
Regression on feature projections

H. Altay Guvenir*, I. Uysal
aDepartment of Computer Engineering, Bilkent University, 06533 Ankara, Turkey

Received 23 August 1999; revised 21 March 2000; accepted 3 April 2000

Abstract

This paper describes a machine learning method, called Regression on Feature Projections (RFP), for predicting a real-valued target

feature, given the values of multiple predictive features. In RFP training is based on simply storing the projections of the training instances on

each feature separately. Prediction of the target value for a query point is obtained through two averaging procedures executed sequentially.

The ®rst averaging process is to ®nd the individual predictions of features by using the K-Nearest Neighbor (KNN) algorithm. The second

averaging process combines the predictions of all features. During the ®rst averaging step, each feature is associated with a weight in order to

determine the prediction ability of the feature at the local query point. The weights, found for each local query point, are used in the second

prediction step and enforce the method to have an adaptive or context-sensitive nature. We have compared RFP with KNN and the rule

based-regression algorithms. Results on real data sets show that RFP achieves better or comparable accuracy and is faster than both KNN and

Rule-based regression algorithms. q 2000 Elsevier Science B.V. All rights reserved.

Keywords: Regression; Function approximation; Feature projections

1. Introduction

Prediction has been the most common problem

researched in machine learning and data mining. Here we

describe a method for predicting a real-valued or continuous

target feature, given the values of multiple predictive

features. Predicting a continuous feature is generally

known as regression among related ®elds such as machine

learning, statistics, pattern recognition as well as knowledge

discovery in databases (KDD) and data mining. Regression

differs from classi®cation in that the predicted target vari-

able t in regression problems is continuous, whereas in clas-

si®cation t is strictly categorical. From this perspective,

classi®cation can be considered as a subcategory of

regression.

There are two different approaches for regression in the

literature: Eager and lazy learning. The term eager refers to

the learning systems that construct models that represent

knowledge using the training data. After training, they

make predictions by using this model, which is a compact

representation of the data. In lazy learning, on the other

hand, all processing is delayed to prediction phase.

We describe a lazy learning method Regression by

Feature Projections (RFP) to predict a real-valued target,

where the instances are stored as their projections on each

feature dimension. In the RFP method, we use the KNN

algorithm on each individual feature dimension to ®nd

their own prediction, independent of the predictions of

other features. Then we ®nd the precision of those features

at the local position of query instance. We de®ne the preci-

sion as a local weight that brings an adaptive or context-

sensitive nature to the method. By adaptive, we mean that

the contribution of each feature changes according to the

local position of the query instance. The ®nal prediction is

made by combining individual feature predictions and using

their local weights.

The traditional approach for prediction of a continuous

target is the classical linear least-squares regression [22].

The model constructed for regression in this traditional

approach is a linear equation. By estimating the parameters

of this equation with a computationally simple process on

the training set, a model is constructed. However, the line-

arity assumption between input features and target intro-

duces a large bias error for most domains. That is why

most studies are directed to new nonlinear and, in most

cases, non-parametric techniques for the regression

problem. Among eager regression learning systems,

CART [5], RETIS [16], M5 [21], DART/HYESS [10],

and Stacked Regressions [6] induce regression trees,

FORS [4] uses inductive logic programming for regression

Knowledge-Based Systems 13 (2000) 207±214

0950-7051/00/$ - see front matter q 2000 Elsevier Science B.V. All rights reserved.

PII: S0950-7051(00)00060-5

www.elsevier.com/locate/knosys

* Corresponding author. Tel.: 190-312-290-1252, fax: 190-312-266-

4126.

E-mail address: guvenir@bilkent.edu.tr (H. Altay Guvenir).



and Rule [25] induces regression rules. On the other hand,

projection pursuit regression [9], neural network models and

MARS [8] produce mathematical models. Among lazy

learning methods, locally weighted regression [2] produces

local parametric functions according to the query instances,

and KNN [1,18,20] algorithm is the most popular nonpara-

metric instance-based approach for the lazy learning of a

real-valued target, to which we have compared our nonpara-

metric lazy learning algorithm based on feature projections.

The KNN algorithm is also known as kernel regression in

statistical pattern recognition literature.

RFP eliminates most of the problems of other eager or

lazy methods, such as the curse of dimensionality, dealing

with missing feature values, information loss because of

disjoint partitioning of data, irrelevant features, computa-

tional complexity of test or training, missing local informa-

tion at query locations and the need for normalization with a

trade off not dealing with interactions, which is in fact not

met with most real-world data sets.

The theoretical and empirical results show that, in predic-

tion, the RFP method is much faster than its natural compe-

titor KNN, and achieves a comparable accuracy. For most

data mining or knowledge discovery applications, where

very large databases are in concern, this is thought of a

solution because of low computational complexity, and

eliminating the problems listed above, some of which take

too much time for large data.

In Sections 2 and 3, we review the KNN and Rule-based

algorithms for regression, respectively. Section 4 gives a

detailed description of the RFP algorithm. Section 5 is

devoted to the theoretical and empirical evaluation of RFP

and its comparisons with KNN and the Rule algorithms.

Finally, in Section 6, a conclusion and future work are

presented.

2. K-Nearest Neighbor algorithm

The main advantage of lazy learning approaches is that,

they make use of local information in the instance space, as

the prediction is made according to exact location of each

individual query instance. Another advantage of the lazy

methods is their short training time, because training

involves only the storage of training examples. The most

commonly used instance-based or lazy method for both

classi®cation and regression problems are the K-Nearest

Neighbor (KNN) algorithm. In this section we will review

the way it is used for regression.

The main assumption behind the KNN algorithm is that

the closest instances to the query point have similar target

values to the query. Hence, the KNN algorithm ®rst ®nds the

closest instances to the query point in the instance space

according to a distance measure, then outputs the average

of the target values of those instances as the prediction for

that query instance. Generally, the Eucledian distance

metric is used to measure the similarity between two points

in the instance space. Therefore, the similarity between a

query point qi and a sample point sj in an N-dimensional

instance space is computed as

Sim�qi; sj� � 1 2

����������������XN
f�1

d�q; s; f �2
vuut

���
N
p �1�

d�d; s; f � �

1 if qi;f or sj; f is unknown �missing�
�qi;f 2 si; f � if f is linear

0 if f is nominal and qi; f � sj; f

1 if f is nominal and qi; f ± sj; f

8>>>>><>>>>>:
�2�

where qi,f and sj,f refer to the value of feature f for instances qi

and sj, respectively. Feature values are assumed to be in the

same range, e.g. [0,1], for all features. This is achieved by a

simple normalization preprocessing of both training and

query instances. If qi � sj in Eq. (1), then Sim�qi; sj� � 1:

The lowest value for Sim(qi,sj) is 0.

The target value of the query point qi is predicted as the

similarity proportional average of the target values t(sj) of

the nearest k neighbors of qi among all the training instances

t̂�qi� �

Xk

i�1

t�sj�´Sim�qi; sj�
Xk

i�1

Sim�qi; sj�
�3�

Therefore, the KNN algorithm assigns larger weights to the

closer neighbors. As the prediction of the target value of a

query instance requires to measure its distance to all training

instances, which might be a very huge set, the prediction in

KNN is very costly.

3. Rule-based regression

Inducing rules from a given training set is a well-studied

topic in machine learning. Weiss and Indurkhya employed

rule induction for regression problem and reported signi®-

cant results [25]. In this section, we will ®rst review the rule-

based classi®cation algorithm [24], Swap-1, that learns

decision rules in disjunctive normal form (DNF), and later

on describe its adaptation for regression.

The main advantage of inducing rules in DNF is its expla-

natory capability. It is comparable to decision trees as they

can be converted into DNF models as well. Unlike decision

trees, DNF rules need not be mutually exclusive. In decision

trees, for each instance, there is exactly one rule, a path from

root to a leaf that is satis®ed. Because of this restriction,

decision tree induction algorithms may not produce

compact models. On the other hand, as the regions for

rules need not be disjoint, several rules may be satis®ed

for a single query instance. The common solution to this

H. Altay Guvenir, I. Uysal / Knowledge-Based Systems 13 (2000) 207±214208



problem is to assign priorities or ordering to the rules

according to their extraction order. The ®rst rule, according

to this ordering that satis®es the query instance, determine

the class of a query. Such ordered rule-sets have been

referred to as decision lists.

While constructing a rule, the Swap-1 algorithm searches

all the conjunctive components it has already formed, and

swaps them with all possible components it will build. This

search also involves deletion of some components from the

rule. If no improvement is established from these swaps and

deletions, then the best component is added to the rule. In

order to ®nd the best component to be added, the predictive

value of a component, as the percentage of correct deci-

sions, is evaluated. If the predictive values of the candidates

are equal, maximum instance coverage is used as the second

criterion. These swappings and additions end when the rule

reaches 100% prediction accuracy.

After forming a new rule for the model, all instances that

the rule covers are removed from the training instance set,

and remaining instances are considered for the following

steps. When a class is covered, the remaining classes are

considered, in turn. This process iterates until the instance

set becomes empty, that is all instances are covered. After

the formation of the rule set, if removal of any rule does not

change the performance on training set, such rules are

removed from the model. Further, in order to reach an opti-

mum rule set, an optimization procedure is used [24].

The rule induction algorithms for classi®cation, such as

Swap-1, can also be applied to the regression problems. As

these algorithms are designed for the prediction of nominal

attributes, by a preprocessing procedure, the numeric attri-

bute in regression to be predicted is transformed to a

nominal one. Weiss and Indurkhya used the P-class algo-

rithm for this transformation [25]. This transformation is in

fact a one-dimensional clustering of training instances on

response variable t, in order to form classes. The purpose is

to make t values within one class most similar, and across

classes most dissimilar. The assignment of these values to

classes is carried out in a way that, the distance between

each ti and its class mean must be minimum.

The P-Class algorithm sorts all the target values of the

training samples ®rst. Then, it assigns approximately equal

number of contiguous target values to each class. Finally it

moves a target value to one of the neighboring class if it

reduces its distance to the mean of that class.

This procedure is a variation of K-MEANS clustering

algorithm [7,17]. Given the number of clusters initially,

on randomly decomposed clusters, the K-MEANS algorithm

swaps the instances between the clusters if it increases a

clustering measure or criterion that employs inter and

intra-cluster distances. Given the number of classes, P-

Class is a quick and precise procedure. However, no idea

is stated in the literature about an ef®cient way to determine

the number of classes.

After the formation of (pseudo) classes and application of

a rule induction algorithm to these classes such as Swap-1,

in order to produce optimum set of regression rules, a prun-

ing and an optimization procedure can be applied to these

rules [24,25]. The overview of the overall procedure for

induction of regression rules is shown in Fig. 1.

The naive way to predict the response for a query instance

is to assign the average of responses. The average may be a

median or mean of that class. However different approaches

also can be considered by applying a parametric or non-

parametric model for that speci®c class. For example, the

nearest-neighbor approach is used for this purpose, and

signi®cant improvements of this combination against the

naive approach have been reported [25].

4. Regression on feature projections

In this section we introduce a lazy regression method

based-on feature projections, called Regression on Feature

Projections (RFP). The training samples are stored as their

projections on every feature. Given a query instance, the

RFP algorithm ®rst makes a separate approximation of the

target value for each feature, independently of the other

features. This approximation is made by using the nearest

instances to the query point on that feature dimension. The

nearest instances may differ at each feature dimension. The

®nal prediction is computed by the weighted combination of

predictions made by each feature. The performance results

obtained for classi®cation algorithms based on feature

projections [13,14] encouraged us to develop RFP. The

next subsections describe the training and prediction phases

H. Altay Guvenir, I. Uysal / Knowledge-Based Systems 13 (2000) 207±214 209

Fig. 1. Overview of learning regression rules.



of the RFP algorithm, along with the averaging and local

weighting on feature projections.

4.1. Training

Training in RFP involves simply storing the training set

as projections to the features. This is carried out by associat-

ing a copy of the target value with each projection, then

sorting the instances for each feature dimension according

to their feature values. If there are missing values of

features, the training instance is not stored only for these

features.

Training and prediction in RFP will be illustrated through

an example. Let our example domain consist of two

features, f1 and f2. Our training set contains seven samples;

{1,60,2}, {2,60,3}, {4,50,11}, {5,60,13}, {8,90,19},

{9,20,7), {3,?,9}. Here the ®rst two elements represent the

values of f1 and f2, respectively, and the last element repre-

sents the target value. The value of f2 in the last sample

instance is unknown. The training set is shown in Fig. 2a.

After training with this set, instances are stored by their

feature projections as in Fig. 2b.

4.2. Prediction

In order to predict the target value of a query instance qi,

the RFP algorithm ®rst projects the query instance on each

feature. Then, for each feature f a prediction t̂� f ; qi;f � for the

target value t(qi) is made using only the value of qi,f and its

nearest K neighboring training instances on the projections

on the feature f. Here, t̂� f ; qi;f � stands for the expected value

of the target if f � qi;f ; independent of the other features. As

the instances are sorted according to feature values in the

training phase, the nearest neighbors can be found using a

H. Altay Guvenir, I. Uysal / Knowledge-Based Systems 13 (2000) 207±214210

Fig. 2. Training in RFP.

Fig. 3. Prediction in RFP.



binary search. If the feature f is categorical, then the average

of the target values of these K nearest neighbors on f is used

as the prediction on that feature. For a continuous feature,

the linear least-squares approximation, given in Eq. (4), is

used to make the prediction, t̂� f ; qj; f �: The linear least-

squares algorithm ®nds a linear equation that minimizes

the sum of the squared errors of the training instances

[19]. Formally, the linear equation is in the following form:

t̂� f ; qi; f � � b0 1 b1´qi; f : �4�
Here, b 0 and b 1 are the coef®cients of the linear equation.

The error of this linear equation, formed for qi on feature f, is

computed as

Error�i; f � �
XK
j�1

�t�sj�2 t̂� f ; sj;f ��2 �5�

where K is the number of neighbors considered, sj is the jth

nearest instance to qi on f, and t(sj) is actual target value of

the training sample sj.

After constructing a linear equation, using the linear

least-squares algorithm, the prediction for a particular

feature is carried out by simply substituting the feature

value of the query instance to this equation. If all K nearest

training instances are found at the same feature value as qi,f

then the linear least-squares approach will fail to make a

plausible prediction, as, in that case, the slope b 1 will be

in®nite. In such cases simple averaging, as in categorical

features, is used.

Continuing on the previous example, let us assume the

query instance q1 has the value 60 for f1 and 7 for f2, as

shown in Fig. 3. Let us also assume the value of K is 3.

RFP prediction algorithm locates the three nearest neigh-

bors of the query point on each dimension, separately. These

neighbors are shown in boldface in the ®gure. The training

instance projections found on f1 dimension, with target

values 11, 13 and 19 form a linear regression equation as

t̂� f1; q1;1� � 3 1 2´q1;1; substituting the value of q1;1 � 6;

the prediction for f1 is obtained as t̂� f1; 6� � 15: For the

feature f2, all three training instances are found at the

value of 60. The RFP prediction algorithm does not

construct a linear regression equation for f2, as b 1 coef®cient

of such an equation would have to be 1, and therefore the

predicted value would be 1 as well. In this case the RFP

prediction algorithm ®nds the average of the target values of

these three instances and outputs this value as the prediction

for f2. Therefore, t̂� f2; 60� � avg�2; 3; 13� � 6: After obtain-

ing t̂� f ; qi; f � for all features, the next step is to combine these

individual predictions to make the ®nal prediction.

4.3. Local weight

Some regions on a feature dimension may produce better

approximations than others. In order to obtain the degree of

®tting for a feature prediction, we employ a locality measure

in the prediction algorithm. If the region where the query

point falls in is smooth, we give a high weight to that feature

in the ®nal prediction. The locality measure allows the RFP

prediction algorithm both eliminate the effect of irrelevant

features, as well as the irrelevant regions of a feature dimen-

sion. It establishes an adaptive or context-sensitive nature,

where at different locations in the instance space, the contri-

bution of features on the ®nal approximation differs.

In order to measure the degree of smoothness, the RFP

prediction algorithm computes the distance-weighted mean

of squared differences of the target values of the K nearest

neighbors of qi and their estimated values. We denote this

measure with Vi,k, f shown in Eq. (7). By subtracting it from

the variance of the target values of all training instances, Vall,

we ®nd the explained variance for that region around qi, and

by normalizing it with the variance of training set we obtain

a measure, called prediction index (PIi, f) for the feature f (9).

We use the square of PIi, f as the local weight (LWi, f) of

feature f (10)

Vall �

XM
j�1

�t�sj�2 �t�2

M
�6�

Vi;k; f �

Xk

j�1

wf ;i; j�t�sj�2 t̂�sj; f �2

Xk

j�1

wf ;i; j

�7�

where M is the number of training instances, t̂ is the mean of

target values in all training set, t̂�sj; f � is the estimation of the

feature f for jth nearest training instance and wf,i, j is de®ned

in Eq. (8)

wf ;i; j

1

�qi; f 2 sj; f �2 1 e
�8�

where e is a positive real number close to zero,1 used to

avoid 1 values for wf,i, j.

PIi; f �
Vall 2 Vi;k; f

Vall

�9�

LWi; f �
PI2

i; f if PIi; f . 0

0 otherwise

(
�10�

For the example given above M � 8; and Vall � 36:1875:

The local weight values for q1 are computed as LW1;1 � 1

and LW1;2 � 0:1014:

4.4. Final prediction

The RFP prediction algorithm computes the ®nal predic-

tion for a query instance qi as the weighted average of the

predictions t̂� f ; qi; f � found for each feature dimension, using

the local weights. Fig. 4 summarizes the prediction phase as

H. Altay Guvenir, I. Uysal / Knowledge-Based Systems 13 (2000) 207±214 211

1 e � 1028 is used in the experiments.



well as the training. Formally

t̂�qi� �

XN
f�1

LWi;f ´t̂� f ; qi; f �

XN
f�1

LWi; f

�11�

For the example given above, the ®nal prediction for the

target value of the query instance is t̂�qi� � 14:1717:

The RFP prediction algorithm does not make predictions

for features whose vales are unknown in the query instance.

The ®nal prediction is obtained as the weighted average of

the predictions by only features whose value is known in the

query instance. Therefore, the RFP algorithm does not

require any unnatural modi®cation of the data to cope

with missing feature values.

5. Theoretical and empirical evaluation

RFP inherits most properties of other lazy approaches.

Two most important bene®ts of lazy learning approaches

are their very small training complexity and the utilization

of local information in the instance space. RFP bene®ts from

these properties with an additional property of having small

prediction time requirement. The method also deals with

both types of input features, categorical and continuous,

and handles irrelevant features in a very natural way. The

single drawback of the method is its inability for dealing

with interactions or relations among input features that lead

to a decrease in prediction accuracy. However, we have seen

that generally the real world datasets do not contain such

interactions between features [13,15]. On the other hand,

especially for large datasets with large number of input

features and instances, the RFP method can be considered

as a reliable solution, as it can reduce the effect of irrelevant

features by assigning them lower weights. Important theo-

retical and empirical properties and results on real datasets

obtained from two different sources [3,23] (also available at

http://funapp.cs.bilkent.edu.tr [11]) are described in the

following sections.

5.1. Complexity analysis of RFP

As the method uses a lazy approach, without a summar-

ization with preprocessing phase, a memory space propor-

tional to the whole training data is required. Given a data set

with M training instances and N features the space require-

ment is proportional to M´N: Again, for the training phase,

the computational complexity of sorting projections on all

features is O�N´M´log M�: The computation of variance

�O�M�� of target values for all training data is also computed

in the training phase, and it does not change the above

complexity, O�N´M´log M�:
The complexity of ®nding the nearest instance on a sorted

data for a feature, using binary search, is O�log M�: Again

on the sorted data, ®nding remaining K 2 1 instances

H. Altay Guvenir, I. Uysal / Knowledge-Based Systems 13 (2000) 207±214212

Fig. 4. Training and prediction algorithms of RFP.

Table 1

Data sets used in the experiments

Dataset Instances Features (linear 1 nominal) Missing values Target feature

Abalone 4177 8 (7 1 1) None Rings

Auto-mpg 398 7 (6 1 1) 6 Gas consumption

Buying 100 39 (39 1 0) 27 Husbands buying video tape

Country 122 20 (20 1 0) 34 Population

Cpu 209 7 (1 1 6) None Relative CPU performance

Electric 240 12 (10 1 2) 58 Serum Cholesterol 58

Flare 1066 10 (0 1 10) None Flares production

Housing 506 13 (12 1 1) None House prices

Read 681 25 (24 1 1) 1097 Readership satisfaction

Servo 167 4 (0 1 4) None Rise time of a servomechanism



requires a complexity of O(K). Finding the feature predic-

tion using K nearest neighbors requires a time proportional

to O(K). As the variance of all the data is computed once in

the training phase, the complexity of computing local

weight is also O(K). After ®nding predictions for each

feature dimension, the complexity of taking weighted aver-

age of all feature predictions is O(N). The overall complex-

ity of prediction of a query instance is O�N´�log M 1 K��:
Note that assuming M q K; this complexity is

O�N´log M�: The test times of the algorithms, run on the

datasets shown in Table 1, are given in Table 2.

5.2. Prediction accuracy

In order to evaluate the prediction performance of a

regression method, we used relative error (RE) computed

by the following formula:

RE � MAD

1

Q

XQ
i�1

t�qi�2 �tj j
�12�

where Q is the number of query instances, �t is the median of

the target values of training instances and MAD (Mean

Absolute Distance) is de®ned below.

MAD � 1

Q

XQ
i�1

t�qi�2 t̂�qi�j j �13�

In order to compare the RFP algorithm with KNN and Rules

learning algorithms, we used abalone, auto-mpg, buying,

country, cpu, electric, ¯are, housing, read and servo real

world datasets for function approximation (available at

http://funapp.cs.bilkent.edu.tr [11]). The information about

the number of instances, number and type of features and

presence of missing values are summarized in Table 1.

We have measured the error rate RE, using 10-fold cross-

validation. We have compared the results for RFP with the

results of KNN and Rule-based regression [26], for K � 10:

From the results given in Table 2, we can easily conclude

that, RFP has the shortest test time (except ¯are), while

KNN has the shortest training time on all data sets. Average

RE for RFP over the ten data sets is 0.932. On the other

hand, the rule-based regression algorithm achieved 1.489

average RE, and KNN had 1.003 average RE. Therefore,

we can conclude that the RFP algorithm achieves better

performance on relative error and prediction time then

KNN and Rule-based regression.

5.3. Preprocessing

In most data mining applications, preprocessing of the

data takes more time than running the machine learning

algorithms; however less research has been carried out on

it. Dealing with missing feature values, determining and

applying a normalization procedure and applying sampling

to the data in order to decrease running time of the algorithm

are some of such preprocessing tasks. As RFP handles miss-

ing values in a natural way, simply ignoring these missing

feature values, no such preprocessing is required. Most

other learning algorithms require these missing values to

be ®lled with some data values [12]. Another advantage of

the RFP is that it does not require any normalization on the

data, because the distance measures used involves only a

single feature, and predictions are carried out separately for

each feature dimension. Finally the ef®cient computation

time of the method eliminates most sampling tasks needed

to speed up data mining applications.

5.4. Curse of dimensionality

For very large dimensions and with moderate number of

training instances, other methods, except projection pursuit

regression [9], suffer from sparsity. In other words, as the

dimension increases, much more data are required to make

better approximation. This problem is known as curse of

dimensionality. As RFP makes approximations on each

feature dimension separately, the density of instances at

any local region of feature projections does not change as

the dimension increase. Therefore RFP is suitable for data

sets with large number of features, probably including some

irrelevant ones.

H. Altay Guvenir, I. Uysal / Knowledge-Based Systems 13 (2000) 207±214 213

Table 2

10-Fold cross-validation performance comparison of RFP, KNN and Rule-based Regression on ten real-world data sets. For RFP and KNN, K � 10: Train and

test times are in milliseconds; a 0 indicates the time is below 0.1. Best values are shown in boldface

Data set RFP KNN Rule

RE Train Test RE Train Test RE Train Test

Abalone 0.748 130.8 41.7 0.646 8.9 4509.6 0.899 16 332.2 463.6

auto-mpg 0.426 7 1 0.343 0 31.8 0.450 249.6 20.3

buying 0.911 9 1 0.968 0 4 0.945 132.2 14

country 1.439 5 0.4 1.788 0 4 6.306 122.6 14.9

cpu 0.766 3 0 1.288 0 8 0.677 123 15.9

Electric 1.032 6 1 1.083 0 13.4 1.528 166.4 17.5

¯are 1.368 28.4 31.3 1.579 2 288.6 1.792 315.7 20.7

Housing 0.798 16.4 3.6 0.651 1 63.8 0.640 643.1 32

read 1.011 44.4 15.1 1.042 2 169.6 1.352 732.2 37.9

servo 0.822 1 0 0.639 0 4 0.229 73.7 13



5.5. Locality of information

Recursive partitioning regression methods, such as

regression tree induction systems, partition the instance

space into disjoint local regions. This partitioning causes

some problems. One of them is the approximations carried

out on the boundaries of regions will not be continuous.

More intuitively, if a single value is predicted for each

region, the prediction will not change at any location within

the boundaries of a region. Another problem with tree

induction methods is that, slight changes on the parent

regions (parent nodes of the tree) may produce quite differ-

ent regions at the leaf nodes of the tree. For such problems

different modi®cations to tree induction methods are carried

out by producing overlapping regions with increased

computation [8,10]. The RFP algorithm handles local infor-

mation like other lazy approaches, as an approximation is

carried out according to the local position of each query

instance.

6. Conclusion

We have described a regression method called RFP,

based on feature projections, which achieves fast computa-

tion time, by preserving a comparable or better accuracy

with other popular regression algorithms. The method inher-

its most of the properties of lazy regression methods and has

some additional bene®ts. Besides fast prediction time, it

handles some of the problems generally resolved with an

additional preprocessing. These results encourage us to

present this method as a data mining solution for high

dimensional databases with very large sizes, by an addi-

tional advantage of eliminating curse of dimensionality

problem. Future works can be directed towards new meth-

ods, which inherit the advantages of RFP, and also deals

with interactions, in order to reach much better prediction

performance. Further new methods can be developed for

regression that make generalizations on feature projections,

in order to enable the interpretation of data.

References

[1] D. Aha, D. Kibler, M. Albert, Instance-based learning algorithms,

Machine Learning 6 (1991) 37±66.

[2] G.C. Atkenson, A.W. Moore, S. Schaal, Locally weighted learning

[http://funapp.cs.bilkent.edu.tr], 1996.

[3] C. Blake, E. Keogh, C.J. Merz, UCI Repository of machine learning

databases [http://www.ics.uci.edu/~mlearn/MLRepository.html]

Irvine, CA, University of California, Department of Information

and Computer Science, 1998

[4] I. Bratko, A. Karalic, First order regression, Machine Learning 26

(1997) 147±176.

[5] L. Breiman, J.H. Friedman, R.A. Olshen, C.J. Stone, Classi®cation

and Regression Trees, Wadsworth, Belmont, CA, 1984.

[6] M.L. Breiman, L. Breiman, Stacked regressions, Machine Learning

24 (1996) 49±64.

[7] R. Duda, P.E. Hart, Pattern Classi®cation and Scene Analysis, Wiley,

New York, 1973.

[8] J.H. Friedman, Multivariate adaptive regression splines, The Annals

of Statistics 19 (1) (1991) 1±141.

[9] J.H. Friedman, W. Stuetzle, Projection pursuit regression, Journal of

American Statistical Association 76 (1981) 817±823.

[10] J.H. Friedman, Local learning based on recursive covering, Depart-

ment of Statistics, Stanford University [ftp://stat.stanford.edu/pub/

friedman/dart.ps.Z], 1996.

[11] H.A. Guvenir, Bilkent FunApp repository [http://funapp.cs.bilkent.e-

du.tr], Bilkent University, Department of Computer Engineering,

Ankara, 2000.

[12] R. Greiner, A.J. Grove, A. Kogan, Knowing what doesn't matter:

exploiting the omission of irrelevant data, Arti®cial Intelligence 97

(1997) 345±380.

[13] H.A. Guvenir, IÇ. Sirin, Classi®cation by feature partitioning, Machine

Learning 23 (1996) 47±67.

[14] H.A. Guvenir, G. Demiroz, N. Ilter, Learning differential diagnosis of

erythemato squamous diseases using voting feature intervals, Arti®-

cial Intelligence in Medicine 13 (1998) 147±165.

[15] R.C. Holte, Very simple classi®cation rules perform well on most

commonly used datasets, Machine Learning 11 (1993) 63±91.

[16] A. Karalic, Employing linear regression in regression tree leaves, in:

B. Newmann (Ed.), Proceedings of ECAI'92 Vienna, Austria, 1992,

pp. 440±441.

[17] L. Kaufman, P.J. Rousseeuw, Finding Groups in DataÐAn Introduc-

tion to Cluster Analysis, Wiley Series in Probability and Mathema-

tical Statistics 1990.

[18] D. Kibler, D.W. Aha, M.K. Albert, Instance-based prediction of real-

valued attributes, Computational Intelligence 5 (1989) 51±57.

[19] J.H. Mathews, Numerical Methods for Computer Science, Engineer-

ing and Mathematics, Prentice-Hall, Englewood Cliffs, NJ, 1987.

[20] T.M. Mitchell, Machine Learning, McGraw Hill, New York, 1997.

[21] J.R. Quinlan, Learning with continuous classes, in: Adams and Ster-

ling (Eds.), Proceedings, AI'92, 1992, pp. 343±348.

[22] J. Rawlings, Applied Regression Analysis, A Research Tool, Wads-

worth, Belmont, CA, 1988.

[23] SPSS Sample Data Sets [ftp://ftp.spss.com/pub/spss/sample/datasets/],

1999.

[24] S. Weiss, N. Indurkhya, Optimized rule induction, IEEE Expert 8 (6)

(1993) 61±69.

[25] S. Weiss, N. Indurkhya, Rule-based machine learning methods for

functional prediction, Journal of Arti®cial Intelligence Research 3

(1995) 383±403.

[26] S. Weiss, N. Indurkhya, Predictive Data Mining: A Practical Guide,

Morgan Kaufmann, San Francisco, 1998.

H. Altay Guvenir, I. Uysal / Knowledge-Based Systems 13 (2000) 207±214214


