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Abstract

In this paper a simple derivation of duality is presented for convex quadratic programs with a convex quadratic

constraint. This problem arises in a number of applications including trust region subproblems of nonlinear pro-

gramming, regularized solution of ill-posed least squares problems, and ridge regression problems in statistical analysis.

In general, the dual problem is a concave maximization problem with a linear equality constraint. We apply the duality

result to: (1) the trust region subproblem, (2) the smoothing of empirical functions, and (3) to piecewise quadratic trust

region subproblems arising in nonlinear robust Huber M-estimation problems in statistics. The results are obtained

from a straightforward application of Lagrange duality. Ó 2000 Elsevier Science B.V. All rights reserved.

Keywords: Lagrange duality; Convex quadratic programming with a convex quadratic constraint; Ill-posed least

squares problems; Trust region subproblems

1. Convex quadratic programs with an ellipsoidal

constraint

Consider the problem (P)

min
y

ÿ dTy � 1

2
yTQy

subject to yTPy6 d;

where Q is a symmetric, positive semide®nite n� n
matrix, d an n vector not identically zero, P an n�
n symmetric positive semide®nite matrix, y an n

vector, and d a positive scalar. This problem arises
in many applications including trust region sub-
problems of nonlinear programming [9,4], and
regularization of ill-posed least squares problems
[7]. It is also related to the technique of ridge re-
gression in statistical estimation [7]. Recently, the
problem has received renewed interest due to its
relation to semide®nite programming; see Ref.
[15]. The last reference derives a semide®nite dual
problem to (P) for the case where Q is a symmetric,
possibly inde®nite matrix. The dual problem de-
rived in Ref. [15] has a single variable and also
applies to the convex case while it involves the
pseudo-inverse of a certain symmetric matrix. It is
a maximization problem over a positive semide®-
niteness constraint on the matrix Qÿ kI where k is
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a scalar. Then, a semide®nite dual to this problem
is given, and this primal±dual pair is used to mo-
tivate an algorithm for the trust region problem.
Other related references that deal with the non-
convex case include Refs. [6,2] where dual prob-
lems to the nonconvex quadratic program with an
ellipsoidal (or, spherical) constraint are derived. In
particular, in Ref. [2] the problem is shown to be
equivalent to a convex program through duality.

Our purposes in the present note are more
modest. We wish to provide the interested reader
with a compact and accessible reference on duality
pertinent to convex quadratic programs with a
single quadratic constraint. We also present a
catalogue of three applications from the literature
including the trust region subproblems. It is hoped
that the present paper will serve to generate more
insight to the designers of algorithms for the
aforementioned problem class. Although the op-
timality conditions for the trust region subproblem
(with P � I) (or, the regularization of ill-posed
least squares problems) are well studied, resulting
in e�cient algorithms [9,4,7], to the best of our
knowledge, derivation of duality for the convex
trust region problem has not been exposed before
in the simple form given below. In the present note
we derive a dual problem to (P) using Lagrange
duality [14]. Our dual problem is a concave max-
imization problem over linear constraints. In par-
ticular, in all cases the dual simpli®es to a concave
maximization problem with a quadratic term and
a nondi�erentiable two-norm term in the objective
function. Our approach is essentially inspired from
Ref. [17] where a Lagrange dual for entropy min-
imization problems is given. The main duality re-
sult of the present paper can be seen to be similar
to the results of Refs. [11±13]. However, we use a
more direct and simpler derivation technique from
Lagrange duality. Baron [1] derives a Wolfe dual
for the problem, which contains a large number of
variables despite the simplicity of the derivation.
Lagrange duality for such problems is also dis-
cussed in Ref. [18] using the theory of `p pro-
gramming. This last reference discusses weak and
strong duality, and uniqueness of solutions as well
as regularity of `p programming problems. It is
shown that these problems are solvable in poly-
nomial time in Ref. [3]. A specialized interior-point

method applied to truss topology design problems
was implemented with success in Ref. [10].

In Section 2.1 we apply our duality result to
quadratic trust region subproblems of nonlin-
ear programming. In Section 2.2 we discuss
the smoothing of empirical functions [19] by qua-
dratic programming. Another contribution of
the paper is to show in Section 2.3 that our deri-
vation technique is also extended easily to mini-
mization of piecewise quadratic objective functions
over a quadratic (ellipsoidal) constraint. We illus-
trate this on an important problem from robust
statistics.

The main result of the paper can be summa-
rized in the following.

Proposition 1. (1) The Lagrange dual of (P) is the
following concave program (D)

max
x2Rm; z2Rm; l2R

/1�x; l� ÿ
1

2
zTzÿ ld

subject to ATz� /2�x; l� � d;

lP 0;

where Q � ATA and P � ETE.

/1�x; l� �
ÿ�1=4l�xTx if l > 0;

0 if l � 0;

(

/2�x; l� �
ETx if l > 0;

0 if l � 0;

(

under the condition that l � 0 implies x � 0.
(2) The optimal solution of the dual problem

�z�; x�; l�� for l� > 0 and a primal optimal solution
y� are related by the identities

Ey� � x�

2l�
�1�

and

z� � Ay�: �2�

Proof. Since Q is symmetric positive semide®nite,
there exist full row rank matrices A 2 Rm�n such
that Q � ATA, and E 2 Rm�n such that P � ETE.
Now we can rewrite (P) as follows:
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min
y;u;w

ÿ dTy � 1

2
uTu

subject to wTw6 d;

Ay ÿ u � 0;

Ey ÿ w � 0:

We associate the multipliers z 2 Rm with the
equality constraints Ay ÿ u � 0, and x 2 Rm with
Ey ÿ w � 0. Adding a nonnegative slack variable k
to the quadratic constraint wTw6 d and associat-
ing a multiplier l we form the following Lagran-
gean problem:

max
z;x;l

min
y;u;w;kP 0

1

2
uTu

�
ÿ dTy � l�wTw� kÿ d�

� zT�Ay ÿ u� � xT�ETy ÿ w�
�
: �3�

This is equivalent to

max
z;x;l
ÿ dl� min

u

1

2
uTu

��
ÿ zTu

�
�min

y

�ÿ dTy � zTAy � xTETy
	

�min
kP 0
flkg �min

w
lwTw
� ÿ xTw

	�
: �4�

The minimization over kP 0 yields the require-
ment

lP 0: �5�
The minimization over u yields u � z which in turn
gives the term ÿ 1

2
zTz. The minimization over y

gives the identity

ATz� ETx � d: �6�
The minimization over w yields

w � x
2l
; �7�

if l is non-zero. If l � 0 and xi 6� 0 for some i, then
the minimization over w yields ÿ1. Hence, in this
case we let x � 0. Substituting these expressions
back into Lagrange function and rearranging
terms we obtain (D). Note that in the case where
l � 0, we obtain the dual problem

max
z2Rn

ÿ 1

2
zTz

subject to ATz � d:

For illustration we do the converse now, i.e., we
start from (D) and obtain (P) as a dual assuming
l > 0 at the optimal solution (the alternative case
is much simpler and uninteresting). Associating
multipliers y 2 Rn with the equality constraint in
(D), we get the following Lagrangean problem:

min
y

max
z;x;lP 0

1

4l
xTxÿ 1

2
zTzÿ dl

� yT�ATz� ETxÿ d�: �8�
Rewrite this as

min
y

�
ÿ yTd �max

z

�
ÿ 1

2
zTz� yTATz

�
� max

x;l P 0

�
ÿ 1

4l
xTxÿ dl� yTETx

��
: �9�

Now, ®x l > 0. The maximization over x yields the
identity x � 2lEy. Substituting this back, and after
some algebraic simpli®cation we obtain the term
lyTETEy ÿ dl to be maximized over l > 0. This
yields the equality yTPy � d. The maximization
over z yields the identity z � Ay, which yields the
term 1

2
yTATAy. But, this is precisely the problem

(P) with the stipulation that at optimal
�y�; x�; z�; l�� strong duality between (P) and (D) is
equivalent to the fact that l� > 0 and y�TPy� � d.

The concavity of the dual objective function for
l > 0, x 2 Rm and z 2 Rm can be veri®ed by simply
forming the second derivative matrix from the
objective function. This yields the matrix
H�z; x; l�:

H�z; x; l� �
ÿ 1

l I 0 0

0 ÿ 1
2l I 0

0 0 ÿ 1
2l3 xTx

0BB@
1CCA;

which is negative semide®nite for any positive l,
x 2 Rm and z 2 Rm. Since the constraints are lin-
ear, the concavity follows. �

Note that in the case where l > 0 and the pri-
mal constraint is active (strict complementarity),
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i.e., yTPy � d at an optimal pair �y; l� we can ob-
tain a simpli®ed dual problem. Since x � 2lEy we
obtain xTx=4ÿ dl2 � 0. Therefore in the case
where strict complementarity holds the simpli®ed
dual is

max
x2Rn;z2Rn

ÿ 1

2
zTzÿ

���
d
p
kxk2

subject to ATz� ETx � d:

Notice that the objective function has a quadratic
term in z, and a nondi�erentiable two-norm term
in x.

2. Applications

2.1. The quadratic trust region subproblem

We consider the case where P � I , i.e., the trust
region subproblem. This leads to the following
corollary.

Corollary 1. (1) The Lagrange dual of (P) (with
P � I) is the following concave program (D2):

max
z2Rm;l P 0

/3�z; l� ÿ
1

2
zTzÿ ld;

where

/3�z; l�

�
1

2l �ÿ 1
2
dTd � dTATzÿ 1

2
zTAATz� if l > 0;

0 if l � 0;

�
under the condition that l � 0 implies ATz � d.

(2) For the optimal solution of the dual problem
�z�; l�� with l� > 0 the point

y� � d ÿ ATz�

2l�
�10�

is an optimal solution to (P). Furthermore, an op-
timal solution y� to (P) and the optimal z� to (D2)
are also related by

z� � Ay�: �11�

This result is obtained by taking E � I , and sub-
stituting d ÿ ATz for x. For the case where strict

complementarity holds we have the following
simple dual:

max
z
ÿ 1

2
zTzÿ

���
d
p
kd ÿ ATzk2:

The concavity of the dual problem for l > 0 is
again veri®ed by forming the second derivative
matrix from the dual objective function, which
gives

H�z; l�

�
ÿ 1

2l AAT ÿ I ÿ 1
2l2 �Ad ÿ AATz�

ÿ 1
2l2 �Ad ÿ AATz�T 1

l3 �ÿ 1
2
dTd � dTAzÿ 1

2
zTAATz�

 !
:

The product

�z l�H�z;l� z
l

� �
yields ÿzTzÿ 1

2l dTd which is strictly negative for
any z, and l > 0.

Notice that substituting (11) into (10) we obtain
the well-known optimality condition for the trust
region problem: namely that

y� � d ÿ ATAy�

2l�
;

or equivalently,

�Q� 2l�I�y� � d

with y�Ty� � d, cf Lemma 3.5 of [9]. The above
equation is also known as the secular equation.

2.2. An application to smoothing empirical functions

In [19] Terlaky treats the smoothing of empir-
ical functions by means of mathematical pro-
gramming. He develops duality results for such
problems using the theory of `p programming.
Here we will derive dual problems using our simple
machinery of the previous section.

The problem of smoothing empirical functions
is as follows. Let c1; . . . ; cn be the observed (mea-
sured) values of a function f at equidistant points.
Denote by y1; . . . ; yn the unknown values of f at
these points. Then the kth di�erences Dky1; . . . ;
Dkynÿk where
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Dkyi �
Xk

j�0

�ÿ1�kÿj k
j

� �
yi�j

are also unknown. One makes another observation
for these kth di�erences. Let us denote the result
by �1; . . . ; �nÿk. The problem is to ®nd y1; . . . ; yn

values that are not far from the c1; . . . ; cn values
such that the kth di�erences Dky1; . . . ;Dkynÿk are
also good approximations for �1; . . . ; �nÿk values.

One way to ®nd such yi values is to solve the
problem

max
y2Rn

Xnÿk

i�1

�Dkyi ÿ �i�2

subject to
Xn

i�1

�yi ÿ ci�26 d2:

This model aims at minimizing the error in kth
di�erences under the assumption that the Euclid-
ean distance between �c1; . . . ; cn� and �y1; . . . ; yn� is
at most d. This problem can be rewritten as

max
y2Rn

1

2
�Ay ÿ e�T�Ay ÿ e�

subject to �y ÿ c�T�y ÿ c�6 d2:

We can pose this model as

min
y;u;w

1

2
uTu

subject to wTw6 d;

Ay ÿ e � u;

y ÿ c � w:

From this point on we can carry out the derivation
exactly as in the previous section. This yields the
following dual:

max
z;x;l

ÿ ld2 � xTeÿ 1

2
xTx� /4�z; l�

subject to ATx� /5�z� � 0;

lP 0;

where

/4�z; l� � ÿ 1
4l zTz� zTc if l > 0;

0 if l � 0;

�

/5�z; l� � z if l > 0;
0 if l � 0;

�
under the condition that l � 0 implies z � 0.
Simplifying this model for the case where strict
complementarity holds we obtain the following
unconstrained dual:

max
x

xTeÿ xAcÿ 1

2
xTxÿ dkATxk2:

It is easy to easy to see that the primal and dual
optimal solutions y� and x�, respectively, are re-
lated by the identity

y� � ÿd
ATx
kATxk2

� c:

A second model treated by Terlaky [19] as-
sumes that the �1; . . . ; �nÿk values are good ap-
proximations to Dky1; . . . ;Dkynÿk values. That is,
the Euclidean distance between the vectors
��1; . . . ; �nÿk� and �Dky1; . . . ;Dkynÿk� is at most d.
Here the optimization model is

max
y2Rn

Xn

i�1

�yi ÿ ci�2

subject to
Xnÿk

i�1

�Dkyi ÿ �i�26 d2:

This problem can be rewritten as

max
y2Rn

1

2
�y ÿ c�T�y ÿ c�

subject to �Ay ÿ e�T�Ay ÿ e�6 d2:

This application is also straightforward using the
same machinery as above, and results in the dual

max
z;x;l

ÿ ld2 � xTcÿ 1

2
xTx� /6�z;l�

subject to x� /7�z� � 0;

lP 0;

where

/6�z; l� �
ÿ 1

4l zTz� zTe if l > 0;

0 if l � 0;

�

/7�z; l� �
ATz if l > 0;

0 if l � 0;

�
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under the condition that l � 0 implies z � 0.
Simpli®ed for the strictly complementary case, this
yields the dual

max
z
ÿ zTAcÿ dkzk2 � zTeÿ 1

2
kATzk2

2:

It is easy to verify that dual optimal z� and primal
optimal y� are related by

Ay� � ÿd
z
kzk2

� e:

2.3. An application to robust M-estimation

There has been considerable interest in the
theory and algorithms for robust estimation in the
past two decades. In particular, Huber's M-esti-
mator [8] has received a great deal of attention
from both theoretical and computational points of
view. Robust estimation is concerned with identi-
fying ``outliers'' among data points and giving
them less weight. Huber's M-estimator is essen-
tially the least squares estimator, which uses the `1-
norm for points that are considered outliers with
respect to a certain threshold. Hence, the Huber
criterion is less sensitive to the presence of outliers.

More precisely, the Huber's M-estimate is a
minimizer x� 2 Rn of the function

F �x� �
Xm

i�1

q�ri�x�=r�; �12�

where

q�t� �
1
2c t2 if jtj < c;

jtj ÿ 1
2
c if jtjP c

(
�13�

with a tuning constant c > 0, and a scaling factor r
that depends on the data to be estimated. The re-
sidual ri�x� is de®ned as

ri�x� � aT
i xÿ bi �14�

for all i � 1; . . . ;m with r � ATxÿ b. To view this
minimization problem in a di�erent format, de®ne
a ``sign vector''

s�x� � �s1�x�; . . . ; sm�x�� �15�

with

si�x� �
ÿ1 if ri�x� < ÿc;

0 if jri�x�j6 c;

1 if ri�x� > c;

8><>: �16�

and

W � diag�w1; . . . ;wm�; �17�
where

wi � 1ÿ s2
i : �18�

Now, assuming a unit r, the Huber's M-esti-
mation problem can be expressed as the following
minimization problem:

minimize F �x� � 1

2c
rT Wr � sT r

�
ÿ 1

2
cs
�
; �19�

where the argument x of r is dropped for nota-
tional convenience. Clearly, F measures the
``small'' residuals (jri�x�j6 c) by their squares while
the ``large'' residuals are measured by the `1

function. Thus, F is a piecewise quadratic func-
tion, and it is once continuously di�erentiable in
Rn.

In [5], the trust region approach was extended
to nonlinear Huber M-estimation problems where
the residual functions ri are nonlinear. By linea-
rizing the functions ri at the current iterate, one
obtains the following trust region subproblem:

min
r;x

1

2c
rTWr � sT r

�
ÿ 1

2
cs
�

subject to r � ATxÿ b;

xTx6 d:

Rewrite this problem as

min
r;x;k P 0

1

2c
rTWr � sT r

�
ÿ 1

2
cs
�

subject to r � ATxÿ b;

xTx� k � d:

Attaching multipliers y 2 Rm and l 2 R to the two
sets of constraints, respectively, we form the La-
grangean problem
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max
y;l

min
r;x;kP 0

1

2c
rTWr � sT r

�
ÿ 1

2
cs
�

� yT�ATxÿ bÿ r� � l�xTx� kÿ d�:
This separates into the minimization problems
over k P 0, x and r, respectively, after pulling out
the constant terms ÿbTy ÿ ld. The minimization
over k yields the constraint lP 0. The terms with x
give the expression

x � ÿAy
2l

�20�
with the objective function term ÿ 1

4l yTATAy. The
minimization over r requires a bit more attention
since this is a piecewise quadratic term. The simple
trick here is to work with the scalar term 1

2c r2
i ÿ yiri

which is valid only if jrij6 c. But, the minimization
over ri yields ri � cyi which is equivalent to saying
that

ÿ16 yi6 1

for all i. For the linear segment we obtain the
condition yi � si for the minimization over r to
yield a bounded optimal value. Plugging the ex-
pression r � cy into 1

2c rTr ÿ yTr we obtain the term
ÿ 1

2
cyTy. So, we have the dual problem

max
y;lP 0

ÿ 1

2
cyTy ÿ 1

4l
yTATAy ÿ bTy ÿ dl

subject to ÿ 16 y6 1;

where strong duality holds for optimal y�; x�; l� >
0 as in Corollary 1. Note also that the dual solu-
tion is related to the primal solution by the identity
(20) and the following:

y� � 1

c
Wr�x�� � s

with s � s�x�� and W is derived from s.
Notice that when l � 0 from the term

minx yTATx� lxTx one obtains the requirement of
Ay � 0. Therefore, in the case where the primal is
essentially unconstrained we have the dual

max
y

ÿ 1

2
cyTy ÿ bTy

subject to Ay � 0;

ÿ 16 y6 1:

When strict complementarity holds a simpli®-
cation of the dual as in Section 1 is possible. After
straightforward calculation we get

max
y

ÿ 1

2
cyTy ÿ

���
d
p
kAyk2 ÿ bTy

subject to ÿ 16 y6 1:

Finally, we note that optimality conditions for
nonconvex piecewise quadratic trust region sub-
problems are investigated in [16].
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