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Abstract

In this paper, we implement an adaptive search algorithm,genetic algorithmto derive closed-loop Nash equilibria
for linear–quadratic dynamic games. The computation of these equilibria is quite difficult to deal with analytically
and numerically. Our strategy is to search over all time-invariant strategies depending only on the current value of
the state. Also provided are some evidences which show the success of the algorithm. © 2000 IMACS. Published
by Elsevier Science B.V. All rights reserved.
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1. Introduction

Many developments in game and control theory in the last few decades have caused an increasing
interest in using non-zero sum dynamic games for modeling several problems in the area of engineering,
mathematics, biology, economics, management science, and political science. One of the basic questions
that arises in these models deals with the information of the players during the game. It is this difference
in information sets that gives rise to the different solution concepts. In an information-theoretic sense,
one solution concept, open-loop corresponds to the receipt of no information during the play while
closed-loop (feedback Nash) represents full information. In the latter one cannot just predict the decision
rule of the other player and go ahead taking that as a given, one has to take into account the effect that
one’s own decisions will have on the other player’s decision in the future. In reality, neither player can
precommit to a time path of future actions. Thus, at each stage of the game, both players reoptimize
in light of what happened in the previous stages. Therefore, all new information has to be considered
at each stage. It is well-known that the Nash equilibrium ofn-person, non-zero sum, linear differential
game with quadratic cost function can be expressed in term of the solution of coupled generalized
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Riccati-type matrix differential equations. For high-order games, the numerical determination of the
solution of the non-linear coupled equations is very difficult, and sometimes it is impossible to obtain
unique Nash solution [5,7,8,12,13]. However, no-memory restriction on admissible strategies enables
alternative solution techniques such as control theory to derive the equilibrium for dynamic games.
Cohen and Michel [4] applied control theory to find stable closed-loop Nash equilibrium of ‘appropriately
specified’ dynamic game. The aim of this paper is to study application of genetic algorithm (GA) to search
feedback Nash solution for high-order linear–quadratic difference games1 using standard control theory
techniques. In general, the task of designing and implementing algorithms for the solution of optimal
control problems is difficult one, but the numerical approximation for more than single controller in the
problem is even more difficult to handle. Hence, we use both the optimization and the learning property
of the GA to solve the problem of multiple criteria.

2. Description of the problem

For presentational simplicity, we will consider two-player dynamic game of the following general form:

xit+1 = Aixit + Biut + Civt , i = 1, 2 (1)

whereu and v are respective control vectors of Players 1 and 2 andAi, Bi and Ci are matrices of
appropriate dimensions. The cost function is given by

Ji = 1

2

N∑
t=0

(
xT

it+1Qit+1xit+1 + uT
t Ritut + vT

t Sitvt

)
(2)

where the superscript ‘T’ stands for transpose andQi, Ri andSi are symmetric positive definite matrices
of appropriate dimensions.

We will consider first the case of open-loop Nash equilibrium. Let{u}−t denote the sequence of moves
before and after, but not including periodt : u0, u1, . . . , ut−1, ut+1, ut+2, . . . , uN . An open-loop Nash
equilibrium is a sequence{u∗}N0 with the property that:

for all t, u∗
t minimizesJi subject to Eq.(1) and given{u∗}−t and{v∗}N0 . (3)

In the ‘closed-loop’ version of Nash equilibrium, we assume that Playeri plays arule (or strategy)
θit , which maps(xit, xit−1, . . . ) to ut , rather than just a moveut . As before, define the sequence{θ}−t as
θi0, θi1, . . . , θit−1, θit+1, θit+2, . . . , θiN, and

{θ∗
i }N0 is a closed-loop Nash equilibrium if and only if for allt, ut

= θ∗
it (xit, xit−1, . . . ) minimizesJi subject to Eq. (1) and given{θ∗

i }−t and{θ∗
j }N0 . (4)

In general, there will be many such Nash equilibria, some of which are not very desirable. In such
circumstances, nature of the equilibrium is refined to include only Nash perfect ones. A strategy sequence

1 In continuous time problems (differential games) numerical computation of the feedback Nash solution requires inevitably
the use of discretization (or numerical approximation) techniques.
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{θi}N0 is said to be perfect equilibrium if for any history the problem from 0 tot , strategies{θi}N0 constitute
a Nash equilibrium in the sub-game perfect from 0 toN . We now define time consistency as:

{θi}N0 is time consistent if and only if{θi}N0 is a Nash perfect equilibrium.

Unfortunately, even the perfectness concept does not eliminate the problem of a multiplicity of equilib-
ria. To narrow the search, we will use the simplest case ‘memoryless strategies’ in whichut is a function
of currentstate vector,xit (see [14] for the justification of the ‘memoryless strategies’ of this type):

ut = θ(xit) minimizesJi subject to Eq.(1) and to the restriction thatus = θ(xs) for all s 6= t.

Since the game is linear quadratic, it is natural to consideronlysolutions of the following form:

ut = θtxit

whereθt is the linear feedback rule to be determined in equilibrium. Under these assumptions, Playeri’s
problem becomes

min
{θi}N0

Ji = 1

2

N∑
t=0

(xT
it+1Qit+1xit+1 + uT

t Ritut + vT
t Sitvt ) (5)

subject to

xit+1 = Aixit + Biut + Civt , (6)

ut = θitxit givenxi0. (7)

By the description of the model as above, the control theory (via minimum principle) can be applied to
compute the equilibrium.2 One should not minimize the Player 1’s cost function subject to the dynamic
optimality equation of the Player 2. Instead, one should take as given the equilibrium feedback rule of
the Player 2 and postulate that it is independent of the Player 1’s actions.

3. Solution procedure

A prime example of direct application of optimal control theory in dynamic game theory is the derivation
of conditions for open-loop Nash equilibria in differential games. The discrete time counterpart of the
minimum principle is likewise applicable to open-loop Nash equilibria of multi-stage (discrete time)
games. In both cases, each player faces a standard optimal problem, which is arrived at by fixing the
other players’ policies as some arbitrary functions. In principle, the necessary and/or sufficient conditions
for open-loop Nash equilibria can be obtained by listing down the conditions required by each optimal
control problem (via minimum principle) and then requiring that these all be satisfied simultaneously (see
[1,2]). Because of the couplings that exists between these various conditions, each one corresponding to
the optimal control problem faced by one player, solving analytically for the Nash equilibria of our game
poses a formidable task.

2 see Appendix 3 in [3] for the proof of uniqueness of the linear strategies being the feedback Nash equilibrium in appropriately
specified games as above.
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One search technique that has been successfully applied to such complex problems is the genetic
algorithm. Genetic algorithm is a globally robust search mechanism which combines a Darwinian
survival-of-the-fittest strategy to eliminate unfit characteristics and uses random information exchange,
with exploitation of the knowledge contained in the previous solutions. Grefenstette [9], Michalewicz and
Krawczyk [15] and Krishnakumar and Goldberg [11] used GA to optimize control problems with a single
controller. Özyıldırım [16,17] extented GA to solve open-loop difference games of finite horizon. In this
paper we implement GA to dynamic games for closed-loop equilibria. The ‘appropriately specification’
of the games by the introduction of linear feedback rule as in Eq. (7), the solution procedure for open-loop
equilibria would also be applicable for the derivation of the feedback Nash ones.

3.1. Genetic algorithm

Genetic algorithm initiated by Holland [10] and further extended by DeJong [6] is best viewed in terms of
optimizing a sequential decision process involving uncertainty in the form of lack of a priori knowledge,
noisy feedback and time varying payoff function. It is a highly parallel mathematical algorithm that
transforms a set of (population) individual mathematical objects (typically fixed length character strings
patterned after chromosome strings), each with an associated fitness value, into a new population (i.e.
the next generation) using operations patterned after Darwinian principles of reproduction and survival
of the fittest after naturally occurring genetic operations.

A GA performs a multi-directional search by maintaining a population of individuals,P(t) =
{x1, . . . , xn} wherexi = {xi1, . . . , xiT}; each individual,xi represents a potential solution vector to
the problem at hand. An objective function (fitness) plays the role of an environment to discriminate
between ‘fit’ and ‘unfit’ solutions. The population experiences a simulated evolution: at each generation
the relatively ‘fit’ solutionsreproducewhile the relatively ‘unfit’ solutions die. During a single reproduc-
tive cycle fit individuals are selected to form a pool of candidates some of which undergocrossoverand
mutationin order to generate a new population.

Crossover combines the features of two parent chromosomes to form two similar offsprings by swapping
corresponding segments of the parents. The intuition behind the applicability of the crossover operator is
the information exchange between different potential solutions. Mutation arbitrarily alters one or more
genes of a selected chromosome by a random change with a probability equal to the mutation rate
pmut. The mutation operator introduces additional variability into the population. After some number of
generations, the program converges. The best individuals represent the optimum solutions.3

3.2. Genetic algorithm for non-cooperative closed-loop dynamic games

Since the closed-loop two-person4 Nash equilibria can be obtained as the joint solution to two optimal
control problems, we will use two parallel GAs to optimize this control system. In the closed-loop Nash
game, each player takes as given the feedback rule of the other and these closed-loop rules,u = θ1x,

v = θ2x, are observed in linear feedback form. The substitution of these rules into objective function
enables us to apply the algorithm devised for open-loop equilibrium for feedback Nash.

3 For further details, see [9,11,15].
4 The generalization forn-person game is immediate. The solution procedure described in this section is also valid for games

with n > 2 players.
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Fig. 1. Parallely implemented genetic algorithm for dynamic games wherePi(t) denotes population of solution for Playeri at
generationt .

The algorithm stars with the identification of the fitness function for each player. The performance
measures of each party is obtained by substituting constraint (6) including the feedback rules (7) into a
loss function (5). Then the search over optimal feedback strategies{θ∗

i }N0 terminates until the following
inequalities are satisfied for all players:

J1
(
θ∗

10, . . . , θ∗
1N, θ∗

20, . . . , θ∗
2N

) ≤ J1
(
θ10, . . . , θ1N, θ∗

20, . . . , θ∗
2N

) ∀ {θ1}N0
J2

(
θ∗

10, . . . , θ∗
1N, θ∗

20, . . . , θ∗
2N

) ≤ J2
(
θ∗

10, . . . , θ∗
1N, θ20, . . . , θ2N

) ∀ {θ2}N0
In this setting, there are two artifically intelligent players (controllers) who update their strategies

through GA and a referee, or a fictive player, who administers the parallel implementation of the algorithm
and acts as an intermediary for the exchange of best responses. This fictive player (shared memory) has
no decisive role but provides the best strategies in each iteration to the requested partiessynchronously.
In making his decisions, each player has certain expectations as to what the other players will do. These
expectations are shaped through the information received from the shared memory in each iteration.

The Fig. 1 shows the general outline of the algorithm we use for the two-player dynamic game.
In the above algorithm, each side waits for the presence of the previous best structure of the other side

in the synchronize statement.
In each step of this algorithm, two GAs are solved. In order to reduce the time complexity, the two

GAs are solved for one generation while continuously sharing the best responses. This approach has
the advantage that while reducing the time complexity it ensures that the convergence is to the global
extremum.

4. Numerical experiments

We have tested the success of the algorithm using three sample difference games studied previously. In
this section, we present the results of the genetic algorithm for the closed-loop solutions of these games.
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For all tests, the population size is fixed at 50, the runs were made for 200 000 generations. For each test
we have made five random runs and reported the average results, it is important to note, however, that
the standard deviations of such runs were almost negligibly small. The crossover rate is 0.6. Mutation
rate is 0.1. We also usedelitist selection strategy to stipulate that the structure with the best performance
always survives intact into the next generation. Besides, these elitist strategies are the ones sent to the
shared memory for information exchanges.

Example 1. A simple numerical example from Kydland [12] for Playeri = 1, 2 is as follows:

max
yi1,yi2

2∑
t=1

(1 − x1t − x2t )xit − 1

2
y2

it

subject to

xit = xit−1 + yit, givenx10 = x20 = 0.1.

Since the objective function has constant term, the feedback rule has also constant. In addition, each
player has its own state variable, the estimated feedback rule for Playeri will be linear function of its
own and other player’s state variable. Thus, the problem of the Playeri is reformulated as

max
yi1,θi2

2∑
t=1

(1 − x1t − x2t )xit − 1

2
y2

it

subject to

yi2 = θi0 + θi1x11 + θi2x21

xit = xit−1 + yit, xi0 = 0.1.

The solutions are as follows:

Player Kydland Genetic algorithm

yi1 yi2 yi1 θi0 θi1 θi2

1 0.1927 0.0305 0.1927 0.25 −0.625 −0.125
2 0.1927 0.0305 0.1927 0.25 −0.125 −0.625

When we calculateyi2 = θi0 + θi1x12 + θi2x22 for i = 1, 2, observe that Kydland’s solutions for
y12 = y22 = 0.030475 will be obtained for both players5 . This experiment is the most general case in
the sense that feedback rule having constant term and more than one state variable.

Example 2. In a general linear–quadratic discrete time Stakelberg game by Vallèe et al. [19], the state
variables evolve according to

xt+1 = 0.8xt + 0.5ut + 0.5vt , givenx1 = 10,

5 In all of our experiments, instead of first period’s rule, we search for the first period’s control vector (or strategy). Given
initial state values, this will decrease the dimension of the search space.
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whereu, v are, respectively, the control variables of leader (L) and the follower (F). The cost function
for each player is:

JL = min
{u}N1

1

2

N∑
t=1

(
x2

t+1 + u2
t + 1

2
v2

t

)

JF = min
{v}N1

1

2

N∑
t=1

(
1

5
x2

t+1 + 1

2
u2

t + v2
t

)

The problem of the leader becomes

JL = min
u1,{θ}N2

1

2

N∑
t=1

(
x2

t+1 + u2
t + 1

2
v2

t

)

subject to

ut = θLt xt

xt+1 = 0.8xt + 0.5ut + 0.5vt ,

We studied this game for two different periods,N = 2, 3:

N Leader Follower

u1 θL2 θL3 J ∗
L v1 θF2 θF3 J ∗

F

2 −4.0682 −0.30770 – 31.472 −0.90140 −0.60150 – 9.655
3 −4.3093 −0.40682 −0.30769 32.505 −1.03931 −40.09014 −0.06154 10.718

The substitution of the optimal rules derived above as feedback form on the state variables, we can say
that the procedure works successfully. Above results conform the printed (see [19]) discounted optimal
functionals for leader,J ∗

L and followerJ ∗
F in both periods.

Example 3. A standard two-country macro model under flexible exchange rates from Turnovsky et al.
[18]:

min
mt

12∑
t=1

ρt−1 [aY2
t + (1 − a)(Ct+1 − Ct)

2]

subject to

Yt = φ1mt + φ3m
∗ + φ3st

Ct+1 − Ct = η1mt + η2m
∗
t + η3st

st+1 = cst + bmt − bm∗
t , givens1 = 1,
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where∗ is used to imply other player’s variables. Turnovsky et al. proves that forT -period dynamic
games of the above problem is unique and linear function of current state variable,s

mt = θτ st

m∗
t = θτ st τ = T − t; t = 1, 2, . . . , T (for simulations, T = 12).

Using the parameters given in the paper:φ1 = 0.637099, φ2 = 0.117618, φ3 = 0.519481, η1 =
−0.062436, η2 = 0.628473, η3 = 0.909091, a = 0.75, b = −1.35065, c = 2.298701, ρ = 0.9, the
optimal rules are as follows:

θt = −θ∗
t = 0.6847 t = 1, . . . , 8

θ9 = −θ∗
9 = 0.6865

θ10 = −θ∗
10 = 0.6873

θ11 = −θ∗
11 = 0.6439

θ12 = −θ∗
12 = −0.9036

The above results are exactly the same solutions derived in the original paper [18].

5. Conclusion

The problem of minimizing quadratic form subject to linear constraints is nearly as old as mathemat-
ical physics itself [3]. In this paper, we introduce an alternative solution procedure for feedback Nash
scenarios in dynamic games of linear–quadratic form. Our focus has been methodological, so we have
experimented genetic algorithm for two-player multi-stage games. The generalization ton-player only
requires implementation ofn-parallel GA to derive the equilibria (see [16]).

A GA performs a multi-directional search by maintaining population of potential solutions and encour-
aging information formation and exchanges between directions. In game theoretic frameworks since we
used both optimization and learning property of GA, this algorithm provided its value in the computation
of closed-loop solutions which have various applications in different fields.
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