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In this research we examine the ability of West’s bubble test [1] in detecting speculative
bubbles using Brock’s (1982) [2] intertemporal general equilibrium model of asset pricing
as the basis for a simulation study. In this setting, (1) the economy, by construction is effi-
cient and produces the maximally possible amount of welfare for society, and (2) asset
prices reflect the utility-maximizing behavior of consumers and the profit-maximizing
behavior of firms. We find that the West’s bubble test flag as ‘‘bubbles” in the simulated
data yet the data is produced from an economy in which markets are efficient in welfare
production.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

The steep rises and following sudden declines in the real equity prices in the United States during the last three decades
have attracted a lot of attention in the academia. Some researchers suggested that asset prices contain bubbles in addition to
their fundamental values. Theoretically, the equilibrium price of an asset is simply the present value of its expected future
cash flows. If market prices are driven by fundamentals, then fluctuations in equity prices should only reflect changes in their
expected future dividends. Are such movements in real equity prices during the last three decades really a reflection of
changing market fundamentals or is it a result of self-fulfilling expectations that investors are willing to pay more for a stock
today than its intrinsic value because they expect to be able to sell it even more in the future.

A vast literature has emerged to study whether or not the observed volatility in equity prices is justified by fluctuations in
expected dividends. Shiller [3] argued that the ex-post rational prices should be at least as variable as the observed prices
because observed prices are based on expected dividends and do not have the variation introduced by future forecast errors.
However, Shiller [3] documents that observed prices are more volatile than the ex-post rational price series.1 Although Shil-
ler [3] used his findings to argue about the validity of the present value model, other authors like Tirole [4], Blanchard and
Watson [5] related Shiller’s [3] findings to the existence of rational bubbles.

Prior research has hypothesized and examined bubbles that differ in nature. These can be classified, in general, as either
exogenous or intrinsic bubbles based on if they are exogenous to or depend in a non-linear deterministic way on fundamen-
tals. Exogenous bubbles are examined among others by Flood and Garber [7], Blanchard and Watson [5], and Flood and Gar-
ber [8], while papers analyzing intrinsic bubbles include Froot and Obstfeld [9] and Driffill and Sola [10].

Several tests have been proposed in the literature for the presence of bubbles.2 Some of these require a specific parame-
terization of the bubble process; some investigate the stationary properties of price and dividend data and use unit root tests,
autocorrelation patterns and cointegration tests. One of the tests that neither requires a specific parameterization of the bubble
. All rights reserved.
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process nor uses integration/cointegration based analysis is West [1]. Due to its design, this test can – in principle – detect any
bubble that is correlated with dividends. This is a desirable feature since overreaction to dividend news is argued to be an
important factor contributing to the formation of a rational bubble [11]. The test procedure involves sequentially testing the
model specification and the no-bubbles hypothesis. In testing the latter, a set of parameters are calculated by two alternative
methods. Under the assumption of no bubbles, the parameter estimates obtained from these two methods should be equal apart
from sampling error, while in the presence of rational bubbles, the estimates should differ.3

Although West’s test is considered to be a milestone test in detecting bubbles in data, it has been criticized in the liter-
ature in many ways.4 One such criticism involves the approximation used in calculating the test statistic. West’s test is sim-
ilar to Hausman’s [12] test in that both are based on the comparison of two sets of estimates of the same coefficients.
However, as noted by Dezhbakhsh and Demirguc-Kunt [13], they differ in a major way. In Hausman, the coefficients of
the equation of interest are estimated directly by using two different estimators. In West, there is indirect estimation which
involves the expression of the coefficients of interest, namely the distributed lag coefficients, in terms of coefficients from
Euler and dividend ARIMA equations. Since the relationship is non-linear, the covariances of the distributed lag coefficients
can only be approximated from the covariances of coefficients from Euler and dividend ARIMA equations. Dezhbakhsh and
Demirguc-Kunt [13] argue that this approximation could exaggerate the chi-square statistic used by West, resulting in a
rejection of the ‘‘no-bubble” hypothesis when there are no bubbles.5

In the 1990s, some researchers have shifted their methodologies away from the above econometric analysis toward mod-
els of human psychology. Thus, a new research area namely behavioral finance has emerged. Behavioral finance has become
a complement to the econometric analysis and many researchers have spent a lot of time and energy to explain anomalies in
prices by using behavioral models.6 However, the econometric analysis of stock prices and their correspondence to efficient
markets theory is still an interest of the recent research.

Abreu and Brunnermeier [23] show that asset bubbles can persist despite the presence of rational arbitrageurs. They
argue that the resilience of bubbles can be attributed to the inability of the arbitrageurs to synchronize their selling strat-
egies. Heston et al. [24] present evidence for existence of bubbles from multiple solutions of the Black–Scholes–Merton
model and possibly infeasible arbitrageurs. Pastor and Veronesi [25] calibrated the stock valuation model by introducing
uncertainty in average future profitability and showed that the observed high volatility is not a sign of a bubble. Ghezzi
and Piccardi [26] propose a dividend valuation model by using Markov chain and show their model is in accordance with
the empirical data. Nwogugu [27] criticizes the econometric models of asset pricing since they do not account for many
facets of psychological behavior and decision making processes of agents. Cunado et al. [28] argue that the conclusions of
the existence of bubbles in econometric tests might be due to the sampling frequency of data. In a survey paper, Gurkay-
nak [14] suggests that the econometric detection of asset price bubbles cannot be achieved with a satisfactory degree of
certainty, and concludes that the literature is still unable to distinguish bubbles from time varying and regime shifting
fundamentals.

In this study, we follow the argument of Dezhbakhsh and Demirguc-Kunt [13] and design an experiment to examine the
ability of the West’s test to detect bubbles. We simulated Brock’s [2] general equilibrium model of asset pricing to obtain
equity price and dividend series to be used in place of actual data. The simulated data are derived from a theoretical eco-
nomic model, thus it does not contain any bubbles. More specifically, in our setting, (1) the economy, by construction is effi-
cient and produces the maximally possible amount of welfare for society, and (2) asset prices reflect the utility-maximizing
behavior of consumers and the profit-maximizing behavior of firms. Therefore the West’s test should not reject the no-bub-
ble hypothesis in this set up.

Brock’s [2] general equilibrium model of asset pricing represents an extension of Lucas’s [29] exchange economy theory to
production-based asset pricing models. This extension opens up avenues to many applications, which are not possible in a
pure exchange setting with no production activities. In Brock’s dynamic asset pricing model, shocks directly affect the pro-
duction processes and hence asset returns are linked to the underlying sources of production and uncertainty. By incorpo-
rating the shocks into the production processes, Brock’s model has the sources of uncertainty in the asset prices directly tied
to economic fluctuations in output levels. However, in the endowment models, the process on the endowment is exogenous
and there is neither capital accumulation nor production. Thus, Brock’s production-based asset pricing model includes many
useful components that make the results more realistic. In addition, Brock’s model has been successful to predict many
empirical findings and shed light on empirical anomalies.7 Lucas type endowment models do not have sufficient flexibility
to predict the extent of the empirical facts.

The rest of the paper is organized as follows: In Section 2 we introduce the model and the simulation of the data. Section 3
discusses the West test and its implementation and results of the tests and Section 4 concludes the paper.
3 See Casella [15] and Meese [16] for the applications of West’s test.
4 See Dezhbakhsh and Demirguc-Kunt [13] and Flood et al. [17].
5 Another issue, as West [1] discusses in Footnote 3, is that the test may not be consistent: ‘‘if there are bubbles, the asymptotic probability that the test will

reject the null may not be unity, even though the two sets of parameter estimates will be different with probability one in an infinite sized sample.” This could
result in a failure to detect bubbles when bubbles are present.

6 There is a lot of research in this area that is impossible to summarize here. The interested reader should refer to Thaler [18], Shefrin [19,20], Barberis and
Thaler [21] and Vissing-Jorgensen [22].

7 See Akdeniz and Dechert [30,31], and Akdeniz [32].
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2. Model

2.1. The growth model

The model we use as the basis for our study is the standard growth model with production, as specified in Brock [33]. This
is a model of economic growth with an infinitely lived representative consumer. In this section, we heavily borrow from
Brock [33] and recapitulate the essential elements of the model:
8 The
max
ct ;xit

E
X1
t¼0

btuðctÞ
" #

ð2:1Þ

subject to : xt ¼
XN

i¼1

xit; ð2:2Þ

ytþ1 ¼
X

f ðxit ; nÞ; ð2:3Þ
ct þ xt ¼ yt; ð2:4Þ
ctxit P 0; ð2:5Þ
y0 historically given; ð2:6Þ
where E is the mathematical expectation operator, b is the discount factor on future utility, u is the utility function of con-
sumption, ct is consumption at date t, xt is capital stock at date t, yt is output at date t, fi is production function of process i
plus undepreciated capital, xit is capital allocated to process i at date t, di is depreciation rate for capital installed in process i,
and nt is the shock parameter. Note that
fiðxit ; ntÞ ¼ giðxit ; ntÞ þ ð1� diÞxit ;
where gi(xit,nt) is the production function of process i.
The optimizer’s objective is to maximize the expected value of the discounted sum of utilities over all consumption paths

and capital allocations.8 The working of the model, according to Brock [2] is.
There are N different processes. At date t it is decided how much to consume and how much to hold in the form of capital.

It is assumed that capital goods can be costlessly transformed into consumption goods on a one-for-one basis. After it is
decided how much to hold in the form of capital, then it is decided how to allocate capital across the N processes. After
the allocation is decided nature reveals the value of rt, and gi(xit,rt) units of new production are available from process i
at the end of period t. But dixit units of capital have evaporated at the end of period t. Thus, the net new produce is gi(x-
it,rt) � dixit from process i. The total produce available to be divided into consumption and capital stock at date t + 1 is given
by
 XN

i¼1

giðxit ; rtÞ � dixit½ � þ xt ¼
XN

i¼1

giðxit ; rtÞ þ ð1� diÞxit½ � �
XN

i¼1

fiðxit ; rtÞ � ytþ1;
where
fiðxit ; rtÞ � giðxit ; rtÞ þ ð1� diÞxit
denotes the total amount of produce emerging from process i at the end of period t. The produce yt+1 is divided into con-
sumption and capital stock at the beginning of date t + 1, and so on it goes.

Note that Brock’s [2] notation for the shock parameter is ‘‘rt” whereas in this study shock parameter is denoted by ‘‘nt”. For
a full interpretation of the model see Brock [2].

The main assumptions for this model are:

(A1) the functions u and fi are concave, increasing, twice continuously differentiable, and satisfy the Inada conditions;
(A2) the stochastic process is independent and identically distributed;
(A3) the maximization problem has a unique optimal solution.

The first-order conditions for the intertemporal maximization are:
u0ðct�1Þ ¼ bEt�1 u0ðctÞf 0i ðxit; ntÞ
� �

; ð2:7Þ
lim
t!1

btEt�1 u0ðctÞxit½ � ¼ 0: ð2:8Þ
Eq. (2.7) is the one that is used below to drive a numerical solution to the growth model. Since the problem given by Eqs.
(2.1)–(2.6) is time stationary the optimal levels of ct, xt, xit are functions of the output level yt, and can be written as:
ct ¼ gðytÞ; xt ¼ hðytÞ; xit ¼ hiðytÞ: ð2:9Þ
x’s at date t must be measurable with respect to the xi’s through date t � 1.
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The objective is to solve the growth model for the optimal investment functions, hi, to analyze the underlying implications of
the asset pricing model. The first two functions in Eq. (2.9) can be expressed in terms of these investment functions:
hðyÞ ¼
XN

i¼1

hiðyÞ;

cðyÞ ¼ y� hðyÞ:
2.2. An asset pricing model

The asset pricing model in Brock [2] is much like the Lucas [29] model. The main difference between these two models is
that Brock’s [2] model includes production, thus by incorporating shocks in with the production processes, it has the sources
of uncertainty in the asset prices directly tied to economic fluctuations in output levels and hence in profits.

The model is similar to the growth model. There is one representative consumer whose preferences are given in Eq. (2.1).
On the production side there are N different firms. Firms rent capital from the consumer side at the rate rit to maximize their
profits:
pi;tþ1 ¼ fiðxit; ntÞ � ritxit:
Each firm makes its decision to hire capital after the shock, nt, is revealed. Here rit denotes the interest rate on capital in
industry i at date t and it is determined with in the model. Asset shares are normalized so that there is one perfectly divisible
equity share for each firm. Ownership of a share in firm i at date t entitles the consumer to the firm’s profits at date t + 1. It is
also assumed (as in Lucas [29]) that the optimum levels of asset prices, capital, consumption and output form a rational
expectations equilibrium.

The representative consumer solves the following problem:
max E
X1
t¼0

btuðctÞ
" #

ð2:10Þ

subject to : ct þ xt þ Pt � Zt 6 pt � Zt�1 þ Pt � Zt�1 þ
XN

i¼1

ri;t�1xi;t�1; ð2:11Þ

ct; Zt; xit P 0; ð2:12Þ
rit ¼ f 0i ðxit ; ntÞ; ð2:13Þ
pit ¼ fiðxi;t�1; nt�1Þ � f 0i ðxi;t�1; nt�1Þxi;t�1; ð2:14Þ
where Pit is price of one share of firm i at date t, Zit is number of shares of firm i owned by the consumer at date t, and pit are
profits of firm i at date t. The details of the model are in Brock [2]. The first-order conditions yielding from the maximization
problem are:
Pitu0ðctÞ ¼ bEt½u0ðctþ1Þðpi;tþ1 þ Pi;tþ1Þ� ð2:15Þ
and
u0ðctÞ ¼ bEt ½u0ðctþ1Þf 0i ðxi;tþ1; ntþ1Þ�:
We use these first-order conditions to get the prices for the assets. Brock [33] shows that there is a duality between the
growth model ((2.1)–(2.6))) and the asset pricing model ((2.10)–(2.14)), and the solution to the growth model is also solution
to the asset pricing model. Once the solution to the growth model is obtained, the asset pricing functions can be solved for
the prices for the assets by Eq. (2.15).

Now define the dividends (profits) by:
pt ¼
XN

i¼1

pit
and, define the return on each asset by:
Rit ¼
Pi;tþ1 þ pi;tþ1

Pit
:

Define the profit, consumption and output functions by:
piðy; nÞ ¼ fiðhiðyÞ; nÞ � hiðyÞf 0i ðhiðyÞ; nÞ;

cðyÞ ¼ y�
XN

i¼1

hiðyÞ;

Yðy; nÞ ¼
XN

i¼1

fiðhiðyÞ; nÞ;
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and the asset pricing functions by:
Table 1
Parame

State

1
2
3
4
5
6
7
8

Notes: a
PiðyÞu0ðcðyÞÞ ¼ bE½u0ðcðYðy; nÞÞÞðPiðYðy; nÞÞ þ piðy; nÞÞ�:
Once we have the pricing functions we next define the return function
RiðyÞ ¼
piðYðy; nÞÞ þ piðy; nÞ

piðyÞ
:

From the first-order condition (2.6), the return on each asset satisfies:
u0ðctÞ ¼ E½u0ðctþ1ÞRit�;
which is the efficiency condition from the growth model. By summing Eq. (2.6), we get that the return on the market port-
folio satisfies:
u0ðctÞ ¼ E½u0ðctþ1ÞRMt�

and so it too is efficient. This is one of the hypotheses of the CAPM, which in this model is a consequence of the optimizing
behavior of the consumer.

2.3. A numerical solution

Except for a very special case of the utility and production functions, there is no closed-form solution for the optimal
investment functions. In order to analyze the properties of the solutions to the asset pricing model we must use numerical
techniques instead. Akdeniz and Dechert [30] report the technical details of the numerical solution which we will not repeat
here. In this study we use that solution and explore the parameter space for solutions to the model that, to a certain extent,
fit some of the stylized facts of asset markets. Our primary focus will be on the equity prices that come out of the Brock [2]
asset pricing model. For the solution and the computational details please see Akdeniz and Dechert [30,31].

2.4. Simulation

Simulation is an invaluable tool that enhances researcher’s ability to analyze dynamic economic models. It enables a re-
searcher to investigate the empirical debates by employing those models in a laboratory environment by contemplating all
possible states of an economy. As a result, more and more economists have been using simulation methods for analyzing
empirical problems over the last two decades. As Judd [34] points out, the computational methods provide a strong comple-
ment to economic theory for those problems that are not analytically tractable.

In this section we present the functional forms and the parameter values that we used in the solution of the growth mod-
el. It is a common practice in the literature to calibrate the model so that the model of the economy displays certain prop-
erties in common with actual economies. In this study, we explore the parameter space for solutions to the model that, to a
certain extent, fit some the stylized facts of asset markets. We use Constant Relative Risk Aversion (CRRA) utility function,
uðcÞ ¼ cc

c
;

where c is the utility curvature parameter. In keeping with the common practice in the literature we use c = �1.00 for the
value of the utility curvature parameter and we chose the value of the discount parameter, b, to be 0.97 in yearly units. On
the production side, firms are characterized by the Cobb–Douglas production functions:
f ðx; nÞ ¼ hðnÞxaðnÞ þ ð1� dðnÞÞx;
where x is the shock parameter in the production function. We pick the value of d to correspond to the values that agree with
aggregate data. We solve the Brock’s [2] model for eight states of the economy. The parameters of the production function, a
and h are chosen randomly. The values for a, h and d are reported in Table 1.
ter values used in the solution of the growth model.

a1 a2 h1 h2 d1 d2

0.60 0.50 0.32 0.24 0.16 0.12
0.42 0.62 0.24 0.35 0.16 0.12
0.54 0.44 0.16 0.23 0.16 0.12
0.46 0.36 0.18 0.11 0.16 0.12
0.37 0.48 0.29 0.19 0.16 0.12
0.49 0.40 0.31 0.27 0.16 0.12
0.40 0.52 0.22 0.26 0.16 0.12
0.52 0.56 0.28 0.31 0.16 0.12

, h and d are parameters of the Cobb–Douglas production function, f(x,n) = h(n)xa(n) + (1 � d(n))x.
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We solved Brock’s [2] model for three firms with the parameters reported in Table 1. We simulated the economy to obtain
100-period stock price and dividend series for 5000 times. In each simulation the computer picks a different state of the
economy for each period and yields a sample path of time series of 100 stock price and dividend series. Thus each one of
the 100 period time series reflects a different realization of series of states of the economy. In summary, each one of the time
series consists of different possible stock price and dividend series for the market portfolio of three firms over a period of
100 years.

3. Methodology

3.1. West’s model and test

Similar in the spirit to the specification test of Hausman [12], West’s test compares two sets of estimates of the param-
eters needed to calculate the expected present discounted value of a given stock’s dividend stream, with expectations con-
ditional on current and all past dividends.

Consider the Euler equation, which expresses current price in terms of next period’s price and dividend
pt ¼ b � Eðptþ1 þ dtþ1ÞjIt ; ð3:1Þ
where b is the real discount factor and pt and dt are the real stock price and dividend in period t. It is the common information
set of all investors in period t. If the transversality condition, limn?1bnEpt+njIt = 0, holds, then there is a unique forward solu-
tion to this equation, pt ¼ p�t
p�t ¼
X1
i¼1

biEdtþijIt : ð3:2Þ
This expression gives the so-called fundamental value of the stock. If the transversality condition does not hold, then any pt

that satisfies
pt ¼ p�t þ ct;
where
ct ¼ b � Ectþ1jIt
is also a solution. ct is by definition a speculative bubble.
An important feature of West’s method is the use of a particular subset of It to simplify estimation and testing. This infor-

mation set, denoted by Ht, consists of a constant and current and lagged dividends. Rewriting Eq. (3.2) using Ht as the con-
ditioning information set results in the following equation:
p�t ¼
X1
i¼1

biEdtþijHt þ
X1
i¼1

biEdtþijIt �
X1
i¼1

biEdtþijHt

 !
¼
X1
i¼1

biEdtþijHt þ zt : ð3:3Þ
The term Edt+ijHt is the forecast of dividends given by the past history of dividends.
West does not rely on any particular structural model for dividends. Assuming that dividends follow a stationary process,

Edt+ijHt is calculated as the ARIMA forecast of dt+i. The lag length q in the forecasting equation is determined empirically
dtþ1 ¼ lþ /1 � dt þ � � � þ /q � dt�qþ1 þ mtþ1: ð3:4Þ
Given the stationarity of dividends, there is a closed-form expression for p�t in the form of a distributed lag on current and
past dt. The coefficients of the distributed lag are obtained indirectly by using Hansen and Sargent [35] formulas. These for-
mulas express these coefficients as functions of the coefficients in the Euler and ARIMA equations. Hence this indirect meth-
od requires the estimation of the Euler equation and dividend ARIMA. If there is no bubble, then pt will be equal to p�t . In this
case, estimating a distributed lag of pt on current and past dt will give coefficients, m, d1, . . . ,dt�q+2, which will be same as
those in the distributed lag for p�t apart from sampling error
ptþ1 ¼ mþ d1 � dtþ1 þ � � � þ dq � dt�qþ2 þwtþ1: ð3:5Þ
West method tests the equality of the two sets of distributed lag coefficients obtained from direct and indirect estimations as
explained above. The existence of a bubble is only one possible factor that can lead to a discrepancy between the two sets of
coefficient estimates. Since model misspecification rather than the existence of a bubble may also give rise to such a discrep-
ancy, diagnostic tests are applied to see if the Euler and dividend ARIMA equations are consistent with the data.

3.2. West’s estimation technique

The estimation procedure contains the following steps: (i) identification of the order of dt’s ARIMA process; (ii) getting a
consistent estimate of the constant ex ante discount factor, b, estimating the dividend process and the distributed lag of pt on
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dt; (iii) calculation of the variance–covariance matrix of the parameters; (iv) calculation of basic test statistic; (v) diagnostic
tests performed on the equations estimated.

The identification of the order of dt’s ARIMA process (i.e. lag length q) is based on the information criterion of Hannan and
Quinn [36]. West’s procedure requires the estimation of Eqs. (3.1), (3.4) and (3.5). Eq. (3.1) is estimated by rewriting it as:
9 The
pt ¼ b � ðptþ1 þ dtþ1Þ þ utþ1 ð3:6Þ
where
utþ1 ¼ �b � ðptþ1 þ dtþ1Þ þ b � Eðptþ1 þ dtþ1Þ j It :
These three equations, i.e. Eqs. 3.4, 3.5 and 3.6 are estimated by multiple-equation generalized method of moments
(GMM). The Euler equation has one parameter, while the dividend ARIMA and distributed lag each has q + 1 parameters.
The set of instruments is the same across equations and includes a constant and q current and past dividends. Thus, while
the Euler equation is overidentified, the other two equations are just identified.

The orthogonality conditions that the parameters in Euler, dividend and distributed lag equations should satisfy are as
follows:
1
T � q

XT�1

t¼q

Dt � ðpt � xt � b̂Þ ¼ 0;

1
T � q

XT�1

t¼q

Dt � ðdtþ1 � D0t � /̂Þ ¼ 0;

1
T � q

XT�1

t¼q

Dtþ1 � ðptþ1 � D0tþ1 � d̂Þ ¼ 0;

ð3:7Þ
where Dt shows the (q + 1) � 1 vector of instruments, i.e. D0t ¼ b1; dt ; . . . ; dt�qþ1c; xt ¼ pt þ 1þ dt þ 1; / ¼
jl /1 . . . /q j0; d ¼ jm d1 . . . dq j0 and T is the total number of time periods in the sample.9

West’s procedure forms a linear combination of Euler equation moments before employing multiple-equation GMM esti-
mation. This linear combination becomes the single moment that determines the coefficient estimate, b̂. The coefficients of
this linear combination are obtained as follows. Let D be the (T � q) � (q + 1) matrix of stacked instruments and X be a
(T � q) � 1 vector of explanatory variables, where
D0 ¼ jDq � � � � � � DT�1 j and X0 ¼ j pqþ1 þ dqþ1 � � � � � � pT þ dT j:
First, an initial estimate of b is obtained by two-stage least squares (2SLS). The 2SLS residuals are used to construct an esti-
mator of the asymptotic covariance matrix of the Euler equation sample moments. The form for this covariance matrix, de-
noted by Sd, allows heteroskedasticity but no serial correlation. The linear combination of Euler equation moments that
determines b̂ is obtained by using the elements of the 1 � (q + 1) vector X � D0 � ½ðT � qÞ � Ŝd��1 as coefficients.

Multiple-equation GMM stacks the sample moments of three equations into a (2q + 3) � 1 vector
hTðĥÞ ¼
1

T � q

XT�1

t¼q

htðĥÞ ¼
1

T � q

PT�1

t¼q
X � D0 � ½ðT � qÞ � Ŝd��1 � Dt � ðpt � xt � b̂Þ

PT�1

t¼q
Dt � ðdtþ1 � D0t � /̂Þ

PT�1

t¼q
Dtþ1 � ðptþ1 � D0tþ1 � d̂Þ

��������������

��������������
: ð3:8Þ
The weighting matrix in the multiple-equation GMM estimation is:
cW ¼
½ðT � qÞ � bSd��1

qþ1�qþ1 0 0
0 Iqþ1�qþ1 0
0 0 Iqþ1�qþ1

�������
�������; ð3:9Þ
where Iq+1�q+1 denotes a (q + 1) � (q + 1) identity matrix. Given that each equation in the system is exactly identified, GMM
estimator becomes the multiple-equation instrumental variables (IV) estimator. Due to the block diagonality of @h0T

@h , the esti-
mator is just a collection of single-equation IV estimators. Since in the estimation of the dividend process and distributed lag
explanatory variables serve as instruments, the coefficient estimates from multiple-equation GMM are identical to those
from equation-by-equation OLS estimation. Moreover, discount factor estimate from multiple-equation GMM is equal to that
from single equation GMM using a prespecified weighting matrix cW ¼ Ŝ�1

d .
sample contains T observations. Since lagged dividends are used as explanatory variables T � q observations are used in estimations.
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After the estimation of parameters, their variance–covariance matrix is calculated. This requires an estimate of the
asymptotic variance–covariance matrix of moments, denoted by S. The Bartlett kernel-based estimator of S, which allows
heteroskedasticity and autocorrelation, is used:
bS ¼ bX0 þ
Xm

i¼1

Kði;mÞ � bXi þ bX 0i� �
; ð3:10Þ

bXi ¼
1

T � q

X1
i¼�1

ĥt � ĥ0t�i; ð3:11Þ
where Xi is the ith order autocovariance matrix, K is the Bartlett kernel and m is the Newey–West fixed bandwidth. Given the
above Ŝ and Ŵ as defined before, the variance–covariance matrix of the parameters is:
VðhÞ ¼ @h0T
@h
�W � @hT

@h0

� ��1

� @h0T
@h
�W � S �W � @hT

@h0
� @h0T

@h
�W � @hT

@h0

� ��1

; ð3:12Þ
where @h0T
@h ¼

X 0 � D1�qþ1 0 0
0 D0 � Dqþ1�qþ1 0
0 0 E0 � Eqþ1�qþ1

������
������ and E equals D led by one period, i.e. E0 ¼ jDqþ1 � � � � � � DT j.

The basic test statistic is calculated as follows. Under the null hypothesis of no bubbles, the regression coefficients in all
equations are estimated consistently. When the direct and indirect estimates of the expected present discounted value
parameters are compared, then they should be the same, apart from sampling error. Hence, the test is based on the following
cross-equation restrictions on the coefficients in Eqs. (3.4)–(3.6), which are obtained by applying Hansen and Sargent [35]
formulas:
0 ¼ m� b � ð1� bÞ�1UðbÞ�1l;

0 ¼ d1 � ½UðbÞ�1 � 1�;

0 ¼ dj �UðbÞ�1
Xq

k¼j

bk�jþ1Uk; j ¼ 2; . . . ; q;

ð3:13Þ
where
UðbÞ�1 ¼ 1�
Xq

i¼1

bi/i

" #�1
Let RðhÞ denote these q + 1 constraints. The null hypothesis is that RðhÞ ¼ 0. The test statistic is calculated as:
RðĥÞ0 � @R

@ĥ

� �
� V � @R

@ĥ

� �0	 
�1

� RðĥÞ ð3:14Þ
The derivative of RðhÞ is calculated analytically. Under the null hypothesis, the statistic is asymptotically distributed as a chi-
squared random variable with q + 1 degrees of freedom.

As was discussed before, since model misspecification rather than the existence of a bubble may also give rise to a sig-
nificant value of the test statistic, diagnostic tests on Euler and dividend ARIMA equations are performed to confirm that
other sources of misspecification are not present. The first diagnostic check examines serial correlation in the residuals of
those two equations. Under rational expectations, the expectational error utþ1 should display no autocorrelation. Similarly,
the innovation in the dividend ARIMA, mtþ1, should also be serially uncorrelated, if the dividend process is not misspecified.
Ljung–Box statistic is calculated for these two residuals. A second diagnostic test, Hansen’s [37] test of instrument-residual
orthogonality, is performed on the Euler equation
J statistics ¼
XT

t¼q

Dt � ðpt � xt � b̂Þ
" #ı

� T � Ŝd

� ��1
�
XT

t¼q

Dt � ðpt � xt � b̂Þ
" #

: ð3:15Þ
Under the null hypothesis that the Euler equation is not misspecified, the test statistic is asymptotically distributed as a chi-
squared random variable with q degrees of freedom. This test checks for the misspecification of the Euler equation due to
expectational irrationality and time variation in discount rates that is correlated with dividends.

3.3. Use of West’s Bubble test with simulated data

As was described in Section 2.4, our initial data consists of 5000 independent samples, each containing a price and a
dividend series for 100 periods. For each sample, the stationarity of dividends is tested by using the Augmented Dickey Fuller
test. Dividend series are non-stationary for 168 samples. A modified version of West test can be applied to samples with



Table 2
Summary of estimation results – Euler equation.

q b qEuler H

2 Mean 0.969 �0.020 2.646
Std. dev. 0.003 0.081 1.547
Median 0.969 �0.020 2.456
Minimum 0.960 �0.200 0.008
Maximum 0.977 0.198 5.989
2.5th Percentile 0.964 �0.164 0.229
97.5th Percentile 0.975 0.144 5.611
# Sign 913

3 Mean 0.969 �0.031 4.210
Std. dev. 0.003 0.087 1.813
Median 0.969 �0.041 4.204
Minimum 0.960 �0.198 0.141
Maximum 0.980 0.194 7.797
2.5th Percentile 0.963 �0.174 0.987
97.5th Percentile 0.975 0.147 7.375
# Sign 482

4 Mean 0.968 �0.040 5.520
Std. dev. 0.003 0.090 2.169
Median 0.968 �0.042 5.528
Minimum 0.960 �0.200 0.758
Maximum 0.979 0.192 9.484
2.5th Percentile 0.962 �0.190 1.732
97.5th Percentile 0.974 0.153 9.321
# Sign 200

Notes: The model is given by Eq. (3.6) in the text. This table summarizes the results of 1595 independent samples, each containing a price and a dividend
series for 100 periods. These samples are grouped based on the empirically determined lag length, denoted by q, in the dividend ARIMA equation. Results
are shown separately for lag length groups between two and four for convenience of reporting. These groups contain 913, 482 and 200 samples, respec-
tively. b is the real discount factor. q is first-order serial correlation of disturbance. H denotes Hansen’s [36] test of instrument-residual orthogonality, it is
distributed v2(q). # Sign denotes the total number of samples in which a coefficient is significant at 5% level.
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non-stationary dividend series, however since these cases represent a small portion of our data, the analysis will be based on
samples characterized by stationary dividends.

To minimize the effect of model misspecification on our results, we filter the generated data based on the following two
criteria. First, we eliminate the samples for which the value of lag length q in the ARIMA forecasting equation is less than two.
This filter reflects the requirement that the information set, Ht , consisting of current and lagged dividends contains useable
information. Second, we eliminate those samples that could not pass the two diagnostic checks discussed before. Thus, we
kept only those samples for which we are more confident that the rejection of the null hypothesis of ‘‘no bubble” does not
result from certain factors other than bubbles.

The use of these two filters eliminated 2576 and 486 samples, respectively. The impact of the second filter is to a large
extent due to the rejection of instrument-residual orthogonality condition (433 cases). Serial correlation in the residuals of
the Euler and/or dividend ARIMA equations was detected in only 53 samples. This leaves 1770 samples to be used in the
analysis. These samples are grouped based on the value of lag length q in the ARIMA forecasting equation. Examining relative
frequencies indicates that most of the samples, i.e. 1595 out of 1770, fall in one the following three groups: q = 2, q = 3 and
q = 4.10 Therefore, in the remainder of the paper, only results for these three groups will be presented due to space limitation.

The results of estimating Eqs. (3.4)–(3.6) are shown in Tables 2–4. These tables contain descriptive statistics (mean, stan-
dard deviation, median, minimum, maximum, 2.5th percentile and 97.5th percentile) both for relevant diagnostic test sta-
tistics and coefficient estimates across simulations. These diagnostic tests confirm that samples used in the analysis do not
show misspecification. Besides descriptive statistics across samples, these tables indicate for each coefficient the number of
estimations in which it is found statistically significant at 5% level.

Table 2 presents the estimation results of Euler equation (3.6). Columns 4 and 5 give information on the two statistics
used for diagnosis testing. Column 4 gives the distribution of the first-order serial correlation coefficient of the disturbance.
Across the three lag length groups, median values vary from �0.021 to �0.044. Given the sample size of 100, the usual 95%
confidence band is ±2/10 = ±0.2. Column 5 reports the distribution of Hansen’s [37] instrument-residual orthogonality test
statistics. Across the three groups median values range from 2.46 to 5.50. The 5% critical values of this statistic for the three
lag lengths are 5.99, 7.81 and 9.49, respectively. The figures in columns 4 and 5 indicate that the specification for Euler equa-
tion appears acceptable, since for all the samples used in the analysis the two diagnostic test statistics are below their 5%
critical values. The discount factor b in three specifications has a mean value of 0.97 and it varies between 0.96 and 0.98.
This agrees with the parameter value used in simulating the data. For the three lag length groups, all the coefficient estimates
for b are found significant at 5% level (913, 482 and 200, respectively).
10 Lag length groups for q between 5 and 12 contain 95, 39, 18, 8, 5, 5, 3 and 2, samples, respectively.



Table 3
Summary of estimation results – dividend ARIMA.

q l U1 U2 U3 U4 qARIMA Q(30)

2 Mean 0.111 0.176 0.226 �0.015 22.059
Std. dev. 0.023 0.087 0.078 0.022 5.965
Median 0.110 0.177 0.226 �0.016 21.596
Minimum 0.044 �0.039 �0.090 �0.084 8.050
Maximum 0.203 0.565 0.478 0.057 43.503
2.5th Percentile 0.067 0.013 0.046 �0.056 11.879
97.5th Percentile 0.160 0.346 0.383 0.031 35.931
# Sign 913 476 680

3 Mean 0.090 0.159 0.140 0.215 �0.009 20.600
Std. dev. 0.021 0.090 0.093 0.071 0.021 5.807
Median 0.088 0.160 0.146 0.223 �0.010 19.883
Minimum 0.043 �0.127 �0.159 �0.113 �0.055 7.429
Maximum 0.189 0.476 0.404 0.363 0.054 43.436
2.5th Percentile 0.058 �0.008 �0.063 0.022 �0.046 11.956
97.5th Percentile 0.141 0.336 0.324 0.326 0.037 35.342
# Sign 482 223 168 356

4 Mean 0.081 0.152 0.107 0.123 0.181 �0.007 19.649
Std. dev. 0.023 0.103 0.088 0.104 0.101 0.023 5.186
Median 0.077 0.153 0.113 0.136 0.205 �0.010 19.478
Minimum 0.038 �0.142 �0.103 �0.165 �0.144 �0.066 10.145
Maximum 0.167 0.426 0.339 0.339 0.334 0.054 38.564
2.5th Percentile 0.048 �0.083 �0.068 �0.116 �0.097 �0.047 11.247
97.5th Percentile 0.136 0.363 0.278 0.308 0.308 0.041 31.176
# Sign 198 79 61 73 120

Notes: The model is given by Eq. (3.4) in the text. This table summarizes the results of 1595 independent samples, each containing a price and a dividend
series for 100 periods. These samples are grouped based on the empirically determined lag length, denoted by q, in the dividend ARIMA equation. Results
are shown separately for lag length groups between two and four for convenience of reporting. These groups contain 913, 482 and 200 samples,
respectively. q is first-order serial correlation of disturbance. Q(30) is Ljung–Box Q statistic. It is distributed v2(30). For 5% significance level, critical
values for v2(24) and v2(30) are 36.42 and 43.77, respectively. # Sign denotes the total number of samples in which a coefficient is significant at 5%
level.

Table 4
Summary of estimation results – distributed lag.

q m d1 d2 d3 d4

2 Mean 1.681 12.415 11.029
Std. dev. 0.712 1.831 1.934
Median 1.699 12.340 10.895
Minimum �0.715 6.527 4.922
Maximum 4.181 18.837 18.041
2.5th Percentile 0.356 9.059 7.646
97.5th Percentile 3.048 15.963 15.003
# sign 719 913 913

3 Mean 0.449 11.525 9.864 8.689
Std. dev. 0.676 1.373 1.349 1.363
Median 0.406 11.559 9.859 8.659
Minimum �1.250 6.493 5.462 4.851
Maximum 2.554 14.833 14.375 12.715
2.5th Percentile �0.675 8.973 7.180 5.961
97.5th Percentile 1.978 14.052 12.547 11.208
# sign 113 482 482 482

4 Mean �0.181 10.548 8.890 7.460 6.598
Std. dev. 0.681 1.133 1.127 1.089 1.169
Median �0.198 10.615 8.925 7.489 6.706
Minimum �1.969 7.338 6.208 4.592 3.832
Maximum 1.748 13.627 12.792 11.595 10.122
2.5th Percentile �1.469 8.125 6.580 5.550 4.343
97.5th Percentile 1.161 12.842 11.246 9.716 8.695
# sign 42 200 200 200 200

Notes: The model is given by Eq. (3.5) in the text. This table summarizes the results of 1595 independent samples, each containing a price and a dividend
series for 100 periods. These samples are grouped based on the empirically determined lag length, denoted by q, in the dividend ARIMA equation. Results
are shown separately for lag length groups between two and four for convenience of reporting. These groups contain 913, 482 and 200 samples, respec-
tively. # Sign denotes the total number of samples in which a coefficient is significant at 5% level.
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Table 5
Summary of estimation results – West’s test statistic.

q W

2 Mean 118.934
Std. dev. 72.471
Median 100.793
Minimum 23.588
Maximum 620.215
2.5th Percentile 38.215
97.5th Percentile 285.658

3 Mean 217.464
Std. Dev. 138.962
Median 189.163
Minimum 35.560
Maximum 912.189
2.5th Percentile 58.867
97.5th Percentile 588.653

4 Mean 254.676
Std. Dev. 167.444
Median 211.733
Minimum 46.103
Maximum 1,123.963
2.5th Percentile 73.832
97.5th Percentile 723.034

Notes: This table summarizes the results of 1595 independent samples, each containing a price and a
dividend series for 100 periods. These samples are grouped based on the empirically determined lag length,
denoted by q, in the dividend ARIMA equation. Results are shown separately for lag length groups between
two and four for convenience of reporting. These groups contain 913, 482 and 200 samples, respectively.
Under the null hypothesis, West’s test statistics, denoted by W, is asymptotically distributed as a chi-
squared random variable with q + 1 degrees of freedom. For 5% significance level, critical values for v2(3),
v2(4) and v2(5) are 7.81, 9.49 and 11.07, respectively.
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Table 3 reports the results for dividend ARIMA equation (3.4). Column 8 shows descriptive statistics for the first-order
serial correlation coefficient of the disturbance. Across the three lag length groups, median values vary from �0.010 to
�0.016. Column 9 gives the distribution of the second serial correlation test, namely Ljung–Box Q(30) statistic for the resid-
uals. Across the three lag length groups, median values vary from 19.478 to 21.596. It is distributed v2(30). For 5% signifi-
cance level the critical value is 43.77. Overall, the figures in these two columns confirm that for all the samples used in the
analysis there is no evidence of serial correlation in the residuals of Eq. (3.4). Columns 3–7 report the descriptive statistics for
coefficient estimates. Both the mean and median values of the intercept as well as the coefficients of lagged dividends are
positive in all the three lag length groups. The intercept is found significant at 5% level in all estimations, while for the other
coefficients this occurs less frequently.

Estimates of the final equation, the distributed lag of price on current and past dividends (3.5), are reported in Table 4. It is
notable that, for the three lag length groups, the coefficients of dividends are found significant at 5% level in all estimations.
For the three lag length groups, the median values of all coefficient estimates, except that of the intercept for the third group,
are positive.

The test of the null hypothesis that bubbles are absent is given in Table 5. The table reports the distribution of West’s test
statistic. Under the null this statistic is distributed as a chi-squared random variable with q + 1 degrees of freedom. For 5%
significance level, critical values for v2(3), v2(4) and v2(5) are 7.81, 9.49 and 11.07, respectively. For the three lag length
groups even the minimum value of the test statistic exceeds the relevant critical value. In other words, for all the 1595 sam-
ples used in the analysis the hypothesis that the absence of bubble is rejected.

4. Conclusion

In this study, we follow the argument of Dezhbakhsh and Demirguc-Kunt [13] and design an experiment to examine the
ability of the West’s test to detect bubbles. We simulated Brock’s [2] general equilibrium model of asset pricing to obtain
equity price and dividend series to be used in place of actual data in West tests. Specifically, we solved Brock’s model for
three firms by using parameter space that, to a certain extent, fit some of the stylized facts of asset markets. In each simu-
lation the process picks one of the eight different states of the economy for each period and yields stock price and dividend
series for the market portfolio of three firms over a period of 100 years.

We applied West’s test to 1595 samples for which we are confident that the rejection of the null hypothesis of ‘‘no bub-
ble” does not result from certain factors other than bubbles. Although it is impossible to have bubbles in the simulated data
by the design of the model, the West test flags for bubbles. It is notable that even the minimum value of the West’s test sta-
tistic across simulations exceeds the relevant critical value. In other words, for all the 1595 samples the hypothesis that the
absence of bubble is rejected.
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Our evidence is based on a particular parameter space, which was chosen to fit some of the stylized facts of asset markets.
One can argue that the choice of some other parameter set might give different results. However, providing evidence, even
based on a particular parameter space, is sufficient to confirm that the rejection of the no-bubble hypothesis of West’s test is
not necessarily an indication of the existence of a bubble.

In interpreting our evidence, one should also consider other criticisms on West’s test. Flood et al. [17] raised two such
points. Their first criticism is that in West the Euler equation is derived and tested for two consecutive periods, ignoring
the issue that theoretically the relation should hold between any two periods in the future. They argue that, as a result,
the estimate of discount factor may be biased. Their second criticism is that West’s test may suffer from the so-called peso
problem. In other words, investors in the market might attribute a small probability to an event that will have a large impact
on the asset price. It may be the case that this event does not occur in the sample, while its effect is reflected in prices. For the
researcher, who does not know this perception of investors in the market it is the omitted variables problem. Although these
criticisms may be relevant if one uses real data, they are irrelevant for our experimental design. First, our data is generated
based on Brock’s model [2], which similar to West employs the Euler equation for two consecutive periods. Second, since we
use a large number of simulated data rather than a single sample, the peso problem cannot be an issue.

In conclusion, we believe that our evidence gives support to the criticism of Dezhbakhsh and Demirguc-Kunt [13] that the
approximation used in calculating the test statistic in West, could exaggerate the chi-square statistic resulting in a rejection
of the ‘‘no-bubble” hypothesis when there are no bubbles.
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