

All of the above studies have assumed that the
production system has a serial structure. Baker et
al. [4] investigated the behavior of assembly sys-
tems in which two or more parts are produced at
component lines and put together at an assembly
workstation at the end. Their basic ®nding is that
the assembly workstation in a balanced system is
intrinsically a bottleneck. Villeda et al. [33] studied
an assembly system in which three serial lines
(each one composed of three workstations) merge
at one assembly workstation which is operating as
a pull system. They consider normal processing
times with several coe�cients of variation and re-
port that mean throughput rate is maximized by
assigning decreasing amounts of work closer to
assembly workstation at which the mean process-
ing time is ®xed.

The e�ect of bowl phenomenon has been ex-
tensively studied in conventional type push pro-
duction systems, however, studies exploring its
e�ects and validity on pull production systems are
rare. The simulation studies made so far show
con¯icting results. In the simulation experiments
performed by Meral [19], the bowl phenomenon is
not con®rmed for idealized just-in-time production
systems. She found that balancing strategies are
always superior to the unbalancing strategies
based on bowl phenomenon. On the contrary,
Villeda et al. [33] analyzed a just-in-time produc-
tion system by investigating several unbalancing
methods and they claim that the only method
giving a consistent improvement in the mean
throughput rate is the `high-medium-low'
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(decreasing) allocation. They also report that the
mean throughput rate with unbalanced worksta-
tions are always superior to the perfectly balanced
con®gurations. On the other hand, Sarker and
Harris [25] claim that they observed the e�ect of
bowl phenomenon on a just-in-time production
system. Recently, Gstettner and Kuhn [9] have
classi®ed and studied di�erent pull production
systems and show that the bu�er capacity (kan-
ban) distribution has signi®cant e�ect on the per-
formance of the system. Also, they report that
di�erent pull policies show similar performance if
the bu�er capacity distribution is adapted ac-
cording to the applied control mechanism.

Whatever the case, looking from a labor rela-
tions point of view, there may be di�culties in
assigning signi®cantly di�erent workloads to dif-
ferent workstations. This raises the question as to
whether there might be other ways of achieving
this improvement in mean throughput rate by
giving preferential treatment to the critical work-
stations without signi®cantly unbalancing the
workloads. One way of doing this is to provide
such critical workstations with more bu�er storage
capacity than the other workstations. As surveyed
by Sarker [24] various researchers have considered
the general question of optimal allocation of bu�er
storage capacity in a variety of contexts. In the
analogy to workload allocation problem there is a
critical di�erence that the bu�er allocation deci-
sion variables are discrete (integer) variables
whereas the workload allocation decision variables
are formulated as continuous variables in the
previous studies.

Most of the research on bu�er allocation has
focused on analytical models of small systems
simpli®ed with restrictive assumptions [10,20]. For
larger systems, analytical approximations or sim-
ulation models have been utilized [3,6]. Conway et
al. [6] examined serial production systems via
simulation. They ®nd that bu�ers between work-
stations increase the production capacity of the
system but the returns are reduced sharply with
increasing inventory holding costs. They also note
that the positioning as well as the capacity of the
bu�ers are important. El-Rayah [8] utilized a
computer simulation model to investigate the e�ect
of unequal allocation of bu�er capacity on the

e�ciency with an experiment limited to small
production lines. He observed that the lines in
which the center workstations are assigned larger
bu�er storage capacity than the ending worksta-
tions (inverted bowl phenomenon) are better (with
respect to mean throughput rate) than the other
unbalanced con®gurations. But, according to their
experiment the inverted bowl con®guration yielded
more or less a similar mean throughput rate to that
of a balanced line depending upon the total bu�er
storage capacity.

Hillier and So [12] studied the e�ect of the
variability of processing times on the optimal al-
location of bu�er storage capacity between work-
stations. They conclude that either the center
workstations or the workstations with high vari-
ability should be given more bu�er capacity.
Consequently, an inverted bowl phenomenon
prevails regarding the optimal allocation of bu�er
storage capacity. In another study, Hillier and So
[13] utilized an exact analytical model to conduct a
detailed study of how the length of machine up
and down times and interstage bu�er storage ca-
pacity can e�ect the mean throughput rate of
production lines with more than three stages. They
developed a simple heuristic to estimate the
amount of bu�er storage capacity required to
compensate for the decrease in mean throughput
rate due to machine breakdowns. Sheskin [26] of-
fers some guidelines for the allocation of bu�er
storage capacity in serial production lines subject
to random failure and repair. In the case that all
machines have the same reliability, he recommends
maximizing the mean throughput rate by allocat-
ing the bu�ers capacities as nearly as possible
equal in size. When the machines are di�erent with
respect to their reliability, he proposes to allocate
more bu�er capacity to less reliable machines. This
intuitive result is also supported by Soyster et al.
[29].

Jafari and Shanthikumar [15] propose a heu-
ristic solution to determine the optimal allocation
of a given total bu�er capacity among worksta-
tions of a serial production line. Their approxi-
mate solution is based on a dynamic programming
model with an approximate procedure to compute
the mean throughput rate of the line. Smith and
Daskalaki [27] have developed a design method-
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ology for bu�er capacity allocation within assem-
bly lines to approximately solve the optimal bu�er
allocation problem by maximizing mean through-
put rate while minimizing holding and storage
costs. Baker et al. [3] have examined the e�ect of
bu�ers on the e�ciency of systems in which two
serial lines merge at an assembly workstation.
They conclude that small bu�ers are su�cient to
regain most of the lost production capacity and
bu�er capacity should be allocated equally among
the workstations.

So far, we review the researchers that proposed
rules for allocating bu�ers to maximize the mean
throughput rate in serial production lines operat-
ing with push control strategy. In contrast, Andi-
jani and Clark [1] investigate the optimal
allocation of bu�ers (kanbans) in a pull system by
considering both the mean throughput rate and
the WIP inventories in the maximized objective
function. Recently, Askin et al. [2] utilized a con-
tinuous time, steady-state Markov model in de-
termining the optimal number of kanbans to use
for each part type at each workstation in a just-in-
time production system. Their objective was to
minimize the sum of inventory holding and back-
order costs. Results indicate a need for increased
safety stocks for systems where many part types
are produced in the same workstation.

Tayur [31,32] developed some theoretical re-
sults ± reversibility and dominance ± that charac-
terize the dynamics of kanban-controlled
manufacturing systems. His study also provides
some insights into the behavior of those systems
and greatly reduces the simulation e�orts required
in an investigation. In a serial periodic pull pro-
duction system with an in®nite supply of raw
material to the ®rst stage and subject to stochastic
demand for ®nished product at the last stage:
· Increasing the number of identical stages in se-

ries, with keeping all other system parameters
the same, decreases the mean throughput rate
of the system.

· Increasing the demand arrival rate of ®nished
product, with keeping all other system parame-
ters the same, increases the mean throughput
rate of the system.

· Increasing the length of the transfer/review peri-
od, with keeping all other system parameters the

same, decreases the mean throughput rate of the
system.

· Increasing the total work content to be allocated
to the stages of the system, with keeping all oth-
er system parameters the same, decreases the
mean throughput rate of the system.

· Increasing the total number of kanbans to be al-
located to the stages of the system, with keeping
all other system parameters the same, increases
the mean throughput rate of the system.

· Increasing the maximum level of allowed back-
orders, with keeping all other system parameters
the same, increases the mean throughput rate of
the system.
The characterization of the optimal allocation of

scarce resources in a production system requires
further investigation with alternate models and
techniques through which the results may ®t real-life
better [14]. One direction is to try non-exponential
processing times with di�erent variations or another
direction is to broaden the allocation problem by
combining the decisions on bu�er storage capacity
allocation with workload allocation.

3. Description of the system

The basic production system considered in this
paper consists of N stages in tandem (see Fig. 1).
At each stage there is only one workstation pro-
cessing a single-item, so that the term `stages' and
`workstations' could be used interchangeably. Wj

(16 j6N ) represents the workstation of stage j.
At any workstation Wj, there are two stocks Qin

j
and Qout

j , respectively, for storing incoming and
outgoing WIP inventory items. W1 is responsible
for the ®rst operation of the item, converting raw
material RM (or alternatively denoted by com-
ponent C0 stored in stock Qin

1 ) into component C1

(stored in stock Qout
1 till the end of the period then

instantaneously transferred to stock Qin
2 ). Wj

(26 j6N ÿ 1) converts component Cjÿ1 (from
stock Qin

j ) into component Cj (stored in Qout
j till the

end of the period then instantaneously transferred
to stock Qin

j�1). Finally, WN performs the ®nal op-
eration of the item, converting component CNÿ1

(from stock Qin
N ) into ®nished product FP (could be

alternatively denoted by CN and stored in Qout
N till
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the end of the period then instantaneously trans-
ferred to QFP or alternatively Qin

N�1).
The maximum number of items allowed in

stocks Qout
j and Qin

j�1 is Kj which is the maximum
capacity of bu�er space allocated for component
Cj at workstation Wj. Note that, I in

j (06 I in
j 6Kjÿ1)

and Iout
j (06 Iout

j 6Kj) denote the level of WIP in-
ventories at stocks Qin

j and Qout
j (16 j6N ), re-

spectively. Consider the total number of
component Cj items between workstations Wj and
Wj�1, then the inequality for the level of WIP in-
ventories at stocks Qout

j and Qin
j�1: Iout

j � I in
j�16Kj

holds for all stages. However, at the ®nished
product stock QFP (or alternatively Qin

N�1) backor-
dering is allowed up to a maximum allowable
amount of BFP. The inventory level at ®nished
product stock is IFP (or alternatively I in

N�1,
ÿBFP6 I in

N�16KN ).
For simpli®cation, the rate of supply of RM is

assumed to be in®nite. Since a kanban-controlled
pull production system typically operates with
small lot sizes, it is assumed that one kanban
corresponds to one item of inventory in this for-
mulation. The analysis can be easily extended to
cover the systems operating with lot sizes greater
than one at a cost of dimensionality problem in
evaluating transition matrices.

In these periodic pull systems, the production is
only initiated just for the replenishment of items

removed from the bu�er stocks during the material
handling and inventory review period of T time
units (transfer/review cycle time). That is work-
station Wj produces components Cj in order to
maintain the inventory level of stock Qin

j�1 at Kj.
Without loss of generality, the production system
is assumed to have the same transfer/review cycle
times among all stages.

At the end of period k, ®rst the components
collected at outgoing stocks (Iout

j �k� units of com-
ponent Cj) are transferred to incoming stocks Qin

j�1

in the context of material handling function. Then,
in the context of production/inventory control
function, the total number of kanbans released as
production orders to start production of compo-
nents Cj at workstation Wj for the period k � 1
becomes Kj ÿ I in

j�1�k � 1�. Note that, the time
convention used in this study is beginning of period
in evaluating any state parameter of the system.
But, Iout

j �k� denotes the inventory level at stock
Qout

j at the end of the period k, since all output
bu�ers are empty at the beginning of any period.

The two sources of uncertainty considered in
the production system are the demand and pro-
cessing time variability. The demand for the ®n-
ished product FP arrives with exponentially
distributed inter-arrival times to the bu�er stock
QFP. The mean inter-arrival time of the demand is
�1=k� time units. Although backordering is al-

Fig. 1. Tandem arrangement of workstations (Wj: j � 1; 2; . . . ;N ) in a kanban-controlled periodic pull production line. Each work-

station has both an input material queue (Qin
j : j � 1; 2; . . . ;N ) and an output material queue (Qout

j : j � 1; 2; . . . ;N ). There are Kp
j

production kanbans at workstation Wj and Kw
j withdrawal kanbans circulating between workstations Wj and Wjÿ1.
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lowed, an arriving ®nished product demand ®nd-
ing an amount of BFP backordered FP items (that
means, I in

N�1 or alternatively IFP is equal to ÿBFP) is
lost. The processing times are assumed to be ex-
ponentially distributed. The mean processing time
at workstation Wj is �1=lj� time units. For sim-
pli®cation, the workstations are assumed to be
reliable. As a result, there are N � 1 stochastic
processes involved in the formulation of the sys-
tem.

The long-term behavior of the system. In this
formulation, the limiting distribution of the states
of the system ~p, of size jEj, could be found (if it
exists) by solving the stationary equations of the
Markov chain under consideration with the
boundary condition imposed:

~pM �~p and ~p e~T � 1;

where e~ is a row vector with all elements equal to
one, ~p the unique solution of the above transition
and the boundary equations. A discussion on a
variety of methods to compute the stationary
probabilities of large Markov chains can be found
in [5,22].

Mean throughput rate. Considering the long-
term behavior of the system, the throughput rates
of the workstations are equal to each other be-
cause of the conservation of material ¯ow in the
system. The mean throughput rate of workstation
Wj is denoted by MTRj and de®ned as the expected
number of component Cj items produced per unit
time. The mean throughput rate of the system is

MTR �MTRN �MTRNÿ1 � � � � �MTR2

�MTR1:

A single-item multi-stage stochastic periodic
pull production system is considered in this study
to investigate the impacts of system parameters on
the mean throughput rate of the system. All de-
scriptive and modelling details of this production
system can be found in [17].

4. Statement of the problem

After the brief discussion about the system
parameters and the mean throughput rate of the

system, it appears that we must progress to the
integration of all system parameters simulta-
neously in the setting of a scarce resource alloca-
tion problem. That is, given a set of parameters,
the problem is to determine the best choice of these
parameters in order to optimize the performance
of the system.

Other than the integration of two allocation
problems, the basic model utilized here is essen-
tially the same as the previous studies in the liter-
ature. The system consists of N production stages
corresponding to N workstations in series. Sup-
pose that the set of all production operations re-
quired to transform a raw material into a ®nished
product (which is also called the total work con-
tent) requires a total of TWC time units. That is,
the sum of the mean processing times at all stages,PN

j�1 1=lj, is TWC. On the other hand, the total
number of kanbans available for bu�er storage in
the system (excluding the input bu�er stock of the
®rst stage),

PN
j�1 Kj, is TNK which corresponds to

the maximum number of in-process materials and
®nished product allowed in the system at any in-
stant.

The primary measure of performance of the
system is assumed to be the mean throughput rate
MTR� ~W; ~K�, where ~W � �1=l1; 1=l2; . . . ; 1=lN�
represents the allocation of workload to worksta-
tions and ~K � �K1;K2; . . . ;KN � represents the al-
location of kanbans between workstations.

The basic problem is to ®nd the allocation
vectors ~W and ~K which maximizes MTR� ~W; ~K�
subject to workload and kanban constraints. In
the below formulation of the problem, the pa-
rameters N , TWC and TNK are ®xed constants,
whereas the lj are continuous and the Kj are in-
teger decision variables:

maximize MTR� ~W; ~K�

subject to
XN

j�1

1=lj � TWC;

XN

j�1

Kj � TNK;

1=lj > 0; Kj > 0 and Kj integer

for j � 1; 2; . . . ;N :
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The above optimization model can be viewed as
a linearly constrained mixed integer non-linear
programming problem, where the non-linear
function MTR� ~W; ~K� cannot be expressed ex-
plicitly. Even if the processing and demand inter-
arrival times are assumed to be exponential, the
limitation imposed by the number of kanbans will
cause the output process not to be Poisson. For
this reason closed form solutions for the stationary
probabilities of the system are not available and
numerical methods should be used.

The evaluation of MTR� ~W; ~K� for any given
~W and ~K involves formulating the underlying
queuing process as a ®nite state, discrete time
Markov chain, and then using an appropriate
numerical procedure (such as the Gauss±Seidel
method) to solve the resultant system of linear
equations to obtain the stationary distribution of
the system. Unfortunately, the number of states in
the state space of the involved Markov chain, and
so the number of equations to be solved, grows
very rapidly with N , Kj and BFP. For many of the
cases considered in this study, this number is in the
thousands. This rapid growth imposes de®nite
limits on the size of the problem that will be
computationally tractable.

For the allocation of workload and kanban,
there are several empirically observed properties
which are ®rst reported by Hillier and Boling [10]
in serial production lines. As summarized below,
subsequent studies in the literature have supported
the validity of these properties as well.
· Reversibility: The mean throughput rate of the

system is the same if the allocations are reversed,
that is

MTR� ~W; ~K� �MTR� ~W0
; ~K

0�

for any arbitrary allocation of workload
~W � �1=l1; 1=l2; . . . ; 1=lN �, its mirror image is
~W
0 � �1=lN ; 1=lNÿ1; . . . ; 1=l1� and for any ar-

bitrary allocation of kanban (bu�er storage
capacity) ~K � �K1;K2; . . . ;KN �, its mirror im-
age is ~K

0 � �KN ;KNÿ1; . . . ;K1�.
· Symmetry: The optimal allocation of both

workload and kanban (bu�er storage capacity)
which maximizes the mean throughput rate is
symmetric, that is

1=lj � 1=lN�1ÿj and Kj � KN�1ÿj

for j � 1; 2; . . . ;N :

· Monotonicity (or bowl phenomenon): The work-
stations receive a decreasing amount of work-
load or an increasing amount of bu�er storage
capacity as they get closer to the center of the
production line, that is:
� in terms of workload allocation:

1=ljÿ1 > 1=lj for 26 j6 N
2

� �
;

1=lj < 1=lj�1 for
N
2

� �
< j6N ÿ 1

or
� in terms of kanban allocation:

Kjÿ1 < Kj for 26 j6 N
2

� �
;

Kj > Kj�1 for
N
2

� �
< j6N ÿ 1:

None of these properties has been proven yet.
However, note that the reversibility property im-
mediately implies that if the optimal solution is
unique then it must satisfy the symmetry property.

It is empirically shown that the number of se-
rious candidates to be an optimal allocation is
generally small. The number of feasible allocations
that need to be evaluated can be reduced greatly
by using two key theoretical results, reversibility
and the concavity of the mean throughput rate
function with respect to allocation of both work-
load and bu�er storage capacity [31,32,35,37].

5. Experimental study

These structural results together with the per-
formance of balanced systems (more or less similar
to unbalanced systems within 1% or 2% of the
optimal) imply that an optimal allocation could be
found in some neighborhood of a balanced allo-
cation. Therefore, rather than using an optimum
seeking search procedure, an enumeration ap-
proach is to be used in this study. An unbalancing
measure which shows the degree of imbalance in
an arbitrary allocation is to be de®ned as follows:
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· For the allocation of workload:

DIw �
max16 j6N �1=lj� ÿmin16 j6N �1=lj�

t0
;

where TWC is assumed to be equal to N � 10�
t0 (10� t0 is the average processing time for
each stage) and t0 is the elemental operation
time.

· For the allocation of kanban:

DIk � max
16 j6N

�Kj� ÿ min
16 j6N

�Kj�:

5.1. Design of experiment

An experiment is designed in order to investi-
gate the optimal allocation of both workload and
kanban in multi-stage single-item pull production
systems in which the Poisson demand arrives at the
last stage with a mean rate of k. The demand ar-
rivals during the times the ®nished product bu�er
is empty are lost (backordering is not allowed,
BFP � 0). At each stage of the system, the pro-
cessing times are exponential with the mean 1=lj,
where

PN
j�1 1=lj � TWC and the number of kan-

bans allocated is Kj, where
PN

j�1 Kj � TNK. The
status of the system is reviewed periodically with a
period length of T . The production and material
withdrawal orders are released at the beginning of
periods. It is also assumed that the raw material
supply for the ®rst stage is in®nite and the material
handling times between stages are zero.

In the context of this experiment, 48 two-stage
systems, 36 three-stage systems and 20 four-stage
systems are evaluated. The framework of the ex-
periment is as follows:
· Case 1: Two-stage systems.
� Mean demand arrival rate is ®xed, k � 1:0.
� Total work content is set equal to three di�er-

ent levels, TWC � 1:0; 1:50; 2:0, correspond-
ing to three di�erent levels for the demand
load, q � 0:50; 0:75; 1:0.

� Total number of kanbans is varied from 2 to
9, TNK � 2; 3; 4; 5; 6; 7; 8; 9.

� Length of the transfer/review period is set to
two di�erent values, T � 0:0001; 1:0, where
T � 0:0001 approximates the continuous re-
view instantaneous order pull system.

� The maximum allowable value for the degree
of imbalance is less than or equal to 5, that is
DIw6 5 and DIk 6 5.

· Case 2: Three-stage systems.
� Mean demand arrival rate is ®xed, k � 1:0.
� Total work content is set equal to three di�er-

ent levels, TWC � 1:50; 2:25; 3:0, correspond-
ing to three di�erent levels for the demand
load, q � 0:50; 0:75; 1:0.

� Total number of kanbans is varied within two
disjoint sets, TNK � 3; 4; 5 and 12; 13; 14.

� Length of the transfer/review period is set to
two di�erent values, T � 0:0001; 1:0, where
T � 0:0001 approximates the continuous re-
view instantaneous order pull system.

� The maximum allowable value for the degree
of imbalance is less than or equal to 5, that is
DIw6 5 and DIk 6 5.

· Case 3: Four-stage systems.
� Mean demand arrival rate is ®xed, k � 1:0.
� Total work content is set equal to two di�er-

ent levels, TWC � 2:0; 4:0, corresponding to
two di�erent levels for the demand load,
q � 0:50; 1:0.

� Total number of kanbans is varied from 4 to
8, TNK � 4; 5; 6; 7; 8.

� Length of the transfer/review period is set to
two di�erent values, T � 0:0001; 1:0, where
T � 0:0001 approximates the continuous re-
view instantaneous order pull system.

� The maximum allowable value for the degree
of imbalance is less than or equal to 4, that is
DIw6 4 and DIk 6 4.

In order to obtain the general behavior of the
systems in some neighborhood of balanced allo-
cations, 960 two-stage, 18786 three-stage and
26040 four-stage MTR functions are evaluated by
solving the involved one-step transition matrices
obtained from discrete-time Markov chain models.

5.2. Empirical results

We will present our ®ndings on the optimal
allocation of workload and kanban by focusing on
two-, three- and four-stage pull production lines,
respectively. In the context of the designed exper-
iment 104 di�erent systems are evaluated in 500
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(on the average) di�erent con®gurations. Because
of the huge amount of raw I/O data (input:
462,234 data items and output: 995,334 data
items), we will brie¯y discuss some of the ®ndings
as empirical observations, factorial regression
models and optimal allocations.

5.2.1. Empirically observed properties
Throughout the experiments, according to

optimal allocation results the properties ± re-
versibility, symmetry and monotonicity (or bowl
phenomenon) ± are not veri®ed. The periodic pull
production system modeled and analyzed in this
study is not reversible. The stages closer to the
®nished product demand require more resources
(more production rate and/or more bu�er storage
capacity) relative to the stages closer to raw
material supply. This is because of our in®nite
assumption of raw material supply to the ®rst
stage.

Then, the empirical results show that the opti-
mal allocation is not symmetric. The optimal al-
location in general follows a pattern of decreasing
workload and increasing kanban allocation to-
wards the end of the production line. As a result,
the bowl-phenomenon is not observed in these
periodic pull production lines. Although we have
evaluated all possible allocations within the limi-
tations on DIw and DIk, giving preferential treat-

ment to center workstations does not yield better
mean throughput rates than we found by giving
preferential treatment to the ending stages which
are closer to ®nished product demand.

In the correlation analysis of the MTR and its
independent factors (input parameters de®ning the
whole system) this result is also veri®ed. Mean
throughput rate of the system is negatively corre-
lated with TWC and positively correlated with
TNK as it is intuitively clear. It is observed from
Table 1 that, the correlation coe�cients of both
the amount of workload and the number of kan-
bans allocated to stages is monotone increasing
towards the end of the production line. Thus, the
preferential treatment should be focused on the
last stages whose allocation variables are the most
signi®cantly correlated to MTR. See Table 1 for
the correlation coe�cients of K1 and K2 as ÿ0:0062
and 0:6157, respectively. Although, TNK is posi-
tively correlated with MTR, small negative corre-
lation of K1 is simply because of K1 � K2 � TNK.
This means that increasing the number of kanbans
in the ®rst stage directly decreases the number of
kanbans in the second (last) stage. Since, the
production capacity lost due to decreasing the
number of kanbans in the second stage is signi®-
cantly greater than the production capacity gained
due to increasing the number of kanbans in the
®rst stage, the correlation coe�cient of K1 is

Table 1

Correlation analysis of the factors a�ecting the mean throughput rate of two, three and four-stage systems

Workload factors Dependent factor: MTR Bu�er

factors

Dependent factor: MTR

Continuous approximated

by T � 0:0001

Periodic with

T � 1:0

Continuous approximated

by T � 0:0001

Periodic with

T � 1:0

TWC2 ÿ0.6491 ÿ0.3037 TNK2 0.5295 0.6933

1=l1 ÿ0.5202 ÿ0.2540 K1 ÿ0.0062 0.2188

1=l2 ÿ0.6229 ÿ0.2808 K2 0.6157 0.5793

TWC3 ÿ0.7416 ÿ0.4279 TNK3 0.5006 0.6278

1=l1 ÿ0.5751 ÿ0.3396 K1 0.0964 0.1770

1=l2 ÿ0.6205 ÿ0.3627 K2 0.1452 0.2272

1=l3 ÿ0.6769 ÿ0.3782 K3 0.4872 0.5104

TWC4 ÿ0.8404 ÿ0.6843 TNK4 0.1802 0.2539

1=l1 ÿ0.7466 ÿ0.6169 K1 ÿ0.1377 ÿ0.1271

1=l2 ÿ0.7589 ÿ0.6249 K2 ÿ0.0910 ÿ0.0359

1=l3 ÿ0.7712 ÿ0.6292 K3 ÿ0.0082 0.0194

1=l4 ÿ0.8003 ÿ0.6344 K4 0.4170 0.3975
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turned out to be negative. A similar e�ect is also
observed for four stage systems.

On the other hand, concavity is the only prop-
erty of mean throughput rate function observed
empirically in all cases. It is very di�cult to visu-
alize the concavity of MTR function of systems
with three or more stages on a three-dimensional

graph. See as an example of the mean throughput
rate function of a two-stage periodic pull system
around the balanced allocation in Fig. 2.

In periodic systems, with decreasing the trans-
fer/review period length T , the mean throughput
rate is increased. Thus, the mean throughput rate
of a system controlled periodically is always lower

Fig. 2. The mean throughput rate function in a two-stage periodic pull production system. The function is concave with respect to both

allocation of workload and kanbans. In the contour plot, the maximum is at the quadrant in which the second stage gets less workload

and more number of kanbans. (Fixed parameters of the two-stage system: mean demand arrival rate k � 1:0; transfer/review period

length T � 1:0; total work content TWC � 2:0; total number of kanbans TNK � 10).
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than its continuous counterpart. But, on the other
hand, the periodic systems carry less inventory
than the continuous systems. There is a trade-o�
between throughput and the inventory depending
on the transfer/review period length so that one
cannot prefer continuous control, simply that the
system could produce more relative to its periodic
counterpart, without further analysis of the cost
structure.

5.2.2. Factorial regression models
The amount of output data obtained through-

out the experiment is very large so that one cannot
simply analyze the whole data and point out some
rules for the optimal allocation of workload and
kanban in pull production systems. In order to
summarize the output data some regression mod-
els are utilized.

In this regression analysis, there is a single
dependent variable (or response) MTR� ~W; ~K�,
that depends on 2� N independent (or regressor)
variables ~W and ~K. The relationship between
these variables is characterized by a mathematical
model. The regression model is ®t to the output
data obtained from the designed experiment.
However, the true functional relationship be-
tween the response and the regressors is un-
known.

Linear factorial regression model:

MTR1
reg� ~W; ~K� � a0 �

XN

i�1

ai1=li �
XN

i�1

aN�iKi:

Here, we like to determine the linear relationship
between the single response variable and the re-
gressor variables. The unknown parameters in the
above linear factorial regression model are called
regression coe�cients and the method of least
squares is used to estimate them. Some of the
statistical measures showing how well the linear
factorial regression model ®ts the data for two-
stage pull systems is summarized in Table 2. The
linear factorial regression model ®ts better to data
of continuous pull systems than the data of peri-
odic pull systems. One of the most important
measures, R-square, showing the proportion of
variability in the data explained or accounted for
by the regression model is above 0.8 for continu-
ous pull systems and 0.6 for periodic pull systems.
Another measure, mean square error, showing the
average error per data point of the regression
model is around 0.01. These are quite satisfactory
results for linear factorial regression model. The
signi®cance of these linear models is that the co-
e�cient estimates point the stage where the pref-
erential treatment (less workload and more
kanban) should be focused.

Table 2

The summary of factorial regression models between the independent factors and the mean throughput rate of a two-stage pull system

Continuous approximated by T � 0:0001 Periodic with T � 1:0

Linear Quadratic MTR MTR Quadratic Linear

Mean 0.7616 0.7616 0.7616 0.5831 0.5831 0.5831

St. deviation 0.1322 0.1408 0.1427 0.1813 0.1742 0.1430

Variance 0.0175 0.0198 0.0204 0.0329 0.0304 0.0205

CV 17.3547 18.4893 18.7359 31.0944 29.8799 24.5277

Skewness 0.0290 ÿ0.1113 ÿ0.2307 0.0552 0.3057 ÿ0.2017

Kurtosis ÿ0.5507 ÿ0.6135 ÿ0.8185 ÿ1.1406 ÿ0.7358 ÿ0.5792

Minimum 0.4500 0.4107 0.4269 0.2830 0.2452 0.2232

Maximum 1.0842 1.0419 0.9907 0.9411 1.0049 0.8900

Corl. coe�cient 0.9263 0.9868 1.0000 1.0000 0.9609 0.7888

R-square 0.8580 0.9739 1.0000 1.0000 0.9234 0.6222

SS (error) 1.3850 0.2550 0.0000 0.0000 1.2059 5.9478

MS (error) 0.0029 0.0005 0.0000 0.0000 0.0026 0.0125

F-Value 717.5100 1237.2100 1 1 400.4200 195.5900

DF 4 14 480 480 14 4
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· Two-stage systems: The coe�cient estimates of
linear factorial regression model has the rela-
tion, a1 > a2 and a3 < a4. This means: in order
to increase mean throughput rate of the system
allocate less workload and more kanban to the
second stage than the ®rst stage.

· Three-stage systems: The coe�cient estimates of
linear factorial regression model has the rela-
tion, a1 > a2 > a3 and a4 < a5 < a6. This means:
in order to increase mean throughput rate of the
system a decreasing workload and an increasing
kanban allocation should be utilized. The most
critical stage that requires preferential treatment
is the last stage.

· Four-stage systems: The coe�cient estimates of
linear factorial regression model has the rela-
tion, a1 > a2 > a3 > a4 and a5 < a6 < a7 < a8.
This means: in order to increase mean through-
put rate of the system a decreasing workload
and an increasing kanban allocation should be
utilized. The most critical stage that requires
preferential treatment is the last stage.
Response surface methodology is a collection

of mathematical and statistical techniques that are
useful for the modelling and analysis of problems
in which a response, like mean throughput rate
MTR, is in¯uenced by several variables, like
workload and kanban allocations ~W and ~K, and
the objective is to optimize the response. If the
®tted surface is an adequate approximation of the
response function, then analysis of the ®tted sur-
face will be approximately equivalent to analysis
of the actual system. Since the form of the rela-
tionship between the response and the independent
variables is unknown, a low-order (second order)
polynomial is employed.

Quadratic factorial regression model:

MTR2
reg� ~W; ~K�

� a0 �
XN

i�1

ai1=li �
XN

i�1

aN�iKi

�
XN

i�1

XN

j�i

ai;j1=li1=lj

"
�
XN

j�1

ai;N�j1=liKj

#

�
XN

i�1

XN

j�i

aN�i;N�jKiKj:

The method of least squares is again used to
estimate the regression coe�cients. The quadratic
factorial regression model better ®ts the data than
the linear model in terms of all statistical measures
considered. R-square is above 0:9 and 0:8 for
continuous and periodic pull systems, respectively.
Mean square error is reduced to 0:005. But, on the
other hand, individual interpretation of regression
coe�cients with the inclusion of second order
terms becomes meaningless. See Table 3 for the
increase in number of terms to be utilized in a third
order polynomial relative to linear and quadratic
models.

5.2.3. Optimal allocations
Throughout this experiment an overall average

of 1.35% improvement is obtained in the mean
throughput rate over the balanced (as possible as)
systems. See Table 4 for the average improvement
in MTR of the systems evaluated. Note that, in the
design of experiment, there are several cases in
which the total number of kanbans cannot be
equally allocated to the stages in the system. In
such cases, a composite measure of the degree of
imbalance in both allocation of workload and
kanban is de®ned as

DI � 1

24 ÿ N
TWC

�����������YN
i�1

1

li

N

vuut0@ 1A35
� 1

24 ÿ N
TNK

�����������YN
i�1

Ki
N

vuut0@ 1A35:
This aids to ®nd the most closely balanced

con®guration with maximized mean throughput
rate. The level of the average improvement ob-

Table 3

The number of terms utilized in factorial regression models

developed for pull production systems

Factorial regression

models

Number of regression terms

2-stage 3-stage 4-stage

MTR1
reg� ~W; ~K� 5 7 9

MTR2
reg� ~W; ~K� 15 28 45

MTR3
reg� ~W; ~K� 35 84 165

MTRl
reg� ~W; ~K� 1�Pl

j�1
2Nÿ1�j

j

� �
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tained is similar to the results reported in the lit-
erature. The results regarding the optimal alloca-
tion of both workload and kanban in pull
production systems could be brie¯y summarized as
follows:
· General rule: Select kanbans to allocate ®rst. Al-

locate kanbans in a monotone increasing pat-
tern in which ®rst stage gets less kanban than
the last stage of the system. Allocate workload
in a monotone decreasing pattern in which ®rst
stage gets more workload than the last stage of
the system.

· Exceptions: If TNK is low, then the e�ect of one
unit of imbalance in the allocation of kanban is
high. That is, giving one kanban to any stage re-
sults in high preferment to that stage, instead of
taking some amount of this e�ect back, some ex-
tra workload could be transferred to that stage.
As a result, in such cases an increasing pattern
of workload may give the best performance.

· Continuous vs periodic: The number of excep-
tions increases with the number of stages in
the system and also with increasing the length
of transfer/review period.

Note that kanban allocation variables are discrete.
On the other hand, although workload allocation
variables were assumed continuous in the formu-
lation, they are made discrete as multiples of ele-
mental task time t0 in the context of the
experiment. This also causes some exceptions in
the optimal allocation of workload.

6. Proposed allocation methodology

The allocation methodology we propose utilizes
an evaluative modelling approach. The evaluation
of mean throughput rate, MTR� ~W; ~K�, for any

given ~W and ~K involves formulating the system
as a ®nite state, discrete time Markov process and
then using an appropriate technique to solve the
resultant system of linear equations to obtain the
stationary distribution of the system. The objective
of the allocation methodology is to achieve the
maximum mean throughput rate of the system
with providing the best set of parameters regarding
the allocation of total work content and the total
number of kanbans among workstations. In this
respect, the process through which the best set of
allocation decisions generated is semi-generative.
See Ref. [16] for more details on the development
of this methodology. Our proposed allocation
methodology can be outlined as:
1. Allocate the number of kanbans to worksta-

tions as equal as possible.
2. Allocate the amount of workload to worksta-

tions as equal as possible.
3. If the resulting con®guration is a pure balanced

allocation, then all stages are identical to each
other. In such a system the last stage which pro-
duces the ®nished product becomes the bottle-
neck because the other stages on top of their
bu�er stocks utilize the intermediate bu�ers of
stages up to last stage as extra stocks. So, the
system should be con®gured in such a way that
all stages should be bottleneck (critical) at the
same instant.

4. Either the resulting system has to possess im-
balances because of indivisibility of the opera-
tions and precedence relations or not,
depending on the total number of kanbans to
be allocated, giving more preferential treatment
to the last stage might improve MTR. That is:

(a) If TNK is low,
(i) allocate the kanbans as equal as possi-
ble, if balanced allocation is not possible
then allocate more kanban to the last
stage(s),
(ii) select a pattern (decreasing, balanced
or increasing) for the allocation of work-
load depending on the e�ect of imbalance
in the allocation of kanban.

(b) Otherwise, if TNK is su�cient,
(i) select a monotone increasing pattern for
kanban allocation with special emphasis
given to the last stage,

Table 4

Average MTR of optimal and balanced allocations

Continuous approxi-

mated by T � 0:0001

Periodic with T � 1:0

Optimal Balanced Optimal Balanced

2-Stage 0.7817 0.7695 0.6332 0.6282

3-Stage 0.7567 0.7435 0.6023 0.5900

4-Stage 0.6639 0.6410 0.4112 0.3999
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(ii) select a monotone decreasing pattern
for workload allocation in which the ®rst
stage gets more workload than the last
stage.

Note that, decreasing the workload and increasing
the number of kanbans in a system have similar
e�ect on mean throughput rate. In this respect they
are treated as substitute of each other.

7. Conclusion

In the recent years, with parallel to the devel-
opments in manufacturing and computer tech-
nology, classical production facilities are being
replaced by advanced systems and the companies
have entered into a new age of global competi-
tiveness. Because of the scarcity of world's natural
resources, it becomes necessary to look for ways of
improving productivity and reducing costs
through a system of waste elimination. One such
system is the JIT production system in which the
waste is greatly reduced by adapting to changes.
Thus, having all processes produce the necessary
parts at the necessary time and having on hand
only the minimum stock needed to hold the pro-
cesses together. The pull production system is a
way of implementing the JIT principles, with the
®nished product `pulled' from the system at the
actual demand rate.

The major decisions for pull production systems
are concerned with the allocation of workload
(operations) to workstations, the determination of
the number of kanbans between workstations and
the production/transfer batch sizes. An experiment
is designed in order to investigate the optimal al-
location of both workload and kanban in two-
stage, three-stage and four-stage systems. The re-
sults do not support the properties ± reversibility,
symmetry and monotonicity ± in pull production
systems. Similar to the results reported by Villeda
et al. [33], a decreasing workload and an increasing
kanban allocation strategy gives always a consis-
tent improvement (1±10% relative to balanced al-
location) in the mean throughput rate. That is, the
stages closer to demand are intrinsically bottleneck
in a balanced system and requires preferential

treatment (less workload and more bu�er storage
capacity) over the other stages.

With the insight gained in this study, develop-
ing both exact and approximate performance
evaluation models for multi-item multi-stage pull
production systems could be an interesting future
research. Note that, when there are more than one
item in the system, because of some shared re-
sources, set-up times and scheduling priorities the
formulation becomes complicated. The use of va-
cation queues could be helpful in the development
of the approximate model.
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