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Abstract 

In this paper, a binary goal programming model for the mixed-model assembly line balancing (ALB) problem is 
developed. The model is based on the concepts developed by Patterson and Albracht [l] and the model of Deckro and 
Rangachari [2] developed for the single-model ALB problem. The proposed model provides a considerable amount of 
flexibility to the decision maker since several conflicting goals can be simultaneously considered. 
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1. Introduction 

Assembly line balancing (ALB) has been a focus 
of interest to the production/operations manage- 
ment community for the last 40 years. The classical 
ALB problem was first described in 1955 by 
Salveson [3], who presented a mathematical for- 
mulation of the problem and suggested a solution 
procedure. Since that time, several techniques have 
been proposed for the solution of the ALB prob- 
lem; see the review papers of Baybars [4] and 
Ghosh and Gagnon [S]. Although there are numer- 
ous studies published on the various aspects of the 
problem, the number of studies on the mixed-model 
assembly lines are relatively small. The complex 
mathematical nature of the problem hinders the 
attempts to obtain solution procedures. However 

* Corresponding author. 

today, an increasing number of firms are using 
mixed-model assembly lines to cope with the pres- 
sure of producing several models to attain higher 
customer satisfaction without holding large stocks 
of finished goods. 

ALB problems are traditionally formulated and 
solved with the objective of either the minimization 
of cycle time or the minimization of the number of 
stations utilized along the line. However, ALB 
problems, in practice, are typically associated with 
different and usually conflicting objectives such as 
cycle time, number of stations, workload differ- 
ences between stations, plant layout requirements, 
etc. In the literature, a few reported studies have 
utilized a multiple criteria approach to the ALB 
problem; Gunther et al. [6] first proposed a goal 
programming model for the ALB problem and 
presented a solution procedure using a goal priori- 
tized branch-and-bound scheme. Deckro [7] has 
developed a model which simultaneously considered 
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the minimization of cycle time and the number of 
stations. Malakooti [8] has formulated the ALB 
problem as a multiple criteria problem where sev- 
eral objectives and constraints are defined, and has 
developed an interactive multiple criteria decision 
making (MCDM) approach for solving the prob- 
lem. Deckro and Rangachari [2] have developed 
an alternative goal programming formulation 
which can accommodate the Gunther et al. [6] 
goals in addition to various other goal constraints. 
Lastly Malakooti [9] has formulated the ALB 
problem with buffers as a single criterion decision 
making as well as a MCDM problem. All the 
MCDM literature described above are concerned 
with the single-model ALB problem and, to the 
best knowledge of the authors, there has not been 
any published study dealing with the multiple cri- 
teria aspects of the mixed-model ALB problem so 
far. 

Formally, a mixed model ALB problem can be 
stated as follows: Given P models, the set of tasks 
associated with each model, the performance times 
of the tasks, and the set of precedence relations 
which specify the permissible orderings of the tasks 
for each model, the problem is to assign the tasks to 
an ordered sequence of stations such that the pre- 
cedence relations of each model are satisfied and 
some performance measures are optimized. Unlike 
the single-model line, different models of a product 
are assembled on a mixed-model assembly line; the 
models are launched to the line one after another. 

This paper presents a binary goal programming 
model for the mixed-model ALB problem. A goal 
programming approach would seem to be a natural 
modelling tool and a more realistic approach for 
the ALB problem, since goal programming at- 
tempts to achieve a “satisfactory” rather than the 
“optimal” solution in the face of conflicting goals. 
The proposed model in this paper provides a con- 
siderable amount of flexibility to the decision maker 
since several goals of which some may be conflicting 
with each other, can simultaneously be considered. 

The paper is organized as follows. Section 2 pres- 
ents the notation and the assumptions of the model. 
The goal programming formulation is developed in 
Section 3. Solutions of some example problems are 
presented in Section 4. Finally, the paper concludes 
with a summary of the approach. 

2. Notation and assumptions 

The goal programming model utilizes some of 
the concepts developed by Patterson and Albracht 
[l] for a single-model ALB problem and the inte- 
ger programming formulation of Gokcen [lo] for 
the mixed-model ALB problem. In addition, some 
of the goal constraints of the model of Deckro and 
Rangachari [2] for the single-model ALB problem 
have been utilized. 

The notation used in the formulation is as fol- 
lows: 
N 
K 
P 
PRi 

si 

4, 

G 

& 

Li 

X km 

Ak 

total number of tasks in the problem 
number of stations 
number of models (products) 
subset of all tasks that precedes task i, 
i=l N 2 ... 9 
subset of all tasks that follow task i, 
i = l,...,N 
performance time of task i of model m, 
i=l ,..., N, m = l,..., P 
cycle time of model m, m = 1, . . . , P 
earliest station to which task i can be as- 
signed given the precedence relations, 
i=l N , ... 7 
latest station to which task i can be as- 
signed given the precedence relations, 
i = l,...,N 
1 if task i is assigned to station k; 0 other- 
wise, i= l,..., N, k= l,..., K 
1 if station k is utilized for model m; 
0 otherwise, k = 1, . . . , K, m = 1, . . . , P 
1 if station k is utilized by all models; 
0 otherwise, k = 1, . . . , K 
subset of all tasks that can be assigned to 
station k of model m, k = 1, . . . ,K, 
m = l,...,P 

11 wk,,,II number of tasks in Set wk,, k = 1, . . . ,K, 
m = 1, . . ..P 

The assumptions of the model are listed below: 
1. Similar models are produced on the same 

production line. 
2. Task performance times of each model are 

known constants. 
3. Precedence diagrams of the models are 

known. 
4. No WIP inventory buffer is allowed between 

stations. 
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5. Common tasks of different models must be 
assigned to the same stations. 

6. Number of stations are the same for all models. 
7. Parallel stations are not allowed. 
Typically there are several tasks common to the 

various models manufactured on a mixed-model 
assembly line. Thus, the precedence diagrams of the 
models can be combined into a unique diagram. 
Thomopoulos [ 1 l] used the concept of a combined 
precedence diagram to transform different models 
into an equivalent single model. The combined 
diagram is constructed by taking the union of the 

P--Y 
\ 

Fig. 1. Precedence diagrams for (a) model 1, (b) model 2, and (c) 
the combined diagram. 

nodes and the precedence relations of the diagrams 
of all the models. The construction of the combined 
diagram is straightforward with precedence ma- 
trices; a precedence matrix is an upper-triangular 
matrix with the abth entry equal to 1 if the process- 
ing of task b requires the completion of task a. 
Otherwise the entry is zero. In the precedence 
matrix of the combined diagram, the abth entry is 
equal to 1 if the abth entry of any of the precedence 
matrices of the models is equal to 1; additionally, 
some abth entries that are initially zero may finally 
be 1 due to implied precedence relations. For 
example, in the combined diagram, if acth and cbth 
entries are both 1 with a zero for the abth entry, 
then the ubth entry should be changed to 1. Note 
that there should be no conflict in the precedence 
relations across the models; for example, if a model 
requires the completion of task a before task b, then 
no other model should require the completion of 
task b before task a. A simple example with two 
models is given in Fig. 1 to illustrate the process of 
constructing a combined diagram. The numbers 
within the circles represent tasks and the arrows 
connecting the circles specify the precedence rela- 
tions. In Fig. 2, the associated precedence matrices 
of the diagrams of Fig. 1 are depicted.. 

The earliest and latest stations task i can be 
assigned to, given the precedence relations, Ei and 
Li, respectively, are first developed by Patterson 
and Albracht [l] for the single-model assembly line 
balancing problem. These expressions greatly 
reduce the number of variables in the model; 
the modified versions of these expressions for 
the mixed-model assembly line balancing problem 
below are used in our model. 

tim + 1 tjm + 

Ei = max 
m=l,...,P 

[ 1 

jsP& 

cm ’ 
(1) 

Gm + C tjm + 

Li= min K + l- 
[ I jtSi 

m= l,...,P Gn ’ 
(2) 

where [x] + denotes the smallest integer greater 
than or equal to X. The number of stations, K, can 
be estimated from the operational setting or heuris- 
tic procedures shown to perform well; an upper 
bound on K is N. 
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10 

The calculation of Ei and Li based on an estimate 
of five stations for the line length and the task 
performance times of the example in Fig. 1 are 
given in Table 1. 

3. Goal programming formulation 

(a) In a preemptive goal programming model, the 

1 3 5 6 ‘7 8 10 

upper level goals are first optimized before lower 
level goals are considered. In a nonpreemptive 
model, the goals are given some weights and con- 
sidered simultaneously. In this paper, we utilized 
the preemptive approach due to the difficulty asso- 
ciated with determining the weights for the various 
goals. 

1 
3 

5 

6 
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8 

10 

(b) 
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(c) 

Fig. 2. Precedence matrices of for (a) model 1, (b) model 2, and 
(c) the combined diagram. 

Table 1 
Task performance times and Ei and Li values of problem 1 

Task (i) Performance Performance Ei Li 

time for model 1 time for model 2 

1 10 10 1 3 
2 4 1 5 
3 I 9 1 4 
4 7 1 5 
5 4 5 1 4 
6 12 2 5 
7 6 1 5 
8 12 13 2 4 
9 7 1 5 

10 11 10 3 5 

3.1. Assignment constraints 

This set of constraints guarantees that tasks of 
each model are assigned to at most one station and 
can be written as follows: 

,sE Kk=l, i=l,..., N. 
i 

The assignment constraints are not suitable for 
consideration as goals; however, exclusion of a task 
or multiple assignments of tasks to stations can be 
implemented easily [7]. 

3.2. Precedence constraints 

We have utilized the precedence relationship of 
Patterson and Albracht [l] developed for the 
single-model version. In the combined precedence 
diagram, the precedence relation between task 
a and task b, where b is an immediate follower of a, 
can be expressed as follows: 

5 k . V,, - 5 k . V,, < 0 (4) 
k=E. k=Eb 

for each pair of tasks a and b where L, > Eb. 
Similar to the assignment constraints, precedence 
constraints are not appropriate for consideration as 
goals [7]. 
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3.3. Cyclic time constraints 

The cyclic time constraints assure that summa- 
tion of task times for each model within a single 
station is less than or equal to the cycle time of the 
model. These can be expressed as follows: 

iEGk. rim. I& < C,, k = 1, . . . ,K, m = 1, . . . ,P. (5) 

The goal constraints for the cycle time can be 
written as 

1 ti,.l/ik+dip-dz=Cm, 
isW,, 

k = l,..., K, m = l,..., P (6) 

The deviational variable, dz, denotes over- 
achievement of the cycle time for each station for 
model m. The minimization of d: for each model 
simultaneously will minimize the cycle times of the 
models. The deviational variable, d,, denotes the 
idle time in station k for model m. The minimiz- 
ation of the sum of the d,$ deviational variables will 
minimize the total idle time. 

The difference between the d& deviational vari- 
ables at each station can be limited to a predeter- 
mined value, ok, as follows: 

k= l,..., K, m= l,..., P- 1, (7) 

where wk is the bound on the variation of idle time 
between models in station k. This constraint can be 
expressed as a goal by adding the necessary devi- 
ational variables; however, a rapid increase in the 
number of constraints due to the absolute value 
function is inevitable. 

3.4. Zoning constraints 

Zoning constraints refer to the undesirability or 
the desirability of assigning tasks into the same 
station. The former is called incompatible zoning 
and the latter is called compatible zoning. For the 
incompatible zoning constraints, the expression 
developed by Patterson and Albracht [l] is used. 
In the combined diagram, incompatible tasks a 
and b, where a succeeds b, can be expressed as 

k=E. k=Eb 

This constraint can be expressed as a goal by 
adding deviational variables as follows [a]: 

5 k.l/,,- z k*vbk+dic-d;,=l. (9) 
k=E, k=Eb 

The deviational variable, d,,, is used to assure that 
incompatible tasks cannot be assigned to the same 
station. 

The compatible zoning constraint can be 
expressed with a small modification in the above 
expression as follows [7]: 

i k . v,, - 5 k . v,, = 0. 
k=E, k=Eb 

Similar to incompatible zoning, this constraint can 
also be expressed as a goal by adding deviational 
variables as follows [2]: 

F k.F/,,- F k+‘~,+d,,,-d&,=0. (11) 
k=E. k=Eb 

If the deviational variables d,,, and d&, are driven 
to zero, the compatible tasks a and b in the com- 
bined diagram will be assigned to the same station. 

3.5. Station constraints 

Each model utilizes the same number of stations; 
in other words, if the work content of a station for 
a specific model is zero, then the work content of this 
station for all the other models must also be zero. 
The station constraint developed by Deckro [7] is 
modified for the mixed-model version as follows: 

k= l,..., K, m= l,..., P, 

i Xkm-P’I&=o, k=l,..., K. 
m=l 

(12) 

(13) 

Note that with the above expressions, each station 
is assured to have at least one task from each model. 

If a specific number of stations, ST, is imposed by 
the decision maker, we can write the following 
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constraint: 

(14) 
k=l 

This constraint can be expressed as a goal by 
adding deviational variables as follows: 

5 Ak+ds; -d$ =ST. (15) 
k=l 

The classic objective of minimizing the number of 
stations utilized along the line can be achieved by 
maximizing d,: . 

4. Illustrative examples 

We apply the proposed goal programming 
model to a mixed-model ALB problem with two 
models. The precedence diagrams of the models 
and the combined diagram are depicted in Fig. 1. 
Note that the combined diagram has 10 tasks, 
whereas the first and second models have 8 and 
7 tasks, respectively. Task performance times for 
each model, the Ei and Li values are given in 
Table 1. A reasonable estimate of the number of 
stations is given as 5. 

using GAMS on an IBM 2155-593 computer. Task 
assignments are shown in Table 2. Three stations 
are utilized with a cycle time of 23 for both the 
models. Tasks 1 and 3 are assigned to different 
stations. In other words, priority 1 and priority 
3 are satisfied while priority 2 is unsatisfied. 

In sequencing the goals of a preemptive goal 
programming model with P priority levels, P! dif- 
ferent sequences of the goals can be created. In 
other words, the goals can be ordered in P! differ- 
ent ways. Such an analysis is useful to the decision 
maker since it serves as a sensitivity analysis tool. 
The results of the 3! = 6 different sequences of the 
goals are given in Table 3. 

Three goals with priority levels below are used in 
the formulation: 

Goal with priority level 1: number of stations 
should not exceed 3. 

Goal with priority level 2: cycle time should not 
exceed 22 for model 1 and 24 for model 2. 

Goal with priority level 3: tasks 1 and 3 should 
not be assigned to the same station. 

The goal programming formulation of the prob- 
lem is given in the appendix. The problem is solved 

Note that either the priority 1 goal (number of 
stations limit) or the priority 2 goal (cycle time 
limit) is not satisfied in each sequence in Table 3. 
Priority 1 and 2 goals are conflicting goals. The 
priority 3 goal (incompatible zoning) is always 
satisfied even when this goal is considered as the 
last goal (sequences 1 and 3). The above analysis 
suggests reconsidering the limits imposed by the 
priority 1 and 2 goals. In other words, the decision 
maker must accept either a longer cycle time or 
a larger number of stations. 

Table 3 
Sensitivity analysis of problem 1 made by changing the order of the goals 

Table 2 
Task assignments of problem 1 

Station Tasks Model 1 Model 2 

Tasks Station Tasks Station 
time time 

1 1, 4, 5, 7 1,4,5 21 1,5,7 21 
2 2, 3, 6, 9 2, 3, 9 18 3,6 21 
3 8, 10 8, 10 23 8, 10 23 

Sequence 
no. 

Priority 1 Priority 2 Priority 3 Unsatisfied Value of nonzero Cycle time Number 
goal deviational of stations 

variables Model 1 Model 2 

1 Pl P2 P3 P2 CYCl = 1 23 24 3 
2 Pl P3 P2 P2 CYCl = 1 23 24 3 
3 P2 Pl P3 Pl STA = 1 22 24 4 
4 P2 P3 Pl Pl STA=l 22 24 4 
5 P3 P2 Pl Pl STA = 1 22 24 4 
6 P3 Pl P2 P2 CYCl = 1 23 24 3 
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Table 4 
Solutions of problems obtained by adding lower level goals 

Prob. 
no. 

Number 
of tasks in 
combined 
diagram 

Common 
task 
percentage 

Goals” Solution 
time (s) 

1 2 3 

1 10 50 

2 20 60 

3 30 63 

4 40 67 

Priority 1: Number of stations goal 
Priority 2: Cycle time goal 
Priority 3: Incompatible zoning goal 
Priority 1: Cycle time goal 
Priority 2: Compatible zoning goal 
Priority 3: Number of stations goal 
Priority 1: Cycle time goal 
Priority 2: Number of stations goal 
Priority 3: Compatible zoning goal 
Priority 1: Number of stations goal 
Priority 2: Incompatible zoning goal 
Priority 3 Cycle time goal 

s U U 1.64 
S U U 22.36 
S U S 37.13 
S U U 9.72 
S S U 8.96 
S S S 62.01 
S U U 30.70 
S S U 26.04 
S S S 23.56 
S S U 5.66 
S S U 8.35 
S S S 20.87 

a S: satisfied; U: unsatisfied. 

We have solved three two-model example prob- 
lems with 20, 30 and 40 number of tasks in the 
combined diagram, respectively, in addition to the 
above example. The results along with the lo-task 
example above are shown in Table 4. The common 
task percentage column denotes the percentage of 
the tasks common to both of the models. In the first 
row of each problem, only the priority 1 goal is 
considered, in the second row, priority 1 and 
2 goals are considered, and in the third row, all of 
the goals are considered. For example, the third 
row of problem 1 corresponds to the first sequence 
in Table 3. 

The observations made on this limited number of 
example problems are as follows: The solution time 
is highly sensitive to the number of stations goal 
relative to K; for example, the small solution times 
of problem 4 are attributable to the relatively large 
number of stations goal. If a goal of lower priority 
is satisfied, then there is no need to consider the 
lower priority goal; such a case exists in the second 
row of problem 4. 

5. Conclusion 

In this paper, a goal programming model for the 
mixed-model ALB problem is suggested. The 

model is heavily based on the concepts of earlier 
researchers [ 1,7,11], and the models developed for 
the single-model version of the problem [l, 2-J. 
However, the model is the first MCDM approach 
to the mixed-model version. 

The size of the model can grow rapidly as the 
problem is NP-hard, since with a single model and 
tasks with no precedence relations, it is easy to 
reduce the problem into a bin-packing problem 
which is NP-hard in the strong sense. However, 
when a goal was met, it is not necessary to spend 
computational time to providing optimality. In 
other words, if the deviational variables at a goal 
can be minimized to zero, it is not necessary to 
make further computation for that goal. 

Goal programming usually results in a “compro- 
mise” since the solution provides “satisfactory” 
levels of performance in terms of conthcting objec- 
tives, rather than identifying the “optimal” solution 
with respect to a single objective. The goal program- 
ming model suggested here provides flexibility to the 
decision maker in evaluating different alternatives. 
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Appendix 

Goal programming formulation of the example 
problem 

positive deviational variable of station 
constraint. 
negative deviational variable of station 
constraint. 

Deviational Variables 
STA 

ISTA 

CYCl 

CYC2 

ZNG 

HAk 

HBk 

IZNG 

positive deviational variable of cycle time 
constraint for model 1. 
positive deviational variable of cycle time 
constraint for model 2. 
negative deviational variable of zoning 
constraint. 
negative deviational variable of cycle time 
constraint for kth station of model 1. 
negative deviational variable of cycle time 
constraint for kth station of model 2. 
positive deviational variable of zoning 
constraint. 

Model 
Min Pl(STA), P2(CYCl + CYC2), P3(ZNG) 
Subject to 
Assignment Constraints 

Vll + v12 + v13 = 1 

V21 + V22 + V23 + V24 + V25 = 1 

V31 + V32 + V33 + V34 = 1 

V41+V42+V43+V44+V45=1 

v51 + v52 + v53 + v54 = 1 

V62 + V63 -t V64 + V65 = 1 

V71 + V72 + V73 + V74 + V75 = 1 

V82 + V83 + V84 = 1 

V91+ V92 + V93 + V94 + V95 = 1 

v103 + v104 + v105 = 1 

Precedence Constraints 

Vll + 2V12 + 3V13 - V21- 2V22 - 3V23 

- 4V24 - 5V25 < 0 

Vll + 2V12 + 3V13 - V31- 2V32 - 3V33 

-4V34dO 

Vll + 2V12 + 3V13 - V41 - 2V42 - 3V43 

- 4v44 - 5v45 < 0 

Vll + 2V12 + 3V13 - V71- 2V72 - 3V73 

- 4v74 - 5v75 < 0 

V21+ 2V22 + 3V23 + 4V24 + 5V25 - V91 

- 2V92 - 3V93 - 4V94 - 5V95 < 0 

V31 + 2V32 + 3V33 + 4V34 - 2V62 - 3V63 

- 4V64 - 5V65 < 0 

V31 + 2V32 + 3V33 + 4V34 - 2V82 

- 3V83 - 4V84 < 0 

V41+ 2V42 + 3V43 + 4V44 + 5V45 - V51 

- 27152 - 3V53 - 4V54 < 0 

2V62 + 3V63 + 4V64 + 5V65 - 2V103 - 3V104 

- 4v105 < 0 
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VSl + 2v52 + 3v53 + 4v54 + 5v55 - 2V82 

- 3V83 - 4V84 < 0 

3V83 + 3V84 - 3v103 - 4v104 - 5VlO5 < 0 

V91 + 2V92 + 3V93 i- 4V94 + 5V95 - 3VlO3 

- 4v104 - 5v105 < 0 

v71 + 2v72 + 3v73 + 4v14 + 5v15 - 3v103 

- 4v104 - 5v105 Q 0 

Incompatible Zoning Goal Constraint 

V31 + 2V32 + 3V33 + 4V34 - Vll - 2V12 

- 3V13 + ZNG - IZNG = 1 

Cycle time goal constraints (for model 1) 

lOVl1 + 4V21 + 7V31 + 7V41 + 4V51 + 7V91 

+ HAl-CYCl = 22 

lOV12 + 4V22 + 7V32 + 7V42 + 4V52 + 12V82 

+ 7V92 + HA2-CYCl = 22 

1OV13 + 4V23 + 7V33 + 7V43 + 4V53 + 12V83 

+ 7V93 + llV103 + HA3-CYCl = 22 

4V24 + 7V34 + 7V44 + 4V54 + 12V84 + 7V94 

+ llV104 + HA4 - CYCl = 22 

4V25 + 7V45 + 7V95 + llV105 + HA5 

- CYCl = 22 

Cycle Time Goal Constraints (for model 2) 

1OVll + 9V31 + 5V51 + 6V71 + HBl 

- CYC2 = 24 

lOV12 + 9V32 + 5V52 + 12V62 + 6V72 + 13V82 

+ HB2 - CYC2 = 24 

lOV13 + 9V33 + 5V53 + 12V63 + 6V73 + 13V83 

+ lOV103 + HB3 - CYC2 = 24 

9V34 + 5V54 + 12V64 + 6V74 + 13V84 

+ lOV104 + HB4 - CYC2 = 24 

12V65 + 6V75 + lOV105 + HB5 - CYC2 = 24 

Station Constraints 

Vll + v21 + v31 + v41 + v51 + v91 

-6X11 60 

V12 + V22 + V32 + V42 + V52 + V82 + V92 

- 6X21 < 0 

V13 + V23 + V33 + V43 + V53 + V83 + V93 

v103 - 8X31 < 0 

V24 + V34 + V44 + V54 + V84 + V94 + V104 

- 7x41 d 0 

V25 + V45 + V95 + V105 - 3X51 6 0 

Vll + V31 + V51 + V71 -4X12 < 0 

V12 + V32 + V52 + V62 + V72 + V82 

- 5X22 < 0 

V13 + V33 + V53 + V63 + V73 + V83 + V103 

- 7X32 < 0 

V34 + V54 + V64 + V74 + V84 + V104 

- 6X42 < 0 

V65 + V75 + V105 - 2X52 < 0 

X11 + Xl2 - 2Al = 0 

X21 + X22 - 2A2 = 0 

X31 + X32 - 2A3 = 0 

X41 +X42-2A4=0 

X51 + X52 - 2A5 = 0 

Station Goal Constraint 

Al + A2 + A3 + A4 + A5 + ISTA - STA = 3 

End 
Xkm, Vik, Ak 0 or 1. 
All other variables are non-negative. 


