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Abstract

Clustered linear regression (CLR) is a new machine learning algorithm that improves the accuracy of classical linear regression by
partitioning training space into subspaces. CLR makes some assumptions about the domain and the data set. Firstly, target value is assumed
to be a function of feature values. Second assumption is that there are some linear approximations for this function in each subspace. Finally,
there are enough training instances to determine subspaces and their linear approximations successfully. Tests indicate that if these
approximations hold, CLR outperforms all other well-known machine-learning algorithms. Partitioning may continue until linear approx-
imation fits all the instances in the training set — that generally occurs when the number of instances in the subspace is less than or equal to
the number of features plus one. In other case, each new subspace will have a better fitting linear approximation. However, this will cause
over fitting and gives less accurate results for the test instances. The stopping situation can be determined as no significant decrease or an
increase in relative error. CLR uses a small portion of the training instances to determine the number of subspaces. The necessity of high
number of training instances makes this algorithm suitable for data mining applications. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Approximating the values of continuous functions is
called regression and it is one of the main research issues
in machine learning, while approximating the values of
functions that have categorical values is called as classifica-
tion. In that respect, classification is a subcategory of regres-
sion. Some researchers emphasized this relation by
describing regression as ‘learning how to classify among
continuous classes’ [12].

For both these problems, we have also two types of solu-
tions: eager learning and lazy learning. In eager learning,
models are constructed according to the given training
instances in training part. Such methods can obtain the inter-
pretation of the underlying data. Constructing models in
training leads long training times for eager learning
methods. On the other hand, in lazy learning methods, all
the work is done during testing, so they require much longer
test times. Lazy learning methods do not construct models
by using training data, so they cannot enable interpretation
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of training data. CLR, an extension of linear regression, is
an eager learning approach.

Although most of the real life applications are classifica-
tion problem, there are also very important regression
problems such as problems involving time-series. Regres-
sion techniques can also be applicable to the classification
problems. For example, neural networks are often applied to
classification problems [14]

Est(b) = Covar'lance(x, y)

Variance(x)

The traditional approach for regression problem is the
classical linear least-squares regression. This old, yet effec-
tive, method has been widely used in real-world applica-
tions. However, this simple method has deficiency of linear
methods in general. Advances in computational technology
bring us the advantage of using new sophisticated non-linear
regression algorithms. Among eager learning regression
systems, CART [4], RETIS [9], M5 [12] and DART/
HYESS [7] induces regression trees; FORS [3] uses induc-
tive logic programming for regression and RULE [14]
induces regression rules, projection pursuit regression [6],
neural network models and MARS [5] produces mathema-
tical models. Among lazy learning methods, locally
weighted regression (LWR) [2] produces local parametric
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functions according to the query instances, and k-NN
[1,10,11] algorithm is the most popular non-parametric
instance-based approach for regression problems [13].
Regression by feature projections (RFP) method is an
advanced k-NN method that uses feature projections based
knowledge representation. This research uses the local
weight and feature projection concepts and combines them
with the traditional k-NN method. Using local weight with
feature projection may cause losing the relation between the
features; however, this new method eliminates the most
common problems of regression, such as curse of dimen-
sionality, dealing with missing feature values, robustness
(dealing with noisy feature values), information loss
because of disjoint partitioning of data, irrelevant features,
computational complexity of test and training, missing local
information at query positions and requirement for normal-
ization.

CLR is an extension of linear regression algorithm. CLR
approximates on the subspaces, and therefore, it can give
accurate results for non-linear regression functions. Also,
irrelevant features are eliminated easily. Robustness can
be achieved by having large number of training instances.
CLR can eliminate effects of noise as well.

2. Linear least-squares regression

Linear regression is the traditional approach for regres-
sion problems. There are two main classes of linear regres-
sion: univariate linear regression and multivariate linear
regression.

2.1. Univariate linear regression

A set of data consisting of n series of x and y values is
given, where x is the independent variable and y is the
dependent variable. In other words, there is only one unique
feature that is represented by x, and the target is represented
by y. Assume that there is a linear relation between variable
x and variable y:

y=bx+a

Here, b is the slope of the line, while a is the intercept at the
y-axis. In reality, because of noise or mismatch between
data and model, there is an error &:

yi=bx;+a+ g

Finding a suitable model that minimizes the sum of
squared errors for the given data set is the aim of univariate
linear regression. Since univariate linear regression
problem searches for a suitable model in the form of y =
bx + a, a candidate slope, b and intercept a are chosen first.
For each recorded (x, y) pair, square of (y — bx — a), which
is equal to square of e, is added to the total error. The line
having the smallest total error is the best-fit line and so is the

best model for univariate linear regression. The value of b
can be estimated as follows:

_ Covariance(x, y)
~ Variance(x)

Note that if the variance of x is zero, then we cannot
estimate b. This occurs when the x variable has the same
value for all values of y. Once the value of b is determined,
the value of a can be found easily.

2.2. Multivariate linear regression

Generally, the number of features in a data set is more
than one. Finding a linear regression for data sets with more
than one feature is called as multivariate linear regression.
The model for multivariate linear regression can be repre-
sented in the index notation as follows:

yi=a+ bix;; + byxy; + baxzi...b,x,,; + €

By extending this representation, a system of n equations
and m dependent variable can be shown as follows:

yr=a + b].xl] + b2x21 + b3X31...meml + &1

Yo =a+t bixiy + byxyy + byxzy..bpxn + &

y;=a + blxli + b2x2i + b3x3,<...bmx,m- + &

Yn=24a + blxln + b2x2n + b3x3n"'bmxmn + En

We can estimate the values of unknown variables b,,, &;
and a if we have sufficient training data. Since there are n +
(m + 1) unknowns and fewer equations than unknowns,
there is no unique solution to this system of equations.
The least-squares solution minimizes the sum of squares
of the errors. Linear algebra was developed to facilitate
the solution of systems of linear equations. Following the
conventions of linear algebra, the multivariate linear regres-
sion model can be rewritten as

Y1 Ix;p X2 X130 Xip " a ] &)
2 Lxyp Xpo Xp3 0 Xy b, &
b,
= X +

. 1x; X X e X b3 &
Vi il i2 i3 im i
Ix X, X, e X by, £

Yn | nl n2 n3 nm _| — - | ©n _|

or more compactly:
y=Xb+e

Then, we have a calculus problem to find a vector b that
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Table 1
Common least-squares algorithms and their complexities

LS algorithm Complexity
Normal equations nm® + m’/3
Householder orthogonalization 2nm* — 2m*/3

Modified gram Schmidt 2nm®

Givens orthogonalization 3nm* — m®
Householder bidiagonalization Anm? — 4m’12
R-bidiagonalization 2nm? + 2m®
Golub—Reinsch SVD dnm® + 8

Chan SVD 2nm? + 11m’®

minimizes the inner product of the error vector:

MinSSE = e'e = (y — Xb)"(y — Xb)
=y'y —y'Xb - b"X"y + b"X"Xb
The vector of the partial derivatives of SSE with respect
to the elements of b is
dSSE
db
The first order condition for a minimum requires that
these first derivatives simultaneously be equal to zero.

That is a necessary condition for the b that minimizes
SSE is that

= —2XTy + 2X"Xb

X"xp =Xy

The solution to this equation is obtained by premultiply-
ing both sides of this equality by a generalized inverse:

X'X) 7 'X™Xb = (X"X) X"y,  b=X"X)"'XTy

Evaluating (X'X)™! is a very costly operation. It has a
complexity of O(n*m’) for a given n Xm X matrix and
evaluating X™X) 'X"y has a complexity of o(m® + mn* +
n’m>). There are better algorithms for solving the least-
square problems. These algorithms and their complexity
are presented in Table 1.

We need to choose an algorithm that minimizes the coef-
ficients of the term » and its powers because generally for a
given data set, the number of instances is much larger than

Interval

Intervaly

Tergaf

the number of features (n > m). This situation favors the
normal equations method, and it is the method CLR uses
to solve the least-squares problem.

3. Clustered linear regression

Clustered linear regression performs linear approxima-
tions on subspaces of training space. We assume that linear
approximations in subspaces fit the non-linear regression
function better. Using this approach, mathematical models
of non-linear data sets can be found. This approach also
eliminates the problems that are caused by correlated vari-
ables that frequently occur in real-world databases. An
example of a data set with one feature is given in Fig. 1.

As shown in Fig. 1, the target is a function of only one
feature, namely feature;. This function is a non-linear
regression function and does not fit any linear approxima-
tion in the whole space. In this example, we have local linear
approximations that allow CLR to partition the space and
find better linear approximations. If subspaces can be
detected successfully, linear approximations of each
subspace can easily be found by using the linear least-
squares regression. However, sufficient number of training
instances is needed to determine the number of subspaces,
boundaries of subspaces and each subspace should contain
enough training instances to apply the linear least-squares
regression. We have three main assumptions to apply CLR
successfully. These assumptions are as follows:

1. Target is a function of features.

2. This non-linear regression function of features has some
local linear approximations.

3. There are enough training instances to determine the
number of subspaces, boundaries of the subspaces and
linear approximations of each subspace.

These assumptions are essential for CLR. If there is no
functional relation between target and features, there is no
possibility of a linear approximation that fits some region of
non-linear regression function. The second assumption indi-
cates the necessity of local linear approximations. If we

Interval3

Linear
Approxy

Fenbue,

Fig. 1. An application of CLR for a training space with one feature.
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Fig. 2. Some non-linear functions may not have good local linear approx-
imations.

have a non-linear regression function such as in Fig. 2, CLR
cannot perform accurately. This can be a sinusoidal function
that has no local linear approximation.

CLR algorithm has three main parts:

¢ finding the number of subspaces,
e determining boundaries of subspaces,
e applying linear regression to all subspaces.

3.1. The CLR algorithm

Subspaces are defined by simple rules on each feature. A
rule for a feature determines an interval on that feature.
Rules determine intervals on a feature such that they are
mutually exclusive. Subspaces are composed of all possible
combinations of the intervals and hence the rules.

Determining partitions suffices to determine all
subspaces. So, three main operations of CLR algorithm
can be stated as:

¢ finding number of intervals on each feature,
e determining the boundaries of intervals,
e applying linear regression to all subspaces.

3.1.1. Finding number of intervals

There is no certain heuristic for determining the number
of intervals. Increasing the number of intervals increases the
number of subspaces, and therefore, better linear approxi-
mations can be found. However, increasing the number of

A

Target

L T T T T T T Y T ouppi T

Intervaly Interval

subspaces causes over fitting (losing generality) and, as a
result, decreases the accuracy on unseen cases.

Since there is no certain heuristic for determining number
of intervals, CLR simply increases the number of intervals
on each feature until the relative error does not decrease.
CLR maintains a vector v, whose each element corresponds
a feature. In each step, CLR increases only one element of v.
The increase that decreases the relative error mostly in a
member of v is chosen in that step. When the algorithm
stops, v holds the number of intervals for each feature.

It is obvious that trying to increase the number of inter-
vals of a feature is useless after it causes an increase in the
relative error because it shows that over fitting on that
feature already started. Once over fitting starts, certainly
increasing the number of subspaces so increasing the
number of intervals on a feature, increases the effects of
over fitting. Some number of useless tries can be avoided
by ‘banning’ a feature on which increasing number intervals
already caused over fitting.

For determining intervals, some test instances are
randomly selected from the train data set. In our experi-
ments, the size of the test data for determining the intervals
is the 10% of the train data set. Tests on different data sets
indicate that this ratio is the optimum for sufficiently large
data sets, and changing this ratio does not affect the accu-
racy much. Note that the test data set used in the evaluation
of a particular interval is different from the test data set used
in the evaluation of the CLR algorithm on a data set.

3.1.2. Determining the intervals

Determining the number of intervals and their boundaries
is a critical part of the CLR algorithm. Interval boundaries
should be carefully selected so that the total error can be
minimized. We developed a new algorithm for this purpose,
called LRClustering.

The LRClustering algorithm tries to find the suitable
interval boundaries so the total mean absolute distance
(MAD) is minimized. After forming subspaces by using
all combinations of intervals on each feature, linear regres-
sions of these subspaces can be found and evaluated by the
linear least-squares regression method.

Interval boundaries are determined by the training

Interval 3

Feabue)

Fig. 3. Determining intervals on one feature.
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Fig. 4. An example of partitioning with two features.

instances. Extreme instances of an interval determine the
boundaries of this partition. Extreme instances of an interval
on a feature are the instances whose feature values are either
maximum or minimum. So, a dense distribution of training
instances is necessary to determine the boundaries sharply.

For the sake of simplicity, let us consider an example with
only one feature. Let us assume that this feature has a func-
tional relation between target such as in Fig. 3 and by having
three intervals on this feature, this functional relation can be
optimally approximated. All training instances lie on a
regression curve and they are distributed equally. Initially,
two boundaries on this feature are determined by distribut-
ing instances to three intervals equally. Linear regression
and MADs of these three intervals are evaluated by the
least-square linear regression method. In Fig. 3, bold dotted
lines indicate the boundaries that minimize MAD of the
system and so the boundaries of the final intervals and
thin straight lines represent the initial boundaries.

Interval; and Interval, are hybrid intervals as they contain
some parts of the different final intervals, which have totally
different linear approximations. Linear regression of these
intervals cannot be as accurate as Interval;, which contains
only one final interval. We call the intervals that contain
only parts of one final partition such as Intervals as deprive
intervals. There is at least one deprive interval for each

A Boundaryy, 4

Target

Passible
Backward Step

3 | =

Boundary 1,

>

%IM

Table 2
Data sets and their relevant properties

Dataset Original name Instances Features
AL Ailerons 7154 40
CA Computer activity 8192 21
EV Elevators 8752 18
FD Fried 40,768 10
HO House_16h 22,784 16
Kl Kinematics 8192 8
PL Plastic 1650 2
PN 2D planes 40,768 10
PT Pole telecom 9065 48
Artificial 10,000 10

feature if the number of intervals is more than the actual
intervals.

For more complex systems that have more than one
feature, we need to focus on subspaces. As stated above,
subspaces are formed by the combination of intervals from
each feature. The subspaces that are formed only by deprive
intervals are called deprive subspaces. Deprive subspaces
can be easily detected by their high accuracy (low error rate)
according to other subspaces. Deprive subspaces play an
important role in determining boundaries of partitions.

Initially, boundaries are selected randomly. Their final
values are determined by the help of MAD of all subspaces.
Let us assume a boundary of an interval as given in Fig. 4. A
boundary must be moved to its correct location. We first
determine which direction and how much we move. Deprive
intervals are used to determine direction. If a boundary is
not in its correct location, both neighboring partitions will
have high MAD values. But, if one of these intervals is
deprive, it will have a low MAD. It is obvious that the
boundary between a deprive interval and its neighboring
interval with high MAD should move to the direction of
the interval with high MAD because this interval contains
some part of the final interval of deprive interval. We apply
the same approach to subspaces. While the LRClustering
algorithm is processing a boundary, it sums the MAD of
the subspaces ‘upper’ and ‘lower’ from the boundary. If
MAD of the upper subspace is higher than that of lower,

Boundaryb +1

ossible
Forward3

Feature 27

Fig. 5. A step of searching optimal position of boundary b. Training instances are placed on the curve, so they are sorted on their values of feature f. Possible

next steps are half of the distances between boundary b and its neighbors.
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Table 3
Comparison of the results of the algorithms

Dataset RE
CLR MARS RSBF KNNR

AL 0.432 0.412 0.439 0.443
CA 0.191 0.213 0.591 0.189
EV 0.45 0.443 0.461 0.606
FD 0.205 0.243 1.77 0.352
HO 0.71 0.758 0.816 0.678
K1 0.438 0.707 0.789 0.403
PL 0.42 0.41 0.442 0.480
PN 0.254 0.22 0.567 0.289
PT 0.343 0.449 0.956 0.131
Average 0.383 0.428 0.759 0.397

the boundary moves to upper direction or vice versa. In
Fig. 4, we have a domain with two features. Bold dotted
lines represent optimum boundaries and thin straight lines
show the current location of the boundaries.

In this example, Interval, of feature, and Interval; of
feature, are deprive intervals and so Subspace; is a deprive
subspace. Shaded regions are the regions, which do not
belong to current subspace and cause increase in MAD of
these subspaces. Note that Subspaces, a deprive subspace,
has no shaded region. This is why deprive subspaces have
lower MADs. Let us assume that MAD; represents MAD of
Subspace;. By assuming that shaded regions cause increases
in MAD, following inequalities can easily be retrieved from
Fig. 4

MAD, + MAD; < MAD, + MAD, (1)

MAD; + MAD, < MAD, + MAD, )

Note that the deprive subspace, Subspace;, is always in
the small side of the inequality. Eq. (1) determines the direc-
tion of the boundary on feature, and Eq. (2) determines the
direction of the boundary on feature,. By using this
approach, we have an idea about in which direction a bound-
ary advances in the next step. Length of this step is equal to

Table 4

the number of instances we advance. Whatever the
difference between the feature values of two instances is
unimportant.

Length of the next step depends on the search algorithm
used. If it is a sequential search, we advance one instance
to the preferred direction and update subspaces and MAD
of the system to test if there is an improvement. Testing a
new situation is very costly. Even it is done linearly; a
better approach is necessary. The most efficient search
algorithm is the binary search. The LRClustering algo-
rithm uses binary search to find the optimum positions
of boundaries. Binary search requires a sorted list, so all
instances are sorted on their feature values for each
feature. This preprocessing is done initially only once.
Preprocessing spends negligible time, but using binary
search decreases the number of testing new situation
dramatically and so the training time. Fig. 5 shows the
search approach.

We have already explained two main parts of CLR. The
last part of the algorithm is finding linear approximation in a
given subspace. The LRClustering algorithm uses the linear
least-squared regression for this purpose.

4. Evaluation of the CLR algorithm

CLR is an algorithm based on linear regression, so
most of the advantages and disadvantages of linear
regression are carried to CLR. For example, curse of
dimensionality is one of the biggest problems of linear
regression since it increases the complexity. If the
number of features increases, accuracy will decrease
because possibility and effects of interaction between
features will increase.

One of the problems of linear regression is finding a
general linear approximation for the whole training space.
Generally, different parts of training subspace have different
local linear approximations. This idea led us to develop the
CLR algorithm. CLR can successfully detect such local
linear approximations and handle cases of correlated

The training and test times of the algorithm. All results are given in ms scale

Dataset CLR MARS RSBF KNNR
Train Test Train Test Train Test Train Test

AL 1.70 x 10° 51.3 2.67 % 10* 7.4 3.74 % 10* 39.1 115.2 491 % 10*
CA 8.60 x 10° 53.4 1.99 x 10* 8 1.73x 10* 472 71.8 4.29 x 10*
EV 5.03 % 10° 55.9 1.80 x 10* 8.2 1.10x 10* 40.7 65.9 435 % 10*
FD 1.71 x 10° 361 6.31 x 10* 42.7 1.77 x 10* 236.9 179.2 6.69 x 10°
HO 236 % 10° 191.1 4.86 x 10* 222 2.53 % 10* 148.2 154.5 2.75%10°
Kl 1.90 x 10° 49.9 9.36 x 10° 8.9 2.18x10° 35.6 26.1 251 x 10*
PL 2.28 % 107 5.2 3.14 % 10° 0.2 7.86 % 10" 8.4 0.3 5.61 x10°
PN 1.98 x 10° 363.4 6.18 x 10* 38.9 1.49 x 10* 183.9 177.3 6.64 x 10°
PT 3.56 x 10° 33 9.62 % 10° 6.3 3.31x 10 26.1 101.9 2.48 x 10*
Average 1.43 % 10° 129.36 2.86 x 10* 15.9 1.77 x 10* 85.12 99.13 1.99 x 10°
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Table 5
Test results on artificial data set

CLR MARS RSBF

Artificial 0.029 0.868 0.972

features and relations of higher order. This is the main
advantage of CLR on linear regression.

Linear regression is a fast algorithm due to its simplicity.
CLR is a complex algorithm because determining number of
intervals and optimal positions of their boundaries is
required. However, CLR is an eager learning approach,
and so its test time is very short. Since training is done
only once, its slowness is not a problem as the other lazy
learning approaches.

4.1. Data sets and results

Results of CLR are measured by evaluating relative
error for each data set and using tenfold cross-validation.
CLR works on data sets that have only linear features.
Initially, we present the data sets and their properties in
Table 2.

These data sets are the largest data sets available in
Ref. [8]. Since CLR requires large number of training
instances, we tested CLR on these data sets. An artificial
data set is also generated by a random instance generator
such that three main assumptions of CLR hold. By using
this data set, we can check if CLR can find the mathema-
tical model of a data set, which holds the given assump-
tions.

The relative error (RE) results are presented in Tables 3
and 4. Since these data sets are very large, their sizes are
above the limits of the most of the implementations of the
machine-learning algorithms. We could test these data sets
only on MARS, RSBF, KNNR and CLR.

The tests show that although CLR has a high-time
complexity and so long training time, its accuracy is higher
than MARS and RSBF. Since the training is performed only
once, while testing is done for many times, the low test time
requirements make CLR suitable for applications where
high accuracy is crucial and sufficiently large number of
instances is available.

Tests on artificial data set show that only CLR has the
capability of determining the mathematical model of such a
system. This feature of CLR can be useful for mathemati-
cians or scientist to get a mathematical model for a given
system. The results of the tests on artificial data set are
presented in Table 5.

5. Discussion

We presented a new algorithm that improves the accuracy
of linear regression by clustering training spaces of data sets
to improve the accuracy of local linear regressions.

It is assumed that there are linear approximations that fit
the training data locally. By applying this approach, we
obtain accuracy rates higher than simple multivariate linear
regression. New algorithm keeps the advantages and disad-
vantages of linear regression. Curse of dimensionality is still
a big problem in CLR. Large number of features increases
the requirements for number of training instance and train-
ing time.

CLR can make good linear approximations only on large
data sets. Determining boundaries exactly requires a dense
data set. Finding linear regression of each subspace accu-
rately also requires high training numbers because number
of subspaces is exponentially related to the number of
features. So, in small data sets, generally CLR gives inac-
curate results. This constraint makes the CLR algorithm
suitable for data mining applications.
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