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Abstract-The aim of this work is to illustrate the suitability of quasi-birth-death processes 
(QBDs) for stochastic modelling of production lines. With this end in mind, first, an introduction to 

QBDs is made, so that the reader who may not be acquainted with this aspect of stochastic modelling 
may be introduced to the basics of the topic. Then, a formal definition of QBD is given and the 
QBDs are contrasted with the traditional birth-death processes. Later, examples of QBD models 
pertaining to production lines are presented. The rational of this exposition is to show how QBDs 
present themselves within the context of production lines and to show the kind of work that needs 
to be performed to fully specify the corresponding QBD. By compiling the aforementioned models, 
the strength of QBDs in modelling production lines is demonstrated. @ 2002 Elsevier Science Ltd. 
All rights reserved. 

Keywords-Markov processes, Quasi-birth-death processes, Production lines, Stochastic mod- 
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1. INTRODUCTION TO 
QUASI-BIRTH-DEATH PROCESSES 

The study of quasi-birth-death processes (QBDs) goes back to Evans (11 and to Wallace [2]. In 

fact, Wallace coined the term “quasi-birth-death process”. Yet, the most comprehensive study 

is by Neuts [3]. Since all the following research refers to Neuts for the basics of the field, it is 

appropriate to give his definition. 

A QBD is a Markov process on the state space E = {(i,j), i 2 0, 1 5 j 5 m}, with the 

infinitesimal generator 4, given by 
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where BolT + CIT = AolT + BIT + CIT = AIT + BIT + CIT = 0. 
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The QBD, as defined, is a generalization of the birth-death process. Birth-death processes 
are stochastic processes of Markov type where each state can be associated with an element 
of a counting set, which effectively means that the states can be ordered in a linear fashion. 
Once the correct ordering is established, transitions should occur only to neighboring states, 
that means given that the process is in state n, it can have a transition only to state n + 1 
or state n - 1. Moreover, the transition times are exponentially distributed which allows their 
classification under the general category of Markov processes. As with any.Markov process, a 
state transition diagram (Figure 1) can be used to represent it. 

/rr . . . r_: .I. 

Figure 1. Basic birth-death process model. 

Figure 2. Representation of a QBD. (The dashed lines represent a collection of 
transitions originating from a state in one group and terminate in a state in another 

group.) 

In the case of the QBD, instead of one state corresponding to an element of the counting set, 
there is a group of states corresponding to it. Thus, from a given group of states, the process 
can have transitions to the group of states corresponding to the previous element of the counting 
set or to the group of states corresponding to the next element of the counting set,. This kind of 
Markov process yields a state transition diagram of the form shown in Figure 2. 

According to Neuts’ definition, a QBD is defined by a generator matrix that has a block nested 
tridiagonal structure in which the same blocks are repeated infinitely many times except for the 
initial states. For this to occur, one would need to have the same number of states corresponding 
to each counting set element. Moreover, the same kind of transitions with the same transition 
rates should be present in between these states. Thus, all literature that adopts the definition of 
Neuts really relates to state-homogeneous quasi-birth-death processes. 

Within the framework defined for QBDs, it is most appropriate to define the state space as 
the Kronecker product of two s&s, one of which is the counting set,. Thus, the other set is used 
to distinguish all possible things that can happen at a given counting set level. The same things 
should be possible at all counting set levels and the way the process goes from one of them to 
another should be independent of the level. 

The QBDs that Neuts investigates differ in one way from the ones that are the subject of this 
study. The counting set, is infinite, in other words the counting set is the set, of natural numbers 
for Neuts’ case. A finite counting set is used here, since no production system is likely to have 

infinite buffers. This means that instead of having only one boundary there are two boundaries 
for these QBDs. 

A formal definition for the kind of QBD used here is the following. A QBD is a Markov process 
on the state space E = {(i, j), 0 5 i < M,1 5 j < n}, with the transition rate matrix--or the 
infinitesimal generator-R, given by 
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where BolT + CIT = AIT f BIT + CIT = AIT + BmlT = 0. 
This will be the definition of QBD in this paper. An interesting observation is that the structure 

of equation (2) has been already shown to be of great use in the modelling of production lines in 
the seminal work by Yeralan and Muth [4]. Three works following this, [5-71 exploit this structure 
in finding the steady-state probabilities by applying a matrix-polynomial solution procedure. The 
computational effort in the procedure is independent of the cardinality of the counting set of the 
QBD. Thus, the QBD models have the additional advantage of being amenable to an efficient 
solution procedure. Furthermore, the spectral theory based on the procedure carries the prospect 
of furthering the understanding of the behavior modeled systems manifest. 

2. QBD MODELS FOR PRODUCTION LINES 

Although the QBD platform is quite general and can be used for many stochastic models that 
pertain to different areas, in this paper, examples of QBD models pertaining to production lines 
are examined. A similar effort can be conducted for other areas, which give rise to QBDs, but 
the scope of the present research is limited to the models of production lines, which have been 
studied extensively by many scholars due to the importance of the subject [8]. 

In this section, production line models are presented in a natural progression. First, basic 
models, and then, more complex models that mimic further behavior of real production systems 
are introduced. The submatrices that define the QBD for each model will be specified. Once 
these are produced, the models are ready for application of the matrix polynomial procedure. 

MODEL 1. EXPONENTIAL SERVER WITH LIMITED BUFFER. A graphical representation for the 
model is given in Figure 3. This is most probably the first model to be encountered in any 
queuing theory book, the quintessential M/M/l model. Here, the only deviation from this basic 
model is that the buffer-or the queue--has a limited size, M. Usually this is named M/M/l/&f, 
with the last M representing the size of the queue. In this model, parts arrive to the server as a 
Poisson process with a mean rate of X, and they are serviced with exponential service times with 
parameter p. 

One can obtain the Markov chain diagram shown in Figure 4 using this description for the 
model. As one can observe from the diagram, this model is actually a simple birth-death process. 
But since QBD is a generalization of birth-death process this model still qualifies for the name 

Figure 3. Exponential server with limited buffer and its relevant parameters. 

Figure 4. Markov transition diagram of Model 1. 
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QBD. Actually, it forms one of the simplest QBDs possible. One can easily write the steady-state 
equations for this model by looking at the diagram 

-W(O) + @(l) = 0, 

-(X +@(i) + ,uP(i + 1) + XP(i - 1) = 0, foralllLi<M-1, 

-pP(M) + AP(M - 1) = 0. 

Clearly, transition rate matrix fits the QBD platform as defined. By comparing this transition 
rate matrix with the generic transition rate matrix defined by equation (2), one can give the 
specific values of the submatrices used in the formal definition 

A = ~1, B = -(A + p), c = A, 

Bo = --A, BM = -p. 

It is easy to observe that for this model the submatrices in the definition of the QBD manifest 
themselves as simple scalars. Although the application of the matrix polynomial method for this 
case is overkill, it is helpful to understand basic mechanisms of the procedure. 

MODEL 2. EXPONENTIAL SERVER WITH BREAKDOWN AND REPAIR, LIMITED BUFFER. A 
graphical representation for the model is given in Figure 5. This model builds on Model 1 by 
incorporating breakdown and repair capability. If the server is operating, it breaks down with 
a time to breakdown distribution that is exponential with parameter cr. Once the breakdown 
occurs, the repair starts. The time to the end of repair is also exponentially distributed with 
parameter /3. During the breakdown, the part that was being processed at the time breakdown 
occurred is not processed. Processing starts on the same part after the repair. 

For the described process the Markov transition diagram is given in Figure 6. It is clear that 
the state space is the Kronecker product of the counting set with a set of two elements {IV, R}. 
W corresponds to the states for which the server is working and R corresponds to the states for 
which the station is broken and the repair is taking place. 

Figure 5. Exponential server with breakdown and repair and its relevant parameters. 

Figure 6. Markov transition diagram of Model 2. 

The steady-state equations for the process are 

-(a + A)P(O, W) f PP(0, R) + pP(1, W) = 0, 

-(P + X)P(O, R) + aP(0, W) = o, 
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-(a + x + p)P(i, W) + pqi, R) + XP(i - 1, W) + /P(i + 1, W) = 0, forlli<M--1, 

-(A + p)P(i, R) + auP(i, IV) + XP(i - 1, R) = 0, forl<i<M-1, 

-(Q + p)P(M, W) + @‘(A!, R) + XP(M - 1, W) = 0, 

-PP(M, R) + aP(M, W) + XP(M - 1, R) = 0. 

One can obtain the following transition rate matrix from the preceding equations. The dimension 
of the submatrices is 2 x 2 and the submatrices can be easily extracted 

B. = 
-(a + A) -(Q+P) fx 

P BM= p I -p . 

MODEL 3. SERVER WITH ERLANG-2 SERVICE TIMES, LIMITED BUFFER. The only difference 
between this model, depicted in Figure 7, and Model 1 is the statistical distribution of the service 
times. In the M/M/l model the distribution is exponential, whereas here it is Erlang which is 
the sum of two exponential distributions with the same rate. In order, to accommodate for this 
nonexponential distribution, one needs to incorporate an additional state for each counting level. 
When this idea is applied one gets the Markov transition diagram shown in Figure 8. 

Figure 7. Server with Erlang-2 service times, limited buffer and its relevant param- 
eters. , . 

’ (M,j) ‘,, %,,l a’ ’ (M,2) .’ 

’ _’ . 

Figure 8. Markov transition diagram of Model 1. 

The state space is the Kronecker product of the counting set and the set {1,2}, which keeps 
track of the Erlang stage in the processing of parts. Here, only one state corresponds to the 
Element 0 of the counting set. Consequently, this element cannot be incorporated in the QBD 
and has to be handled separately. The QBD starts from Element 1. This has to be taken into 
account while applying the matrix polynomial solution procedure. 

The steady-state equations for the process are 

-P(O) + /P(l, 2) = 0, 

-(A + /L)P(l, 1) + P(O) + /.LP(2,2) = 0, 

-(A + p)P(l, 1) + pP(1,2) = 0, 

-(A + /.L)P(i, 1) + XP(i - 1,l) + /JP(i + 1,2) = 0, 

-(A + /_J)P(i, 2) + XP(( - 1,2) + /P(i, 1) = 0, 

-@(M, 1) + XP(M - 1,1) = 0, 

-pP(M, 2) + XP(it4 - 1,2) + @(M, 1) = 0. 

for 2 5 i 5 M - 1, 

for 2 I i I M - 1, 
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After substituting the value of P(0) obtained from the first equation into the second equation, 

one can obtain the following transition rate matrix from the preceding equations. 

The dimension of the submatrices is 2 x 2 and the submatrices can be easily extracted 

A= [; 01, B= [-@ofp) -(xi;,,] 7 C= [;: 11) 
& = 

[ 
-(J++lJ) 

CL -(AZ P) ’ 1 
BM = y p . 

[ 1 -CL 

MODEL 4. SERVER WITH ERLANG-2 SERVICE TIMES, BREAKDOWN AND REPAIR, LIMITED 
BUFFER. This model, depicted in Figure 9, combines the characteristics of Model 2 and Model 3. 
There is breakdown and repair mechanism just as in Model 2. However, the production times 
are distributed with Erlang-2 distribution as the case is in Model 3. To accommodate for these, 
one needs three states corresponding to each counting set level. The Markov transition diagram 
for the process is given in Figure 10. 

This time the state space is the Kronecker product of the counting set and the set {1,2, B}. 
This second set is to specify the Erlang stage in the processing while the machine is up or to 
specify that the machine is broken. But, only two states correspond to the Element 0 of the 
counting set. This element has to be handled separately and the QBD starts from Element 1. 

Figure 9. Server with Erlang-2 service times, breakdown and repair, limited buffer 
and its relevant parameters. 

The steady-state equations for the process are 

-(a! + X)P(O, W) + PP(0, B) + /JP(l, 2) = 0, 

-(P + X)P(O, B) + aP(0, W) = 0, 

-(a + x + /J)P(l, 1) + XP(0, IV) + PP(1, B) + @(2,2) = 0, 

-(a + x + p)P(l, 2) + pP(l,l) = 0, 

-(P + X)P(l, B) + AP(O,B) + aP(l,l) + aP(1,2) = 0, 

-(Q + x f p)P(i, 1) + XP(i - 1,l) + PP(i, B) + pP(i + 1,2) = 0, for 2 5 i 5 A4 - 1, 

-(o + x + p)P(i, 2) + XP(i - 1,2) + pP(i, 1) = 0, for 2 < i 5 M - 1, 

-(p + X)P(i, B) + XP(i - 1, B) + aP(i, 1) -t cuP(i, 2) = 0, for 2 5 i 5 M - 1, 

-(a + p)P(M, 1) + XP(M - 1,1) + PP(M, B) = 0, 

-(a + p)P(M, 2) + XP(M - 1,2) + pP(M, 1) = 0, 

+P(M, B) + AP(M - 1, B) + aP(M, 1) + aP(M, 2) = 0. 

After substituting the values of P(0, W) and P(0, B) obtained from the first two equations into 
the third and fifth equations, one can obtain the transition rate matrix which is of the form given 
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in equation (2). The submatrices should be defined as 

B= [-(ay+p) -(+A,,, _,,,I, 

x 0 0 
C=O’^ 1 1 1 -(a+X+P) I-1 CY 1 

- uca 
n 

A u + 4 
7 

LU 0 x J 
&= (;;x+p) -(Q+X+P) (a+y+p) +a ’ 

L P 0 -(P + A> i 

---(a + P> Q 

BM= 

; 0 -*p . 
1 

MODEL 5. Two EXRONENTIAL SERVERS WITH ONE INTERMEDIATE LIMITED BUFFER. In this 
model shown in Figure 11, two exponential servers are present and the buffer is placed between 
the servers. The typical twoserver model in the literature assumes an infinite source for the 
server, which is the stochastic equivalent of Model 1. The input is a Poisson process. One can 
assume that there is a second buffer at the input of the system. But the size of this buffer would 
be limited to one. In following models, the difficulties faced when a generic sized second buffer 
is incorporated in the models are illustrated. The Markov transition diagram for the process is 
given in Figure 12. 

The state space is the Kronecker product of the counting set and the set (0, 1). The counting 
set relates to the buffer level as usual. The set (0, 1) can be considered as the level of an imaginary 
first buffer whose size is one; in other words it tells whether there is a part being processed in 
server one. 

%f&&!+ 

Figure 11. Two exponential servers with one intermediate limited buffer and its 
relevant parameters. 

Figure 12. Markov transition diagram of Model 5. 

The steady-state equations for the process are 

-AP(O, 0) + /JzP(l, 0) 

-cLlP(O, 1) + AP(O, 0) + CLaP(1, 1) 
-(A + #uz)P(i, 0) + /ArP(i - 1,l) + ,U2P(i + 1,O) 

-(/Jr + pz)P(i, 1) + XP(i, 0) + cLzP(i + 1,1) 

-(A + CL2)P(M,O) + PlPW - 171) 

-CL2P(M, 1) + XP(M, 0) 

= 0, 

= 0, 
= 0, forl<ilM-1, 

= 0, forl<iLM-1, 

= 0, 

= 0. 

This process conforms to the definition of a QBD as stated. Thus, all one has to do for formally 
defining the QBD is to state the relevant submatrices whose sizes are 2 x 2 
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A= [“oz i2], B= [-(A;p2) _(pl;p2~]. C= [il ;I, 

Bo= [;A _il], BM= [-(y) _“,21. 
MODEL 6. Two EXPONENTIAL SERVEIU WITH ONE INTERMEDIATE LIMITED BUFFER, BREAK- 
DOWN AND REPAIR. This model depicted in Figure 13 is an extension of Model 4. The breakdown 
and repair mechanisms are added to two basic servers of Model 4. Both servers become non- 
operational when a breakdown occurs at the server, up to the time that the repair ends. Thus, 
the production process is hindered by these occurrences. These breakdowns and repairs occur 
independently in both servers. The modelling of this system, requires a large number of states 
for each intermediate buffer level as illustrated in the Markov transition diagram of the process 
in Figure 14. 

The state space for this model is the Kronecker product of four sets, the counting set C-which 
appears in all the QBDs modelling the intermediate buffer level, the set ,151 = {IV, R} modelling 
the repair status of the first server, the set Li = (0, 1) modelling number of parts in server one, 
and the set S2 = {IV, R} modelling the repair status of the second server. 

c I 

okh ozn, 
w/v AIL%) 

Figure 13. Two exponential servers with one intermediate limited buffer, breakdown 
and repair and its relevant parameters. 

The steady-state equations for the process are 

--(A + CU+ ~2)J’(O, W, 0, W) + PIP@, W 0, R) + P2W, R,O, W) + ~zI’(l, W, 0, W) = 0, 

-(A + a2 + P2)P(o, W 0, R) + mP(O, w, 0, W) + /32P(O, R, 0, R) + pzP(1, W 0, R) = 0, 

-(W + a2 + Pl)N4 W 1, W + qo, WY07 W) 

+PlJ’(O, W 1, R) + P2W, R, 1, W) + ~2P(l, W 1, W) = 0, 

-(a2 + P,)P(O, W 1, R) + AP(O, W 0, R) + mP(O, W 1, W) 

+P2P(O, R, 1, R) + /.42P(L w, 1, R) = 0, 

-(A + a1 + P2)P(O, R, 0, W) + a2P(O, W 0, W) + AP(0, R, 0, R) = 0, 

-(A + PI + P2)P(O, R, 0, R) + mP(O, R, 0, W) + anP(O, W 0, R) = 0, 

-(al + P2 + pl)P(O, R, 1, W) + XP(O, R,O, W) + ozP(O, w, 1, W) + P,P(O, R, 1, R) = 0, 

-(PI + /32)P(O, R, 1, R) + AP(0, R, 0, R) + a1P(0, R, 1, W) + azP(0, IV, 1, R) = 0, 

-(A + cry + a2 + pz)P(i, W 0, W) + P,P(i, W 0, R) 

+p2P(i, R,O, W) + /.4P(i + 1, W,O, IV> + @(i - 1, W 1, W) = 0, 

for 1 < i 2 M - 1, 

-(A + a2 + P2 + ~2)P(i, W 0, R) + crlP(i, w, 0, W) + /32P(i, R, 0, R) + ,u2P(i + 1, W,O, R) = 0, 

forlli<M-1, 
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-(a1 + a2 + p1+ pz)P(i, w, 1, Iv) + XP(i, w, 0, W) + /31P(i, w, 1, R) 

+P2P(i, R, 1, W) + /~zP(i + 1, IV, 1, W) = 0, 

forlli<M-1, 

-(a2 + PI + p2)P(i, W, 1, R) + XP(i, W,O, R) + o~P(i, Lb’, 1, IV) 

+P2P(i, R, 1, R) + pzP(i + 1, W, 1, R) = 0, 

forlli<M-1, 

-(A + a1 + /32)P(i, R,O, W) + azP(i, W,O, W) + PlP(i, R,O, R) + ,u~P(i - 1, R, 1, W) = 0, 

forlli<M-1, 

-(A + PI + /32)P(i, R, 0, R) + alP(i, R,O, W) + a2P(i, W,O, R) = 0, 

forl<i<M-1, 

-(al + P2 + d’(i, R, 1, W) + XP(i, R, 0, W) + &‘(i, W, 1, IV) + &P(i, R, 1, R) = o, 

forl<i<M-1, 

-(PI + h)P(i, R, 1, R) + XP(i, R,O, R) + cqP(i, R, 1, W) + cy~P(i, W, 1, R) = 0, 

forl<i<M-1, 

-(A + a1 + ~2 + ~2)f’(M, w, 0, W) + Plf’(M, W 0, R) 

+&P(M, R, 0, W) + plP(M - 1, w, 1, W) = 0, 

-(A + ~2 + P2 + p2)P(M, w, 0, R) + mP(M, W 0, W) + P2P(M, R, 0, R) = 0, 

-(&I + ~2 + P~P(M, w, 1, W + AP(M, W 0, WI + P,Wf, w, 1, R) + P2f’(M, R, 1, W) = 0, 

, --(a2 + PI + p2)P(M, W, 1, R) + XP(M, w, 0, R) + alP(M, IV, 1, W) + /32P(M, R, 1, R) = 0, 

-(A + a1 + P2)P(M, 4 0, W) + a2P(M> W 0, W) 

+PlP(M, R,O, R) + plP(M - 1, R, 1, W) = 0, 

-(A + PI + P,)P(M, R, 0, R) + mP(M, R, 0, W) + a2P(M, W 0, R) = 0, 

-(a~ + P,)P(M, R, 1, W> + W(M, R,O, W) + a2P(M, W 1, W) + PlP(M, R, 1, R) = 0, 

-(PI + P2)J’(M, R, 1, R) + XP(M, R, 0, R) + alP(M, R, 1, W) + a2P(M, W, 1, R) = 0. 

This process conforms to the definition of a QBD as defined. Thus, all one has to do for formally 

defining the QBD is to state the relevant submatrices whose sizes are 8 x 8 

A= 

‘l-42 0 cl 0 0000 

0 P2 0 0 0000 

0 0 p2 0 0 0 0 0 

0 0 0 /Ap 0 0 0 0 
0 0 0 00000 

0 0 0 0 0000 
0 0 0 0 0000 

.o 0 0 0 0000 

-0 0 0 0 0 0 0 0 

0 0000000 

p1 0 0 0 0 0 0 0 

1 c= 0 0 0 0 0 0 0 0 

0 0000000 

0 0000000 

0 0000000 

-0 0000000 
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B= 

F-(x+crl+(Yz+Pz) Ql x 0 
PI -(X+crz+P1+/12) 0 x 
0 0 4% + 02 + Pl + P2) a1 

0 0 PI -(a2 + Pl + P2) 

P2 0 0 0 
0 02 0 0 
0 0 02 0 
0 0 0 P2 

Q2 0 0 0 
0 a2 0 0 
0 0 012 0 
0 0 0 02 

-(A + a1 + 02) x 0 ’ 

Pl -(A+; +P2) 0 x 
0 0 -((Y1 +Pz+Pl) 

0 0 01 -cspt P2) _ 

I 
-(A + a1 + a21 a1 x 0 

Pl -(A + a2 + A) 0 x 
0 0 -((Y1 + 02 + Pl) 01 

Bo = 
0 

82 
0 
0 
0 

0 

0 

02 
0 
0 

Pl 

0 
0 

P2 

0 

a2 

0 
0 

-(A+;1 +PzI 

bl 

0 
0 

‘-(X+al +az+p2) QIl 

Pl -(X+cr2+/31+/-42) 

0 0 

BM= 
0 0 

P2 0 
0 P2 
0 0 
0 0 

02 

0 
0 
0 

-(a2 + Pl) 

0 
0 
0 
P2 

0 

ff2 

0 
0 

-(A+>+,, 
0 
0 

x 0 
0 x 

(a1 + a2 + P2) 01 

Pl -(a2 + Pl + P2) 

0 0 
0 0 
& 0 
0 & 

0 0 0 

a2 0 0 

0 Q2 0 
0 0 QI2 1 

-(A + a1 +&I 

-(A +: +02) 

x 0 . 

Pl 0 x 

0 0 -(a1+Pz) 
0 0 Pl -c,Pt P2) 

I 

MODEL 7. SERVER WITH ERLANG-iV SERVICE TIMES, LIMITED BUFFER. In Model3,thecase 

when the server has Erlang-2 service times is studied. In this model depicted in Figure 15,this 
model is extended to Erlang-N service times. The number of states in this model increases both 

with M and N. Yet the matrix polynomial solution procedure does not depend on the size of 

the counting space which is the buffer size here. But, the larger the Erlang parameter is, the 
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Figure 15. Server with Erlang-N service times, limited buffer and its relevant pa- 
rameters. 

~ 
. . 

Figure 16. Markov transition diagram of Model 7. 

larger the submatrices are. Thereby, the computational effort increases with the parameter N. 
The Markov transition diagram of the process is given below. 

The state space for this model is the Kronecker product of two sets, the counting set C that 
corresponds to the buffer level and the Erlang stage set S. The Erlang stage set itself, is also a 
counting set. Thus, one can have two different matrix representations for the QBD, one using 
the buffer level as the counting set of the QBD and one using the Erlang stage set. But, since 
there is a transition from the Erlang stage N to Erlang Stage 1, the choice of Erlang stage set 
would not yield a QBD as defined. 

The steady-state equations for the process are 

-M(O) + j4P(l, N) = 0, 

-(X + /J)P(l, 1) + P(O) + @(2, N) = 0, 

-(X + P)P(l,j) + jJP(l,j - 1) = 0, 

-(X + p)P(i, 1) + XP(i - 1,1) + /LP(i, N) = 0, 

-(A + /J)P(i,j) + XP(i - 1,j) + /.P(i,j - 1) = 0, 

-pP(M, 1) + XP(M - 1,1) = 0, 

-pP(M, j) + XP(M - 1, j) + pP(M, j - 1) = 0, 

for 1 5 j < N, 

for2siIM-1, 

for 2 5 i 5 M - 1 and 2 5 j 5 N, 

for 2 5 j 5 N. 

After substituting the value of P(0) obtained from the equations, one can obtain the transition 
rate matrix for this process. The transition rate matrix conforms to the definition of the QBDs 
as one could expect. This time the submatrices employed are of size N x N, 

A=!i i 
[ p 0 0 0 0 0 . . . . . . . . . 0 0 0 1 ‘--(A +PL) ’ B= *. 7 



926 M. M. FADILOGLU AND S. YEFLALAN 

BM = 

If one wanted to use Erlang stage set as the counting set, he would not get the QDP in the strict 
sense of the word, but something quite close to it. And the matrix polynomial solution procedure 
for obtaining the steady-state probabilities would still be applicable since the deviation from the 
QDP definition would only occur in the boundary equations. This is due to the fact that the 
matrix polynomial solution procedure is based on the structure of the inner equations. It does 
not preclude a deviation from the definition in boundary equations. 

The transition rate matrix obtained with such a choice would be of the form 

R= 

Bo C XM 
ABC 

A B 

A 

B C 
AB C 

x0 A BM 

(3) 

This one is a generalization of the transition rate matrix given in equation (2). One can observe 
that two impurities are allowed at the corners of the matrix. 

Once this transition rate matrix is defined, one can write the transition rate matrix of the 
process with the Erlang stage used as the counting set within this platform. Indeed, to define 
the submatrices in the (3) would suffice 

B= 

I -(XL) x 
---CL- 

1 
P 

c= y 

P 

B1 = B, 

I7 A = 0, 
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P 
0 0 

x1 = 
P 0 

. . , xM=o. 

0 

P o- 

MODEL 8. Two EXPONENTIAL SERVERS WITH Two LIMITED BUFFERS. This model depicted 

in Figure 17 is an extension on the Model 5. In Model 5, the first server does not have a buffer 

for the arrivals. Thereby, those arrivals that occur while the server is occupied are lost. In this 

model, those arrivals are stored in a buffer whose size is Mi. This model is quite important 

because it is a tandem queue, which happens to form the basic building block of many models 

for modern production systems. Yet, a theoretically sound methodology has not developed to 

tackle the stochastic analysis of this queue class up to this point. 

Figure 17. Two exponential servers with two limited buffers and their relevant pa- 
rameters. 

To perform stochastic analysis of this model, one can generate a Markov chain using a large 

state-space to incorporate the second queue. Though this is a valid option, it is not viable 

for many real models since the computational effort increases with the size of the state space. 

Moreover, it is not conductive to obtain parametric results from which one can obtain an idea 

about the behavior of such systems. 

Within the platform of matrix polynomial solution procedure, one can solve QBDs with an 

effort independent of the size of the counting set. Yet, for the tandem queues one does not have 

only one counting set but many of them. For this model with two tandem queues, there are two 

counting sets, each corresponding to the buffer levels of the two servers. 

Since the matrix polynomial methodology only allows the exploitation of the structure for a 

single counting set, one cannot make use of the second counting set. One point to consider is the 

choice of the principal counting set of the QBD. The logical strategy for this is to choose the one 

with higher cardinality. Then, the computational effort that relates to the solution decreases. 

. 

. . 

Figure 18. Markov transition diagram of Model 8. 
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The Markov transition diagram pertaining to the model is given in Figure 18. One can 
clearly observe by examining the diagram that the state space is the Kronecker product of two 

counting sets, the first buffer level set Ci = { 1,2,3,. . . , Ml} and the second buffer level set 
C2 = {1,2,3,... , Mz}. The first index of the states is an element of Ci and the second index 

’ of C2. One also observes that there are Mr, A42 states in the model. 
The steady-state equations for the process are 

- XP(0, 0) + /42P(O, 1) = 0, 

-(X+j41)P(i,O)+XP(i-l,O)+@(i,l)=O, forl<i<Mi-1, 

- PlJwl, 0) + ww - 1,O) + P2I=vffl, 1) = 0, 

-(X+~2)P(O,j)+~iP(l,j-l)+j.42P(O,j+l)=O, for 15j <M2-1, 

- (A + P2P(O, M2) +Plp(l, M2 - 1) = 0, 

-(X+111+~2)P(i,j)+XP(i-l,j)+C11P(i+l,j-l)+~~2P(i,jfl)=O, for 1 li <Ml-1 

15j5M2-1, 

-(X+~2)P(i,M2)+XP(i-l,M2)+~iP(i+l,it42-1)=0, for 1 <j 5 M2-1, 

- (~1+~2)P(Mi,j) +XP(Mi - 1,j) +j~~P(Mi,j+l) =O, for 1 5 j 5 M2 - 1, 

- p2P(M1, A&) + XP(M1- 1, A&) = 0. 

Lucidly, this process conforms to the definition of the QBD. Moreover, one has two choices for 
the counting set. If the set Ci is elected as the counting set, the submatrices that define the 
QBD are of the dimension it42 x M2. These relevant submatrices are 

0 PI 
0 CL1 1 rx 1 

0 

B= 

B,, = 

-A 

cl2 -(A + P2) 

l-42 

BM> = 

-(A + Pl + P2) 

P2 

-(A + cl21 
P2 

x 
-. 

. I 1 

x 

-(A + CL21 
P2 -(A + P2) J 

--CL1 

P2 -(P1 + P2) 

CL2 -(P1 + P2) 

P2 

-(CL1 + Pa) 

P2 -(P2) 
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If the set C2 is elected as the counting set, the submatrices that define the QBD are of the 
dimension J4i x Mr. These relevant submatrices are 

CL2 

A= 
I44 

i *I 

1 c= *. 

P2 

Bo = 

0 

P2 0 

P2 

0 

112 0 

*. , 

x 
-(X+/h +c12) A 

-A -(A Pl) -(A Pl> 

-(A-&) x 
‘PI 

--(A + 4 

BM, = . . 

x 

-(Pl + j.4 J 

, 

-(X+cLz) x 

-CL2 J 

The interesting phenomena that one should observe is that the block tridiagonal structure that 
is the insignia of the QBD is also exhibited in each of the submatrices that has been presented. 
Indeed, it is possible to show that this phenomenon generalizes for tandem queues having more 
than two buffers. For each buffer, there would be another level of trigonal structure embedded 
in the blocks belonging to the previous level. 

One can relate this phenomenon to fractals. The same kind of macro-structure appears in the 
elements of the whole. As one gets to examine these submatrices, the same structure exhibits 
itself. And the amount that this self-similarity occurs is the number of stations-and thereby the 
number of buffers-in the tandem queue. 

Although, no methodology to fully exploit this marvelous structure-in order to obtain the 
nullspace of the transition rate matrix-exists at this point, it can still be quite useful in gener- 
ating the transition rate matrix for a given process in an efficient fashion. 

4. CONCLUSION 

In this paper, the suitability of QBD platform in the stochastic modelling of the production lines 
is illustrated. First, an introduction to QBDs is made. Then, eight examples of how production 
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lines with different characteristics can be modeled as QBDs, are presented. It is obvious, that 

it would not be difficult to augment the number of these examples by using the same principles. 

The more complicated the nature of the modeled system is, more states corresponding to each 

element of the counting space would be needed. 

By using the methodology described in the papers by Fadiloglu and Yeralan [7], and Yeralan 

and Tan [6] one can find the steady-state probabilities for these models irrespective of the count- 

ing set is cardinality. In the models, the counting set always corresponds to a buffer of choice. 

Yet, when more than on buffer exists, one comes up with a structure we can call multidimen- 

sional quasi-birth-death process. This process is still a QBD, thus amenable to the same solution 

methodologies. Yet, there is some additional structure in these processes as has been illustrated 

in Model 8. The exploitation of this structure would be an important addition to this line of 

research. 
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