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Abstract

For maintenance and quality assessment purposes, various performance levels for both systems and components are identified, usually as a
function of the deterioration. In this study, we consider a multicomponent system where the lifetime of each component is described by
several stages, (0,...,5), which are further classified as good, doubtful, preventive maintenance due (PM due) and down. A control policy is
suggested where the system is replaced when a component enters a PM due or a down state and the number of components in the doubtful
states (K,...,S — 2) is at least N. All maintenance activities are assumed to take negligible time. The exact description of the underlying
stochastic model under the policy is very complicated. We therefore propose some approximations, which allow an explicit expression for
the long run average cost function, which is minimized w.r.t. (K,N) by numerical methods. Sensitivity of the model to system parameters and
the performance of the approximation are investigated through several examples. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In many real life situations, systems and their components
are capable of assuming a whole range of performance
levels, varying from perfect functioning to complete failure.
There is a growing interest in the maintenance and replace-
ment of multi-state systems indicated by the vast amount of
existing literature. However, most of these studies consider
single or two component systems. Multi-state, multicompo-
nent maintenance systems have received more attention
since 1990s, partly because of their applicability in the
design and operation of computers and other service
facilities as well as in the traditional areas like road
maintenance, aircraft industry and oil production.

In maintenance optimization models the goal is to find the
right compromise between preventive maintenance which
extends the period of proper operation of the systems and
corrective maintenance or replacement which replaces an
old system by a new one. The decision of when to replace
the system becomes rather involved if the system is
composed of many components. In these situations, an
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important issue is to decide when to take a combined main-
tenance/replacement action on several components.
Although the special case of two components has been
studied extensively, the literature for multicomponent
systems is fairly recent. For two component systems, see
Refs. [9,18,19,21,22] among others. For systems with
arbitrary number of components, Ozekici [15] provides a
characterization of the structure of the optimal policy
when component lifetimes have a certain dependency
structure. Hsu [6] introduces a model for the preventive
maintenance of a stochastically deteriorating serial produc-
tion system and provides managerial implications for
maintaining such systems. The results show that the operat-
ing characteristics of the production stations are interrelated
and it is important to examine the joint effects of a main-
tenance policy on various stations of the production system
simultaneously rather than studying each station separately.
In another study, Jansen and Van der Duyn Schouten [7]
analyze the optimal preventive maintenance for a produc-
tion system consisting of independent and identical parallel
production units with increasing failure rates. Berk and
Moinzadeh [4] study a multi machine problem with limited
repair capacity in which maintenance policies are based on
both the number and the age of the operational machines.
The maintenance policies mentioned above utilize the age
information for each component. See, e.g. Assaf and
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Shantikumar [2] and Ritchken and Wilson [17] who studied
coordinated group maintenance policies based mainly on
the number of failed components in the system. For some
recent studies on multistate systems see also
Refs. [11,12,16].

In our study, we consider a multicomponent series system
where the independent and identical components are
allowed to go through several stages during their life
spans corresponding to different depreciation levels. Series
models with identical components where the components
are subject to deterioration can be encountered in relays or
networks, where the failure of a single component results in
system failure. We provide below some examples.

Railroad tracks. This example is provided by Van der
Duyn Schouten and Vanneste [20] who considered a system
where four possible states are identified for each compo-
nent: good, doubtful, preventive maintenance due, and
failed. Their model was inspired by the maintenance of a
regional railroad track. Depending on the waives occurring
in the rails, a certain segment of a section is classified in one
of the three possible states: bad, doubtful, and good. Due to
safety regulations, a bad segment of a section has to be
maintained without delay and requires specific equipment,
which has a high cost. Once this equipment is hired for a
certain time, it is feasible to repair other segments beyond a
deterioration level.

Telecommunication systems. Relays or repeaters in tele-
communication systems operating with radio or microwaves
can be considered as a series system with identical
components. In these examples, the dish antennas or optical/
electrical amplifiers located at usually equally distant points in
a region can be modeled as identical components although
they might have slight differences in their brand or model.
In these systems system failure can be immediately detected
and the stages of the components may be continuously
detected by the quality of the transferred signal.

Infrastructure systems. Segments of asphalted highways
where stages can be identified due to cracking or textural
damage; or drain systems where the damage and amount of
leakage at a given segment can be used to define the compo-
nent stages are also examples of series systems with
identical components. See also Noorwijk and Klatter [13]
who studied the optimal maintenance of the block mats of a
barrier on individual basis. When the entire barrier is
considered the block mats can be taken as the identical
components of a series system.

Our study considers an extension of the model given by
Van der Duyn Schouten and Vanneste [20], by allowing the
lifetime of each component to assume several stages. The
main motivation behind such an extension is that with
the increasing functional and mechanical complexity of
the devices of high technology, the state descriptions
corresponding to the degradation level also becomes
complicated. Parallel to this, advanced measurement
devices provide us with more detailed information about
the performance of systems and components. By

introducing S different stages, our model aims to grasp
this available information and utilize it in an effective
way. For relatively simple products, where the state of a
component can be characterized by one or two attributes,
restricting the number of possible states may bring substan-
tial simplifications in the analysis of the model and therefore
would be advisable. However for more complex systems,
several performance measures can be used to describe the
status of the system, which can be transferred to a single
ordered index, which indicates the current state of the
system. The model suggested in this paper allows to have
as many states as required by the nature of the system. As a
second possible generalization worthwhile to mention is
that our model can accommodate Erlang or phase-type
sojourn times in each state (see Refs. [1,3]). Although the
ideas in this manuscript are illustrated in terms of exponen-
tial sojourn times for notational simplicity, the extension to
such distributions is straightforward by augmenting the state
space. Such an extension provides an important flexibility,
since besides being a rich class for modeling lifetime distri-
butions, they provide approximations to other distribution.
Specifics of such an extension is discussed in Section 4.

We propose a maintenance policy which is based on the
number of components in ‘doubtful” states. A renewal theo-
retical approach is adopted to derive the long run expected
cost function per unit time, which is aimed to be optimized
w.r.t. the decision variables. The objective function is
derived as a function of the limiting state probabilities of
the corresponding stochastic process under the proposed
maintenance policy. The analytical derivations of these
steady state probabilities are very complicated and therefore
we propose an approximation. Validation of the approxima-
tion is done by comparing the results with those obtained
from simulations. The results of the cases examined indicate
that the suggested maintenance policy achieves significant
reductions on the maintenance costs, if instead of a group
maintenance policy; the components are replaced whenever
they fail.

The organization of the paper is as follows. In Section 2,
the model description and the preliminaries are presented. In
Section 3, results concerning the long run behavior of the
system are derived. In Section 4, implementation of the
results are illustrated and the comparisons of the approxi-
mated and simulated models are provided. Finally in
Section 5, concluding remarks are given together with
further research directions.

2. Model description and preliminaries

We now formally describe the model discussed in Section
1. Consider a system composed of M identical and indepen-
dently operating components which are connected in series.
The condition of each component is characterized by S + 1
possible states, where 0 is the best state and S corresponds to
the down state. For maintenance purposes these states are
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Fig. 1. Behavior of a component.

further classified into four categories in the following way:
states 0 to K — 1 are good, states K to § — 2 are doubtful,
state S — 1 is preventive maintenance due (PM due), and
state S is down. A component in a good or a doubtful state
can either grow one state older or break down with a known
probability. That is, from state [,/ = 1,..., S — 2, a transition
occurs to either state /+ 1 or to state S (down), with
probabilities p; and 1 — p,, respectively (see Fig. 1). Upon
entrance to a PM due state, an immediate preventive
maintenance is carried out and, upon entrance to the down
state an immediate corrective maintenance is done.

The sojourn time at state / is distributed as exponential
with parameter v, and according to the instantaneous repair
assumption, the sojourn in PM due and down states are zero.
Therefore in practice only the states from zero to S — 2 are
operational. As to the cost parameters, we assume that
corrective replacement is more costly than preventive
replacement and system replacement cost is less than
replacing each component preventively or correctively.
The cost of preventive and corrective component
replacements are c¢; and c,, respectively, and the system
replacement cost is ¢;. The assumptions above then imply
that ¢, > ¢; and ¢3 < Mc;. We propose the following control
policy for the system described above.

Control policy. The system is replaced when a component
enters a PM due or the down state and the number of com-
ponents in doubtful states K,...,§ — 2 at that moment is at
least N.

This policy is based on two decision variables, K and N
where the former one dictates the effective classification of
the states and the second one is the threshold value for the
number of doubtful components beyond which it is not
economical to further wait for the system replacement.
Our aim is to find the optimal values of K and N which
minimizes the long run average cost function per unit
time.

Remarks.

1. In our model both the PM and corrective maintenance
bring the component back into state 0 and are assumed to
be instantaneous so that the system operation is not
interrupted. In practice this assumption requires that the
maintenance times can be considered negligible in
comparison to the component or system lifetimes. Alter-
natively, if the maintenance times are not negligible, the

proposed model is applicable to the optimization of the
operating time cost, which is considered as an alternative
measure of reliability as discussed by Kumar et al. [10].

2. Our control policy requires that the exact state of each
component is immediately known. This assumption
holds for systems, which can be controlled/observed
continuously, such as the telecommunication or power
distribution systems where the states may be defined
with respect to the quality of the output, which can be
continuously observed by remote control devices. In
reality, inspections can be made on a periodic basis and
the proposed model may provide a good approximation if
the inspection intervals are small relative to the
component lifetime.

3. The system introduced above is described as a series
system. However, with the assumption of negligible
maintenance time, the model also applies to parallel
systems with identical components. Hence the proposed
model is also applicable to production environments with
identical parallel machines, computer networks,
telephone networks etc., for which the state classifi-
cations can be made more easily according to the
amount of output or usage units. Similarly, in such
systems current status data can be immediately
available.

4. As an alternative formulation, suppose the states are
classified differently as: [0,K — 1]: Good, [K,S —
J]: Doubtful, [S—J+1,§—1] PM Due and S:
Down. Since the preventive maintenance is done
when a component enters the PM due state and the
maintenance brings the component to the good as
new state immediately, the states S—J +2,S—J +
3,...,8 — 1 will never be visited, which amounts to
reducing the effective number of states from S to
S —J instead of S —2 in the current model. This
case can easily be handled by the present model
and as an extension of our model, the value of J
can also be optimized.

2.1. Stochastic analysis

The exact stochastic nature of the system operated
under the proposed control policy can be described by
a multi dimensional Markov process (MP)X(¢) =
{Xo(®), X1 (?),...,Xg-»(t)}, where Xi(¢) is the number of
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components that are in their ith state at time 7. Then the
replacement time can be described in terms of the first
passage time of this MP to a particular state. Although
theoretically it should be possible to carry out such an analy-
sis by using advanced techniques for multidimensional MP,
it is easily seen that this analysis would be complicated,
especially when the number of components and the number
of states are large, inducing a very high dimensional state
space. We therefore employ an alternative approach albeit at
a cost of an approximate solution. The aim of our approach
is to provide an approximation, which reduces the
dimension of the problem. The proposed method involves
two main approximations as described below. First let W(r)
denote the number of components in the doubtful states at
time ¢, = 0. Then, {W(¢),t = 0} is a process defined by a
subset (Xg to Xs—,) of components of X(¢) and as such, it is
no longer a MP. The Markov property disappears since the
transition rates of W(f) depends on the number of
components at other states at time #, which is a multi-
dimensional random variable. If these transition rates were
known, then {W(¢),t = 0} would behave as a MP defined on
{0, ...,M; 8}, where & corresponds to the system replace-
ment. A transition diagram for {W(f),r = 0} is given in
Fig. 2.

Here, A\;,0 =i =M — 1;i # N, is the rate of transitions
due to which the number of doubtful components increases
fromitoi+ 1, w;, 0 =i = N, is the rate of transitions due
to which the number of doubtful components decreases
from i to i — 1, and «; the rate of transitions due to which
the number of doubtful components remains constant at i.
Also, for N + 1 =i = M, ;5 is the rate of transitions due to
which a system replacement is triggered given that there are
i doubtful components. We define Ay, as the rate of transi-
tions due to which the number of doubtful components
increase from N to N + 1. This transition is different in
nature than the previous ones in that once it is realized;
the process does not come back to earlier states. The total
rate with which the process leaves state N is defined as Ay =
Ay, + By,s- Note that, as long as the number of doubtful
components does not reach N + 1 and a system replacement
does not take place, the behavior of {W(#),# = 0} defined on

{0,...,N + 1, 8} is analogous to a birth and death process
with absorbing states N + 1 and 6. From the moment at
which the number of doubtful components is N + 1 until
the system replacement, it behaves similar to a Markov
chain defined on the states {N + 1,...,M, 6}, where & is
the absorbing state and the process makes a transition either
to the next state or to the absorbing one.

Our approach consists of a two stage approximation. The
first stage is to treat {W(¢),r = 0} as a MP as described
above, and the second is to get approximate expressions
for the transition rates of this process, the details of which
are given in Section 3. The main idea in the second stage is
to approximate the rates by appropriate functions of
conditional expectations of the exact MP X(7).

Once the expressions for the transition rates are obtained,
results on birth and death processes with absorbing states
can be utilized to yield the expressions for the long run
operating characteristics of the system. To this end, it is
also useful to make the following definitions: a backward
Jjump of {W(t),t = 0} is a transition from node i toi — 1, a
dummy jump of {W(f),t = 0} is a transition from node i to
itself. Therefore, a backward jump corresponds to transition
of a single component from the doubtful state via an instan-
taneous bad or down state to a good state, whereas a dummy
jump correspond to the transition of a single component
from a good state via an instantaneous down state back to
a good state. Note also that, backward jumps are associated
with either a preventive or a corrective replacement whereas
dummy jumps are always associated with a corrective
replacement.

Throughout the study, we assume that all components are
at state O at time ¢t = 0, implying W(0) = 0. Now, define 7
as the expected time until a system replacement takes place
or the number of doubtful components reaches N + 1,
whichever occurs first; k and ¢ as the expected number
of backward and dummy jumps of {W(¢),r = 0} before a
system replacement takes place and o as the expected time
until a system replacement takes place, given that there are
N + 1 doubtful components at ¢+ = 0. Then Proposition 1
below can be obtained by referring to Karlin and Taylor
[8] (see also Ref. [20]). For 2 =i =N, let py = )\61,

Fig. 2. Transition rate diagram of {W(#),t = 0}.



U. Giirler, A. Kaya / Reliability Engineering and System Safety 76 (2002) 117—-127 121

pr=p ' and
o Ay Ay
MMt

with pg = A ' and p; = p; '

Proposition 1.

Ny d
p=> o > ap ey
=0 NiPi 1=o
N d
K= Z Yo Z ipr (2)
=0 YiPi 1=o
>
T= 2.0 3)
=0 b
M i1
1 A
o= VN N “4)
j:;—l A+ Bjs [Z_IN_L At Bis ]

3. Average cost function and proposed approximations
3.1. The cost function

In this section, an expression for the long run average cost
per unit time is derived for the model under study. Consider
an M dimensional stochastic process described by the states
of the M components at time ¢. Then, under the proposed
policy, the system replacement times constitute regenera-
tion points for this process and we define a regenerative
cycle as the time that elapses between two successive
system replacements. Using the renewal reward theorem,
the long run average cost per unit time can be expressed
as the ratio of expected cost incurred in a cycle to expected
length of a cycle. Theorem 1 below provides an approximate
long run cost function, which is aimed to be minimized
w.r.t. the decision variables K and N.

The expression for the long run average cost per unit time
is derived as a function of the steady state probabilities of
the stochastic process representing the state of a component
under the proposed control policy. Although the behaviors
of the components are not stochastically independent, they
are identical. Let then m;, [ = 0, ..., S — 2, denote the limit-
ing probability that a component is at state / under the given
control policy. The exact values of these probabilities would
be obtained from the long run behavior of a multidimen-
sional MP representing the state of each component at any
time. However as mentioned before, we aim to reduce the
dimension of the problem. Therefore an approximation

algorithm to evaluate the r,’s will be provided below. Let
s=2 K—1
WD:ZWI’ TG = Zm,
1=K =0
win)=> my(l —p), n=0,...K—1,
1=0

a(m)="> my(l —p), m=K,...,S =2
1=K

and

S Ts—2Ps—2.5-1
TgPgs t o T Ts_3ps—35 t Ts

In these expressions, 7rp refers to the long run probability
that a component is in one of the doubtful states X, ..., S —
2; w(n) to the total failure rate of the states 0 to n, n =
0,...,K — 1; and @(m) to the total failure rates of the states
Ktom,m=XK,...,S — 2.

Let AC(K,N) be the long run average cost function
obtained under the approximate model described above.
Referring to the expressions (1)—(4) of Section 2.1, we
have:

Theorem 1.

ole + (1 — pp)k]l + c1pxk + ¢3

AC(K,N) = 5
( ) T+ P(T} # 0)o ®)

where

P(T, #0) = TK—1VK—1PK—1 (6)

(1)(K - 2) + TK—1VK—1

Proof. Let T denote the length of a cycle, which we can
write as T = Ty + T;, where Tj is the entrance time of
{W(),t =0} into 6 or node N + 1 (which ever occurs
first), and T, is the time between T, and the entrance of
{W(),t = 0} into 6 in Fig. 2. That is, T, represents the
moment at which {W(¢),t = 0} leaves the set {O,...,N}
via entrance into node N + 1 or §, while T; denotes the
time-interval between T and a system replacement. Then

ET = 7+ P(T, # O)o

Note that P(T; # 0) can be considered as the probability
of termination of the system when there are more than N
doubtful components and it can be represented as the ratio
of the rate of transitions from node N to N + 1, to transition
rate Ay. We know that A is the sum of the rates of transi-
tions from node N to N + 1 and from node N to system
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replacement. Therefore
P(T, # 0)
(M —N)

TG

TK—1VK—-1PK—1

-~ M-N) M=N)
———— Tg—-1VKk-1PKk—-1 + —
TG el

oK — 1)

from which Eq. (6) follows.

On [0,7], costs are incurred only on [0,7;] (costs of
corrective and preventive component replacements) and at
time T (system replacement costs). Every dummy jump of
{W(#),t = 0} corresponds to a corrective replacement and
every backward jump of {W(¢),r = 0} corresponds to a
corrective component replacement with probability 1 —
Pk, and to a preventive component replacement with prob-
ability pg. Therefore, the expected total cost in a cycle is

EC(T) = clo + (1 = p)K] + c1pgk + ¢3

which completes the proof. [

Optimization of the objective function AC(K,N) is done
via numerical methods which is presented in Section 3.2.

3.2. Approximations

Approximations for the rates of W(t). Let n; and np refer to
the number of components in state / and in doubtful states
respectively and E[-|-] stand for conditional expectation. For
the evaluation of the average cost function, we propose to
approximate the rates of the process {W(r),r = 0} as
follows:

Ai ~ Elng_i|np = ilvg—1pg—1 (7

Ay, ~ Elng—ilnp = Nlvg_1p— ®)

K—-2
Ay ~ > Elnlny = Nlvi(1 = p)) + Elng_|np = Nlvg_
=0

©)
K—-1
a; ~ > Elnylnp = ilv(1 = py) (10)
=0
S—3
i ~ > Elmlnp = ilvi(1 = p)) + E(ng_slnp = ilvs—, (11)
=K
S—3
Bis ~ Y. Elnjlnp = ilvi(1 = p)) + Elng |np = ilvs 5
=0
(12)
K—1
Bys ~ Y. Elnjnp = Nlv(1 = p) (13)
=0

Evaluating the above expressions, as partially proved in
the appendix, we get the following rates:

Lemma 1.
M—i _
(a) A= kaﬂpkﬂ O0=si=M-—1,
TG
i #N
M — N)mg_
) /\N, = ka—mk—l
TG
M- N
© =Tk -2+ me v ]
D
@ =MD k-1 o0=i=N-1
TG
(e) ay =0
i :
6] W = —[@(S — 3) + me_vs_5] 0=i=N
()
(&)
M — i) i
Bis = oK = 1)+ —[@&(S — 3) + mg_pvs 5]
G D
N+1=s=i=M
M —
i Bo= "M ok -
e

The cost function is evaluated by using the rates given
above in conjunction with the expressions given in Proposi-
tion 1.

3.2.1. Approximations for the limiting probabilities

In the system under consideration, although the compo-
nents are operating independently of each other, due to the
total replacement policy, some dependency is imposed.
However their steady state probabilities will still be identi-
cally distributed. As described earlier, let mW, J=
1,2,...,8§ — 1, stand for the limiting probability that a
component is in state j, under the control policy. We
introduce below an iterative algorithm, which approximates
these steady state probabilities. This algorithm is based on
the transient probabilities of a process corresponding to the
state of a single component, if a control policy is not
imposed on the system. In particular, suppose we have a
series system of M components which have identical
lifetimes and operate independently of each other. As before
a component can go through several stages before it fails
and it is repaired instantaneously upon failure. No further
system replacement policy is adopted. Then the behavior of
components can be expressed as independent and identical
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processes and it is sufficient to consider a single component.
Let {X(#),# = 0} be the process representing the state of this
component at time ¢ with the transient probability function
given by vy/(f) and the limiting probabilities, vy, =
lim, ., y(t), I=0,...,5S — 2. When the suggested control
policy is imposed on the system, the process {X(f),r = 0}
is interrupted at the time of system replacements and there-
fore steady states for the components may not be achieved
within a cycle and need to be modified. Based on the usual
interpretation of the steady state probabilities as the propor-
tion of time that the system spends in that state and recalling
that the times between system replacement constitute
regenerative cycles, we propose the following iterative
approximation for the 7r;s, where E(T) corresponds to an
estimate of the expected cycle length

e [ 14
mﬂﬂL)wwt (14)

This approximation incorporates the impact of the control
policy on #s through the estimated values £[T]. The imple-
mentation requires the estimation of the transient probabil-
ities y((?), and the expected cycle length E[T], which in turn
is expressed as a function of the limiting 7r;s and hence an
iterative procedure is needed. We start with an initial value
of E[T] and evaluate (14) to obtain 4, which are then used
to get an updated value for E[T], via the expression given in
the denominator of Eq. (5). The process is repeated until
convergence occurs. For the initial value of E[T] we use the
expected sojourn time in the best state since the cycle length
is at least as long as that time period. However, our experi-
ence with other choices of starting values indicate that the
optimal value is insensitive to these initial values.

Remarks.

1. This algorithm can be improved by re integrating the
above integral w.r.t. the cycle length (instead of its
expectation) which however requires the estimation of
the distribution of the cycle length. One possibility
could be to use an exponential distribution with rate A =
V/E [T]. However as discussed in Section 4, the algorithm
proposed above performs quite well.

2. If M and N are large, the time until system replacement
may get long enough so that the {X(7),# = 0} tends to its
steady state and y,; may provide a good approximation for
;. Correspondingly, E[T], the expected time until
system replacement will also tend to attain large values
for large M and N.

For the evaluation of the transient probabilities, y(f), a
randomization method is used. This method is implicitly
indicated within the algorithm presented below, further
details of it can be found in Ref. [5]. The notation for the

vectors used in the algorithm is as follows:

A A A A T
a = [770, LTRSS 7TS,2] N

Y1) = [Vo() Y1(0), ..o, Y52 (D]

Let C stand for the matrix of the infinitesimal generator
for the Markov process {X(¢),r = 0}, which is a sparse
matrix with non-zero elements only in the first column, in
the main diagonal and the secondary diagonal to the right of
the main one, and rows sum zero. An example of C is given
below for a specific case with § = 5.

Voo vopo O 0

vidl=p) —vi vipr O

wl=p) 0  —v, vp,
V3 O 0 —V3

Then the iterative algorithm proposed in the Section 3.2
can be written explicitly as
Algorithm

1. Provide an initial value for E[T]
2. Assign 7r,; = 1and 7:=0
3. While |#r,,; — 7| > edo
3. Ty =1
3.2. Determine 7r with current E[T]
3.2.1. Evaluate y(¢) using randomization method
3.2.1.1. Set & := max;|c;|
3.2.1.2. Set P := ﬁC +1
3.2.1.3. Determine p such that

(an)®

p
1 — Zefat k=€
k=0

3.2.1.4. ¢(0) = ¥(0)
32.15.Forn=0top—1do

d(n + 1) = $(n)P

n

(a)”
3.2.1.6. y(t) =" _, d(n) e Tl
3.3. Determine AC(K,N) and E[T] using Theorem 1.

4. Numerical results

In this section, proposed procedures are implemented
through several examples. Due to the large number of para-
meters involved in the model such as the rates of the sojourn
times, transition probabilities of the states and the cost
figures, it is hard to make an extensive sensitivity study
for all parameters. Therefore, the numerical investigation
has focused mainly on two issues. First one is the evaluation
of the performance of proposed approximation method for
the limiting state probabilities. This is done by comparing



124 U. Giirler, A. Kaya / Reliability Engineering and System Safety 76 (2002) 117—-127

the resulting steady state distribution to that obtained from
simulations. Secondly, it is aimed to analyze the sensitivity
of the control policy with respect to some basic system
parameters.

As mentioned earlier, the methods proposed in this paper
easily extends to the case where the sojourn time in each
state has an Erlang distribution. This amounts to an enlarge-
ment in the state space of the underlying processes. In
particular, suppose that the sojourn time at state [, [ =
0,1,...,8 — 2, has an Erlang distribution with k; stages
(i.e. k-Erlang) and the rate of transition from one stage to
another given by v, Then k; denotes the number of
exponential stages in state / and the foregoing analysis
holds with the number of effective states extended from
S—1to le:—oz k;. To include the implementation of this
extension, the sojourn times in the following examples are
taken to be Erlang.

The size of the problem becomes very large as M and S
increase, which in turn leads to very long simulation runs.
Therefore the results of the exhaustive search for optimal
(K,N) pair is illustrated only for the first example, and the
results of the second example are given for a subset of (K,N)
pairs. The second example is further elaborated by varying
the number of components, the cost figures and the transi-
tion probabilities. In the tables and the figures displayed
below, 7 and 7 denote the vector of approximated and
simulated long run probability distribution over S — 1
stages. The quantities €, €nax, and €,, refer to the mini-
mum, maximum, and the average absolute differences
between the components of the vectors 7 and 7. Also, for
the ease of presentation, the value of AC(K,N) is denoted by
¢, where as above ¢ and ¢ correspond to average costs
calculated using approximated and simulated probabilities,
respectively. Finally, the % error, is the percentage of the
absolute difference between ¢ and ¢ with respect to ¢.

Example 1. Consider a simple system with three (M = 3)
components, where each component can be in one of the
five states, i.e. S = 4. The sojourn times in states 0, 1, and 2

Table 2
Example 2, approximated and simulated results

Table 1
Example 1, approximated and simulated results

K=1,N=1 K=1,N=2 K=2,N=1

[ i i [ g

N

T

SN

0.850 0.853 0.818 0.827 0.827 0.824 0.819 0.818
0.108 0.118 0.127 0.129 0.122 0.132 0.132 0.132
0.037 0.029 0.048 0.044 0.045 0.044 0.048 0.049
€min 0.003  €min 0.002  €min 0.001  €min 0.001
€max 0.010  €pa 0.009 € 0.010  €pa 0.001

€ay 0.007 €, 0.005 €, 0.005 €, 0.001
¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢
0351 0356 0427 0424 0415 0411 0467 0.462

% error = 1.4 % error = 0.71 % error = 0.97 % error = 1.1

are 3-stage Erlang with rates vy = 0.1, v; = 0.5, and v, =
0.8. Sojourn times in states 3 and 4 are instantaneous.
Preventive, corrective maintenance, and system replace-
ment costs are ¢; = 1.5, ¢, =2, c¢3 = 2.5, respectively.
Transition probabilities among states are given as py =
0.8, p; = 0.6, p, = 0.4, which may reflect an increasing
hazard rate since the probability of failure increases as the
component passes through the states. In this example (S —
2)X (M — 1) =4, and the results for these cases are
displayed in Table 1. We observe that the approximation
algorithm works quite satisfactorily, yielding limiting prob-
abilities very close to those obtained from the simulations.
The maximum average difference between the approximate
and the simulated probabilities appear to be 0.007, which is
well acceptable. The impact of the approximation on the
values of the average cost function seems to yield higher
differences between analytical and simulated results, which
however still stays within acceptable levels.

Example 2. In this example, the number of components is
M =7 and S = 6. Sojourn times in states 0, 1, 2 and 3 are
exponential with rates, vp =v; =v, =0.1, and v; =1,
respectively, and sojourn time in state 4 is 3-Erlang with
rate v4 = 1. Recall that sojourn times in states 5 and 6 are

K=1,N=3 K=1,N=4 K=1,N=5 K=2,N=2 N=2,N=3

7 i i i i i i i 7 i
0.547 0.553 0.507 0.515 0.445 0.476 0.481 0.493 0.412 0.421
0.304 0.302 0.315 0.310 0.323 0.318 0.320 0.327 0.323 0.346
0.132 0.133 0.158 0.159 0.205 0.189 0.177 0.163 0.235 0.212
0.011 0.012 0.014 0.015 0.019 0.016 0.016 0.015 0.022 0.019
0.000 0.001 0.000 0.002 0.003 0.002 0.002 0.001 0.003 0.000
€min 0.001 €min 0.001 €min 0.001 €min 0.001 €min 0.003
€ max 0.006 € max 0.008 € max 0.031 € max 0.014 € max 0.023
€4y 0.002 €4y 0.003 € 0.001 €ay 0.007 € 0.012
é ¢ é ¢ é ¢ é ¢ é é
0.448 0.453 0.408 0412 0.356 0.331 0.383 0.368 0.326 0.305
% error = 1.1 % error = 0.97 % error = 8.4 % error = 4.1 % error = 6.8
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instantaneous. Cost components are, ¢; = 1, ¢, = 1.5, and
c3 = 6.5. The transition probabilities are: py = p; = p, =
0.99, p; = 0.1, and p, = 0.5. For this example the total
number of possible (K,N) pairs is 4 X 6 = 24. For illustra-
tion purposes a sample of 5 of them are implemented
numerically and shown in Table 2. We again observe that
the limiting probabilities are approximated quite well, with
the largest €, being 0.031 among the five limiting
distributions and the largest percent cost deviation from
the simulation results is 8.45.

Although there is not a straightforward relation between
the values of K* and N* and the system parameters, it is
observed from the preliminary implementations that the
optimal values of K and N are sensitive to the transition
probabilities and the exponential rates. To illustrate this
sensitivity, let us consider Example 2 again for which the
optimal values turn out to be K* = 2 and N* = 6. When v is
changed from 1 to 0.1, the distribution of the sojourn time in
state 4 from 3-Erlang to exponential, and p; from 0.1 to
0.99, the optimal values are changed to be K* = 3 and N* =
4. This is intuitively expected, since these changes force the
components fail at older states. If the changes were such that
the probability of failure in the earlier states is increased, we
would expect K* to decrease. Indeed, by letting p, = 0.5 we
observed, K* = 2 and N* = 6. It is observed that K tends to
take larger values as the failure probabilities in earlier stages
get smaller. In another example we considered a model with
M = 10 and S = 8 where the sojourn times in states 0, 1, 2
and 3 are exponential with rates vo=v| =v, =v; =
0.001, and in states 4, 5 and 6 are distributed as 3-Erlang
with rates v, = v5 = vg = 3. Cost parameters were ¢; = 1,
¢y = 1.5, c3 = 9.5 and the transition probabilities among
states are taken as pg =p; =p, = p3 = ps = 0.99, ps; =
0.7, ps = 0.5. We observed that K* = 3 and N* = 9 indicat-
ing a smaller number states defining the doubtful set, result-
ing from small failure probabilities in the first stages.

It is also of interest to see the impact of the number of
components in the system. This is investigated by fixing the
system and cost parameters and letting M change between 3
and 30 in Example 2. The results are displayed in Table 3.
As expected ¢ and N” increase with M and K* decreases
with M, which is natural if the system parameters are kept
fixed as the number of components increase. In this example
system replacement cost was fixed as M increases, which
implies that system replacement becomes cheaper relative
to the replacement cost of all components individually. This
naturally leads to a decrease in the ratio of N*/M for large

Table 3
Example 2, sensitivity of K*, N*, and ¢* w.r.t. M

N 2 6 6 17
(on 0.123 0.286 0.546 0.773

Table 4
Example 2, sensitivity of K, N*, and ¢* w.r.t. M, ¢; = aMc,

a M 3 7 15 30
03 K 1 1 1 1

N 1 1 9 19

C" 0052 (64.1) 0.164 (51.6) 0.437 (39.8) 0.949 (34.6)
06 K 1 1 2 2

N 1 4 6 12

C"  0.094 (35.2) 0.260 (23.3) 0.594 (18.2) 1.213 (16.5)
09 K" 1 2 2 2

N* 1 4 8 16

C*  0.078 (20.0) 0.217 (15.3) 0.485 (15.7) 0.984 (15.9)
c 0.145 0.339 0.726 1.452

values of M indicating that the system is replaced more
frequently. In reality, we expect that the system replacement
cost increases with the number of components. We imple-
mented this situation by letting c¢3; = aMc; vary as «
assumes the values o = 0.3, 0.6, 0.9. Results are displayed
in Table 4. From this table we observe that larger values of
« leads to less frequent system replacements by increasing
the value of N* for fixed values of M and K.

Since, we aim to reduce the system maintenance costs, an
essential question is how much is saved by adopting a group
maintenance policy. In Table 4, the figures in parenthesis
indicate the percentage savings achieved by using the
control policy compared to the cost if components were
maintained individually without any system replacement.
These figures indicate that the control policy causes signifi-
cant reductions in the maintenance cost of the system reach-
ing about 64% for the example undertaken. Also note that
the savings are inversely proportional with M and « since as
these quantities increase the system replacement is done less
frequently and result in less savings due to the control
policy.

Finally, we were interested to see the effect of the
structure of the transition probabilities among the stages.
In maintenance and survival studies usually an increasing
failure (hazard) rate is considered for the items under study.
However sometimes after the burn-in period, it may also be

Table 5
Example 2, sensitivity of K*, N*, and ¢* w.r.t. M, c; = 0.9Mc,

P M 3 7 15 30
il K 1 1 1 1

N 2 6 14 29

¢ 0.168 0.375 0.774 1.544
i K 2 2 1 1

N* 2 6 14 29

¢ 0.146 0.352 0.738 1.466
l K 2 2 1 1

N 2 6 14 29

¢ 0.150 0.348 0.705 1.402
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reasonable to consider decreasing failure rates. Therefore
we rerun Example 2 by considering three cases which reflect
arbitrary (AFR), increasing (IFR) and decreasing (DFR)
failure rates, by changing the transition probabilities
correspondingly. For this implementation c; = 0.9Mc; is
taken and the notation, ( | ) for AFR; (1) for IFR, and
(|) for DFR is used. To be more precise, for (1| ), pg =
0.9, P11 = 05, Py = 08, pP3 = 01, Pa = 06, for (T),
po =09, p, =038, p,=0.7, p; =0.6, p, = 0.4, for (),
po = 0.75, p; = 0.80, p, = 0.85, p; = 0.90, p, = 0.95 are
used. The results are displayed in Table 5. From these
results it is observed that for all values of M smallest cost
is incurred for system where the components are IFR which
is followed by DFR systems.

5. Concluding remarks

In this study, a maintenance and replacement policy is
proposed for a multicomponent, multi-state system, in
which both the system and the components can be described
through a range of performance levels varying from perfect
functioning to complete failure.

The proposed policy suggests a system replacement when
the number of the components in doubtful states K,..., S — 2
is at least N at the time of a preventive or a corrective
maintenance of a component, where both K and N are
aimed to be optimized. An approximate long run average
cost function is proposed under the control policy, which is
optimized by numerical methods. The quality of this
approximation is assessed by comparing the results with
the simulated samples, which implied a satisfactory
performance. Several examples are presented to gain an
insight about the performance of the control policy. These
examples indicated that the control policy achieves signifi-
cant savings reaching over %60, over a policy where the
components are maintained individually without any system
replacement, especially for moderately large systems and
when the system replacement cost is low. As the number
of components increases while all the other system
parameters are kept fixed, the control policy is observed
to converge to a simple policy with K* = 1.

In our model, in order to avoid further complications, a
system replacement cost is considered which is independent
of the ages of the unfailed machines. A more detailed cost
function, which incorporates the component ages, may
result in further reductions in the cost figures. The policy
proposed in this paper is not necessarily the optimal one and
the investigation of the optimal policy for such systems is an
open question. A further extension of our model can be done
by considering arbitrary sojourn times in the stages.

Appendix A

Proof of Lemma 1. Let us recall that E[-|~] stands for the
conditional expectation, n; for the number of components at

state [, 0 = [ = S — 2 and np, for the number of components at
doubtful states. Below, only the proofs of the parts (b), (e) and
() are given, and the complete proof can be found in Ref. [14].
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