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Summary A new classification algorithm, called benefit maximizing classifier on
feature projections (BCFP), is developed and applied to the problem of diagnosis of
gastric carcinoma. The domain contains records of patients with known diagnosis
through gastroscopy results. Given a training set of such records, the BCFP classifier
learns how to differentiate a new case in the domain. BCFP represents a concept in the
form of feature projections on each feature dimension separately. Classification in the
BCFP algorithm is based on a voting among the individual predictions made on each
feature. In the gastric carcinoma domain, a lesion can be an indicator of one of nine
different levels of gastric carcinoma, from early to late stages. The benefit of correct
classification of early levels is much more than that of late cases. Also, the costs of
wrong classifications are not symmetric. In the training phase, the BCFP algorithm
learns classification rules that maximize the benefit of classification. In the querying
phase, using these rules, the BCFP algorithm tries to make a prediction maximizing the
benefit. A genetic algorithm is applied to select the relevant features. The perfor-
mance of the BCFP algorithm is evaluated in terms of accuracy and running time. The
rules induced are verified by experts of the domain.

© 2004 Elsevier B.V. All rights reserved.

1. Introduction quantitative techniques are needed to help clini-

cians to consider all the data and make better

In clinical medicine, reaching a conclusion about a
patient’s symptoms, when presented with complex
and sometimes contradictory clinical information,
isreally difficult. A clinician usually makes decisions
based on a set of measurements and observations
about a patient. He evaluates all the factors sub-
jectively in order to reach a diagnosis. However, it is
obvious that clinicians may have great difficulty in
analyzing enormous amount of clinical and histo-
pathological data. Therefore, more sophisticated
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diagnoses. Some sophisticated quantitative techni-
ques are proposed to the doctors by computer
scientists via machine learning techniques in order
to help in this decision making process. In this paper
we propose an inductive supervised learning algo-
rithm called benefit maximizing classifier on feature
projections (BCFP) applied to a medical data set in
order to diagnose the gastroenterological tumors.
BCFP is based on a technique, called feature pro-
jections, which has been successfully employed in
classification by feature partitioning (CFP) [1].
The input to the BCFP training algorithm is a set
of training instances that are the descriptions of
subjects with known diagnoses. Learning from the
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training examples, BCFP constructs a representa-
tion of the classification knowledge inherent in
these examples. This knowledge is represented as
the projections of the training data set as feature
intervals on each feature dimension separately. For
each feature dimension, projection points with
similar characteristics are grouped into intervals.
Therefore, an interval is a generalization that
represents a set of feature values that yield the
same classifications. Classification in the BCFP algo-
rithm is based on a voting among the individual
predictions made on each feature. Since each fea-
ture participates independently of the others, both
in learning and classification, BCFP enables an easy
and natural way of handling missing feature values
by simply ignoring them.

Other machine learning algorithms using feature
projection based knowledge representation were
successfully applied to medical domains. For exam-
ple, an expert system named DES was implemented
for differential diagnosis of erythemato-squamous
diseases in dermatology [2] based on the voting
feature intervals (VFI) technique [3]. CFl was
applied to the diagnosis of cardiac arrhythmia from
standard 12 lead Electrocardiograph (ECG) record-
ings [4]. These classification systems, however, are
not designed for cost-sensitive classification
domains. Therefore they do not work on the gastric
carcinoma domain, where the benefit of correct
classification of early stages is more than that of
later stages; also the cost of wrong classification is
different for all pairs of predicted and actual
classes.

The next section describes the gastric carcinoma
domain in detail. Section 3 explains the BCFP algo-
rithm. Section 4 presents the results of the applica-
tion of the BCFP algorithm to the gastric carcinoma
domain; also the BCFP algorithm is compared with
the performance of the medical students specializ-
ing on gastroenterology. Finally, the last section
concludes with some remarks and suggestions for
future work.

2. The gastric carcinoma domain

Cancer of the stomach, also called gastric cancer, is
a disease in which cancer (malignant) cells are
found in the tissues of the stomach. The stomach
is a J-shaped organ in the upper abdomen where the
food is digested. Food reaches the stomach through
a tube called the esophagus that connects the
mouth to the stomach. After leaving the stomach,
partially digested food passes into the duodenum
then the small intestine and then into the large
intestine called the colon.

Sometimes cancer can be in the stomach for a
long time and can grow very large before it causes
any symptoms. In the early stages of the stomach
cancer, a patient may have indigestion and stomach
discomfort, a bloated feeling after eating, mild
nausea, loss of appetite, or heartburn. In more
advanced stages of cancer of the stomach, the
patient may have blood in the stool, vomiting,
weight loss, or pain in the stomach. Some factors
that increase the chances of getting stomach cancer
are a stomach disorder, called atrophic gastritis,
disorder of the blood, called anemia, or a hereditary
condition of growths, called polyps, in the large
intestine. Stomach cancer is difficult to detect in its
early stages because its early symptoms are absent
or mild. Unfortunately, this is a highly aggressive
cancer and overall survival rate is very low. The
chance of recovery (prognosis) and the choice of
treatment depend on the stage of the cancer,
whether it is just in the stomach or if it has spread
to other places, and the patient’s general state of
health.

Gastric cancer is the seventh most frequent
cause of cancer mortality in the United States. In
2000, approximately 21,500 citizens were diag-
nosed with gastric cancer and 13,000 of them died
[5]. The disease is much more common in other
countries, principally Japan, Central Europe, Scan-
dinavia, Hong Kong, South and Central America, the
Soviet Union, China, and Korea. In fact, it is a major
cause of death worldwide especially in developing
countries. According to a report published by the
Gastroenterology department of the Ankara Uni-
versity School of Medicine, the stomach cancer is
the second most frequent type of cancer in men,
and the third one in women; also, it has been
encountered as the most common type of tumor
in gastrointestinal system in Turkey [6]. The Japa-
nese Research Society for Gastric Cancer, because
of the high rates of stomach cancer, has carried
out a very strict screening program. This has
enabled them to identify the disease in very early
stages.

2.1. The stomach

The stomach is separated into upper, middle and
lower portions. When the cancer infiltration (pene-
tration) is limited in one of the three main portions,
this is expressed by indicating C (Fundus, upper
part), M (Body, middle part) and A (Antrum,
lower part). The other possible locations are E
(Esophagus) and D (duodenum). The location of
the tumor is essential for selecting the appropriate
surgical procedure. The cancer tumor placement
also identified by the cross-sectional positioning.
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The cross-sectional circumference of the stomach is
separated into four parts, the lesser curvature, the
greater curvature, the anterior wall, and the pos-
terior wall [7].

2.2. Classification of gastric cancers

If there are symptoms of cancer, a physician will
usually order an upper gastrointestinal X-ray or he
may also look inside the stomach with a thin, lighted
tube called a gastroscope. This procedure is called
gastroscopy, and it is useful in the detection of most
stomach cancers. For this test, the gastroscope is
inserted through the mouth and guided into the
stomach and the stomach mucosa is examined.
According to the Japanese Gastroenterological
Endoscopy Society, based on the visual inspection
of the mucosal surface of the patient’s stomach,
gastric cancers are classified mainly into three
categories as shown in Table 1. They are early
gastric cancers (EGC) and advanced gastric cancers
(AGC) and the remaining ones which cannot be
included to these categories [7].

Early gastric cancer is defined as gastric cancer
confined to the mucosa or submucosa, regardless of
the presence or absence of lymph node metastasis
as shown in Table 2 [8].

On the other hand, in advanced gastric cancers,
as defined by Bormann, the tumor is invaded into
the proper muscle layer beyond the stomach [9].
Moreover, knowledge of these types permits a pre-
liminary assessment of tumor spread. According to
Bormann Classification AGCs are divided into four
groups, Bormann I, Bormann IlI, Bormann lll, and
Bormann IV, as shown in Table 3.

Table 1 Classification of gastric cancers

Type Classification

0 Early gastric cancer (EGC)

1—4 Advanced gastric cancer (AGC)

5 The cancers that cannot be included
under any of the above types

Table 2 Types of early gastric carcinoma

Type Properties

| Exophytic, protruded
lia Superficially elevated
lib Even, flat

lic Superficially depressed

] Excavated

Table 3 Advanced gastric cancer classification

Type Properties

BI Mainly exophytic growth, usually broad-based
polypoid carcinomas with a protruding,
papillary, cauliflower-shaped or villous surface

Bll Carcinoma with a central, bowl-shaped
ulceration, elevated margins, the carcinoma
being relatively sharply delineated from
its surroundings

Bl Centrally ulcerating carcinoma without
ridged, elevated margins and indistinctly
delineated from its surroundings

BIV Diffuse tumor infiltration of the gastric wall

2.3. The gastric carcinoma data set

The Gastric Carcinoma data set used in this paper
consists of 285 gastric cancer records. These
recordings consist of 209 male and 67 female (nine
missing sex information) patients with age ranging
from 26 to 85.

2.3.1. Classes

The cancers that are classified in this domain are
labeled as C1 through C9 as Early | (C1), Early lla
(C2), Early lIb (C3), Early llc (C4), Early Il (C5), BI
(Cé), Bl (C7), BIll (C8), and BIV (C9). The actual
class labels of the instances in the data set are
determined by the pathology test results. The data
set contains 174 early and 111 advanced gastric
cancer patients. The distribution of the record
set among the diseases is shown in Table 4.

2.3.2. Features

Patient records collected for diagnosis and prog-
nosis typically contain values of clinical and histo-
pathological investigations. The features used in
this domain are represented as a vector of 68

Table 4 The distribution of classes in the data set

Type Class Number of patients
Early gastric cancers 174
Early | C1 3
Early lla C2 55
Early Ilb c3 7
Early llc C4 103
Early Il Cc5 6
Advanced gastric cancers 111
Bl Cé 6
Bl c7 17
BllI c8 69
BIV c9 19
Total 285
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features [6]. Seven of these features are linear
valued and the others are categorical. The listing
of the features is given in Table 5. The data set
contains 970 missing feature values, which means
that 5% of the data set is missing.

2.3.3. Benefits and costs

An important characteristic of the gastric carci-
noma data set is that the benefit of correct classi-
fication depends on the class value. In this domain,
benefit of correct classification of an early stage of a
tumor is more than that of a later stage. For an
incorrect classification, depending on the predicted
and actual class values, a different cost is incurred.
If the predicted class label is similar to the actual
class, still a benefit is obtained. All this information
is provided as a benefit table. The benefit table used
in this experiment is given in Table 6. Positive values
indicate benefits, while negative values indicate
costs. The entry B[p, a] represents the benefit of
predicting class p when the actual class is a. Accord-
ing to this table, classifying a C1 instance correctly
provides 18 units of benefit, while classifying a C9
instance correctly provides only five units of bene-
fit. On the other hand, predicting a C1instance as Cé6
incurs four units of cost. However, incorrectly clas-
sifying a C7 instance as a similar class Cé6 still
provides two units of benefit.

The benefit and cost values are difficult to mea-
sure and most of the time they are subjective [10].
The amount of benefits and costs can be measured
according to a combination of many criteria. In
medical domains, the most important one is the
possibility of saving the patient’s life; the earlier
the diagnosis, the longer survival. Other criteria
may include the cost and the alternatives of the
treatment procedure, which are inverse propor-
tional with the benefit.

The entries of the benefit table can be set up
using any measuring unit meaningful to the domain
experts. In order to eliminate the effects of the
measuring unit chosen, the BCFP algorithm initially
normalizes the entries of the benefit table, by
subtracting the largest cost from all the values of
a column of an actual class, therefore the benefit of
the most costly prediction is always 0. This guar-
antees that all benefit values are positive. Such a
benefit matrix is called, the normalized benefit
table. The normalized benefit table used by the
BCFP algorithm for this domain is given in Table 7.

3. The BCFP algorithm

The BCFP algorithm is the classification cost
sensitive version of the feature projection based

classification algorithms family [11]. In the follow-
ing subsections, the knowledge representation used
in the BCFP algorithm, training, and classification
algorithms will be explained through a simple exam-
ple. Then, the feature selection using a genetic
algorithm will be described.

3.1. Knowledge representation

Each training example is represented by a vector of
nominal (discrete) or linear (continuous) feature
values plus the class label. The BCFP classification
algorithm represents a concept description by
a set of feature intervals. An interval is either a
range or a point interval. A range interval is a set
of consecutive values of a given feature, whereas
a point interval is defined as a single feature
value.

For range intervals, lower and upper bounds of
the range value and the votes for each class are
maintained. For point intervals, on the other hand,
the lower and upper values are the same. There-
fore, an interval is represented as a vector, whose
first two elements store the lower and upper bounds
and the remaining elements correspond to the votes
for each class, as shown below:

<lb, Ub7 V1,V2, ey Vk>.

Here, k is the number of classes in the domain,
and V; represents the vote of the interval for
class C;.

3.2. Training

The training in the BCFP algorithm is shown in Fig. 1.
For each feature f, all training instances are sorted
with respect to their values for f, forming their
projections on f. A point interval is constructed
for each projection. The lower and upper bounds
of the interval are equal to the value of feature f in
the corresponding training instance. Given the nor-
malized benefit table NB, the vote V, of a class p is
initialized as

1

K

— B if

Vv, N;NCXN lp,c], ifN,>0
0,

otherwise

Here N is the total number of instances in the
interval, N, is the number of class ¢ instances in
the interval, and NB[p, c] is the normalized benefit
of classifying a class c instance as p. In other words,
V,, is the average benefit to be gained by classifying
all the instances in that interval as class p. If no
instances of class p have been observed in that
interval, then the vote for class p is 0. In order to
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Table 5 Features in the data set

Index Name Values Index Name Values
Fi Age 1-100 F3s5 Surface mucosa nodularity Absent, present
(granular)
F, Sex Male, female F3e Surface mucosa uneven Absent, present
Fs Blood type A, B, 0, AB F37 Surface mucosa infiltrated Absent, present
Fa Rh factor (blood) +, — F3s Erithematous changes of surface Absent, present
Fs Smoking habit 0—100 F3o Surrounding mucosa Normal, abnormal
(cigarette/day)
Fe Number of years 0—100 F40 Surrounding mucosa atrophy Absent, present
smoking
F, Alcohol consumption 0—1000 F41 Surrounding mucosa irregularity Absent, present
(cc/day)
Fg How long years 0—100 Fa Surrounding mucosa infiltration  Uninfiltrated,
(drinking) infiltrated
Fo Alcohol type Beer, whisky, Fa3 Surrounding mucosa Absent, present
wine, brandy redness/hyperemic
Fio Atrophy Cq, Cy, G5, O4, Fa4 Surrounding mucosa spotty Absent, present
0,, 03 redness
Fiq Intestinal metaplasia +, — Fus Erithematous changes of Absent, present
surrounding mucosa
Fiz2 Section E,C, M, A D Fe Surrounding mucosa margin Absent, present
irregularity
Fis Curvature Lesser, greater, F4; Surrounding mucosa Absent, present
whole discoloration
Fis Wall Anterior, Fag Bleeding Absent, present
posterior, whole
Fis Depth 1 (mucosa), F49 Erosion Absent, present
2 (submucosa),
3 (proper
mucosa),
4 (subserosa),
5 (serosa)
Fie Ulcer scar present 0-5 Fso Elevated lesion Absent, present
Fi7 Ulcerization Absent, present  Fs; Mucosal elevation Wooden map type
elevation, slight
elevation,
no elevation
Fig Ulcer present Absent, present  Fs; Base granularity/nodularity Absent, present
Fio Cauliflower appearance  Absent, present  Fs3 Base infiltrated Absent, present
F20 Flower bed appearance  Absent, present  Fsy Base irregularity Absent, present
Fyq Deep ulcer Absent, present  Fss Base redness Absent, present
Fuo Big ulcer Absent, present  Fse Base spotty redness Absent, present
Fus3 Irregular ulcer Absent, present  Fs7 Base smoothness (normal) Absent, present
Fos Infiltrated ulcer Absent, present  Fsg Wide base Absent, present
Fus Irregular margin of ulcer Absent, present  Fso Protrusion Absent, present
Fae Mucosal fold Absent, present  Fgo Polyp Absent, present
Fa7 Club or rod like Absent, present  Fg4 Polypoid lesion Absent, present
thickening
Fos Abrupt disruption Absent, present  F¢; Sessile Absent, present
F2o Shallow ulcer Absent, present  Fg3 Stomach deformation Absent, present
Fso Surface mucosa redness  Absent, present  Feq4 Whole stomach infiltration Absent, present
F3q Surface mucosa spotty Absent, present  Fgs Pylica gastrica sickness Absent, present
redness
F3, Surface mucosa Absent, present  Fge Depressed area Absent, present
smoothness (normal)
F3s Surface mucosa Absent, present  F¢7 Irregular margin of Absent, present
discoloration depressed area
Fs4 Surface mucosa Absent, present  Fgg Infiltrated mass Absent, present

irregularity
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Table 6 Benefits table for the gastric carcinoma domain

Prediction Actual class
C1 C2 Cc3 Cc4 Cc5 cé c7 c8 c9

C1 18 6 6 6 -1 —-10 —-12 -15 -20
Cc2 10 15 12 12 4 -8 -10 —13 —15
Cc3 10 12 15 12 4 -8 —-10 —13 —15
Cc4 10 12 12 15 4 -8 —-10 —13 —15
Cc5 5 7 7 7 10 -3 -8 -1 —13
cé —4 -3 -3 -3 —1 8 2 1 —1
c7 —6 -5 -5 -5 -3 4 7 4 2
Cc8 —12 -10 -10 -10 -8 1 3 6 3
c9 -20 —15 —15 —15 —11 —6 1 3 5

Negative values indicate costs.

Table 7 Normalized benefit table for the gastric carcinoma domain

Prediction Actual class

C1 C2 Cc3 Cc4 Cc5 Ccé c7 Cc8 c9
C1 38 21 21 21 10 0 0 0 0
C2 30 30 27 27 15 2 2 2 5
Cc3 30 27 30 27 15 2 2 2 5
Cc4 30 27 27 30 15 2 2 2 5
Cc5 25 22 22 22 21 7 4 4 7
cé 16 12 12 12 10 18 14 16 19
c7 14 10 10 10 8 14 19 19 22
Cc8 8 5 5 5 3 11 15 21 23
c9 0 0 0 0 0 4 13 18 25

an equal voting power for each interval, during
querying, the votes of an interval are normalized
later, so that

k
dV=1.
p=1

train (TrainingSet):
begin
for each feature f

If the f value of a training instance is unknown
(represented by *‘?’’), it is simply ignored for this
feature f. Then, only for linear features, BCFP tries
to generalize the point intervals. Consecutive point
intervals whose highest votes are for the same class
are joined, forming range intervals.

/* sort TrainingSet with respect to f */

sort (f; TrainingSet)

/* construct a list of point intervals using feature values and class labels */

interval_list
if fis linear

make_intervals (f, TrainingSet)

/* join adjacent point intervals to form range intervals */

interval_list
end.

join_interval (interval_list)
begin
I = first interval in interval_list
while / is not empty do
I’ is the interval following /

join_interval(interval_list)

if beneficial_class(/) = beneficial_class(I’)
/* beneficial_class of an interval is the class with the highest votes */

merge I’ into /
else/ I
end.

Figure 1

Training algorithm of BCFP.



Diagnosis of gastric carcinoma

237

- <4,4,0,1, 0>
Training Set: <1,3,1,0,0> <5,7,0,0, 1>
<1, 0, B, C1>
<4,5, A C2> | > fl
<3,0, B, C1> .
<4 0 C Com 1 2 4 5 6 7 8 (linear)
7,1,C C3
46 A o <0,0,0.69,0.31,0
<5, 3, ?, C3> <1,3,0,0,1> <5,6,0,1, 0>
| > f2
. 0 1 3 4 5 6 17 (linear)
Normalized
Benefit Table:
4 1 0 <A,A,0,1,0> <B/B1,0,0> <CC1,0.6,0.4>
121 1 | 1 , 3
0 0 2 > 1
A B C (nominal)
Figure 2 Feature intervals formed for a sample training set.

An indecisive interval which distributes its vote
among all classes evenly is uninteresting and it
should be removed. We call a rule decisive if the
standard deviation of its votes is above a minimum
threshold, called si,. The BCFP algorithm uses
Smin = (1/k — 1)y/1/k. This threshold is equal to
the standard deviation when the interval casts 0
votes for one class, and distributes its vote evenly
among all other classes. For the gastric carcinoma
domain, k =9 and s, = 0.0417.

An example training data set and the correspond-
ing feature intervals constructed by the BCFP algo-
rithms are shown in Fig. 2. The example domain
consists of three features, namely f1, f2, and f3, the
first two of which are linear and the last one is a
nominal feature. The nominal feature f3 can take
values from the set {A, B, C}. The class labels are C1,
C2, and C3. There are seven training instances in
this example. Training algorithm forms three inter-
vals on the feature f1, two of which are range
intervals. The first interval on f1, spans the value
range [1,3], and it votes only for the C1 class.

3.3. Classification

The classification (querying) process in the BCFP
algorithm is given in Fig. 3. The process starts by
initializing the votes of each class to zero. The
classification operation includes a separate preclas-
sification step on each feature. The preclassifica-
tion of feature f involves a search for the interval on
feature dimension f into which gy falls, where gy is
the value of the query instance q for feature f. If
that value is unknown (missing), then that feature
does not participate in the voting. Hence, the fea-
tures containing missing values are simply ignored.

If the gy value is known, the interval | into which
grfalls is searched. If the gy value does not fall in any
interval on f, then again the feature f does not
participate in the voting, which means that that

"This threshold is meaningful if k > 2.

value for the feature f has not been observed in the
training set. If aninterval / is found that includes the
grvalue, then the votes of | are the votes that f casts
in the voting. Since the sum of the votes of an
interval is normalized to 1 during the training, each
feature has an equal power in the voting.

Finally, the class that receives the highest
amount of votes is returned as the predicted class
of the query instance g. Although a single class
returned as the prediction of the query instance,
the votes received by each class are also available
to the user, enabling him/her to measure the level
of the confidence of this prediction.

Note that in domains with imbalanced class dis-
tribution, the simple accuracy measure as the ratio
of the number of correctly classified instances to
the total number of instances fails to reflect the
performance of the classification algorithm [12]. In
benefit maximizing classification, we are interested
in the total benefit achieved over all test instances,
not in number of correct classifications. The benefit
accuracy of the classification in BCFP is obtained
directly from the normalized benefit table. The
performance of the BCFP classifier on a test set T
is measured as

> NB[p;, aj

benefitaccuracy = =%———
Zi NB[G,‘, a,-]

where p; and a; are the predicted and actual class
labels of the ith test instance from T. In the rest of

classify(g): /* q: query instance to be classified */
begin
for each class ¢ vote[c] = 0 /* initialize total votes */
for each feature f*
if g value is known
I = search_interval(f; q,)
if 7 is not empty
for each class ¢
vote[c] = vote[c] + interval_vote(l, ¢)
return the class ¢, such that vote[c] is maximum.
end.

Figure 3 Classification in the BCFP algorithm.
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Query <2, 5, C

Feature: f1, g, =2, I, =<1, 3, 1, 0, 0>
Feature: f2, g, =5, I, =<5, 6, 0, 1, 0>
Feature: f3, g3 =C 13 =<C C, 0, 0.6, 0.4>

Total votes: <1, 1.6, 0.4>
Prediction: C2

Figure 4 Classification example on the sample data set.

the paper, the term accuracy will be used to refer
the benefit accuracy.

Continuing on the example in Fig. 2, consider the
classification of a query instance g = (2, 5, C). The
intervals corresponding to the query instance are
shown in Fig. 4. The total votes for classes C1,
C2 and C3 are 1, 1.6 and 0.4, respectively. The
C2 class received the highest amount of votes.
Therefore, C2 is the predicted class of that query
instance. The confidence of this prediction is
1.6/(1+1.6+0.4) =53%.

3.4. Feature selection using a genetic
algorithm

The performance and the cost of classification are
sensitive to the choice of the features used to
construct the classifier. The natural and safe
approach in inductive machine learning is to collect
the values of all available features for instances,
and let the machine learning system to determine
and use only the relevant ones in classification. The
problem of identifying the relevant subset of fea-
tures in the data is called feature subset selection.
Exhaustive evaluation of possible feature subsets is
usually infeasible in practice because of the large
amount of computational effort required. Genetic
algorithms offer an attractive approach to find
near-optimal solutions to such optimization pro-
blems [13].

A genetic algorithm attempts to find a good
solution to the problem by genetically breeding a
population of individuals over a series of genera-
tions. Each individual in the population represents a
candidate solution to the given problem. The
genetic algorithm transforms a population of indi-
viduals, each with an associated fitness value, into a
new generation of the population using reproduc-
tion, crossover, and mutation [14].

We have coupled the BCFP algorithm with a
genetic algorithm using the wrapper approach for
feature subset selection [15]. Each feature is repre-
sented by a gene in the chromosome. Therefore,
the chromosome size is equal to the number of
features, which is 68 for the gastric carcinoma data
set. The fitness of a chromosome is computed as
the 10-fold cross-validation accuracy of the BCFP
algorithm. In the experiments, the population size

was 500. Experiments on the gastric carcinoma
domain were conducted with one-point and two-
point operations. For the probability of crossover
p. =0.7, 0.8 and 0.9, and for the probability of
mutation p, = 0.001, 0.002 and 0.005 were tried.
The genetic algorithm was run for 2000 generations.
In all experiments, the same chromosome was
found before the 800th generation. The chromo-
some found represented a subset of 30 features
selected as relevant.

4, Results

The BCFP algorithm and the accompanying genetic
algorithm for feature selection have been imple-
mented in the C language to run the experiments. In
measuring the performance of the BCFP algorithm
we used 10-fold cross-validation accuracy, i.e., the
whole data set is partitioned into 10 equal sized
subsets. One of the subsets is used as the test set,
and the other nine as the training set. This process
is repeated 10 times, once for each subset as the
test set. This technique ensures that the training
and test sets are disjoint, and each instance in the
data set is classified exactly once. Accuracy is
the average of the accuracy values of these 10 runs.
The execution of a 10-fold cross validation took
25 ms.

Using all of the 68 features of the data set, the
BCFP algorithm achieved 83.5% accuracy. However,
the feature selection algorithm chose only 30 of the
68 features as relevant for a beneficial classifica-
tion. With the selected set of features the BCFP
algorithm achieved 94.8% accuracy. The confusion
matrix for 10-fold cross validation obtained using
these 30 features is given in Table 8. The selected
features are Rh factor, depth, flower bed appear-
ance, big ulcer, infiltrated ulcer, mucosal fold,
abrupt disruption, surface mucosa spotty redness,
surface mucosa smooth/normal, surface mucosa
discoloration, surface mucosa irregularity, surface
mucosa uneven, surface mucosa infiltrated, sur-
rounding mucosa irregularity, surrounding mucosa
infiltration, surrounding mucosa redness/hypere-
mic, surrounding mucosa spotty redness, surround-
ing mucosa margin irregularity, bleeding, mucosal
elevation, base infiltrated, base redness, base wide,
polyp, sessile, stomach deformation, whole stomach
infiltrated, pylica gastrica sickness, depressed area,
and infiltrated mass. Some of the rules induced by
the BCFP algorithm are shown in Fig. 5. The numbers
following the class labels indicate the votes of each
corresponding class.

The rules constructed by the BCFP algorithm are
easy to be verified by experts. According to these
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Table 8 Confusion matrix

Prediction Actual

1 2 3 4 5 6 7 8 9 Total

1 0 0 0 0 0 0 0 0 0 0
2 1 42 0 4 0 1 0 0 0 48
3 0 0 7 0 0 0 0 0 0 7
4 2 13 0 98 6 2 3 1 0 125
5 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 3 0 0 0 3
7 0 0 0 1 0 0 7 20 2 30
8 0 0 0 0 0 0 7 46 13 66
9 0 0 0 0 0 0 0 2 4 6
Total 3 55 7 103 6 6 17 69 19 285

rules, if the depth of the lesion is 1 (mucosa) or 2
(sub mucosa), then it is more likely that the case is
an early gastric cancer; while if the depth is 4
(subserosa) or 5 (serosa) then advanced gastric
cancer is more certain. If the lesion has a flower
bed appearance, then it is certainly Early lla. This is
because, in our data set, all the instances with
flower bed appearance were an Early lla case. On
the other hand, if the surface mucosa discoloration
is present, then the case is either Early lla or Early
llc. If sessile is present, it is an Early I, with 30%
certainty, Early lla with 36% certainty, or Early llc
with 34% certainty. The other rules can be inter-
preted in the similar manner.

We have also compared the BCFP algorithm
with the cost sensitive version of Naive Bayesian
Classifier (NBC) [16]. We have used MetaCost [17]

If 1 depth 2

algorithm around NBC in order to make it sensitive
to benefits. MetaCost, together with NBC as a base
classifier has been taken from Weka [18]. Using
all of the features, MetaCost with NBC achieved
an accuracy of 90%, whereas using only the selec-
ted set of features, it achieved an accuracy of
93.7%.

In order to see how difficult it is to make a
prediction with high benefits, we have conducted
an experiment with 16 fellows on internal medicine
and four faculty members in gastroenterology. The
students and experts were shown only the data set
that was used by the BCFP algorithm. The benefit
accuracy of the students was 65%, and that of
faculty members was 80%. This indicates that mak-
ing an accurate decision in the diagnosis of gastric
carcinoma is quite difficult.

then C1/0.14 C2/0.18 C3/0.17 C4/0.18 C5/0.14 C6/0.08 C7/0.07 C8/0.04 C9/0.01

If depth = 3

then C2/0.16 C4/0.17 C7/0.34 C8/0.33

If 4 depth 5

then C2/0.05 C4/0.05 C5/0.07 C6/0.19 C7/0.22 C8/0.22 C9/0.22

If flower bed appearance = Present
then C2/1
if infiltrated ulcer = Present

then C4/0.08 C7/0.31 C8/0.33 C9/0.28

if surface nmucosa discoloration = Present

then C2/0.50 C4/0.50

if surrounding mucosa redness/ hyperenic = Present
then C2/0.26 C4/0.28 C5/0.24 C7/0.14 C8/0.08
if surrounding nmucosa spotty redness = Present

then C4/1
If bl eeding = Present

then C2/0.06 C4/0.06 C5/0.08 C6/0.19 C7/0.22 C8/0.21 C9/0. 20

If sessile= Present
then C1/0.30 C2/0.36 C4/0.34
If stomach deformation = Present
then C8/0.49 C9/0.51
If depressed area = Present

then C2/0.25 C3/0.24 C4/0.26 C5/0.20 C8/0.05

Figure 5 Sample rules induced by the BCFP algorithm.
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5. Conclusions

In this paper, a new classification algorithm, called
BCFP, has been developed and applied to the diag-
nosis of gastric carcinoma tumors. The BCFP algo-
rithm aims to maximize the benefit of classification,
reducing the cost of possible misclassifications. It
uses the feature projections based knowledge
representation.

Another advantage of using the feature projec-
tions as the knowledge representation is that the
constructed rules are based on a single feature and
an associated set of values. Therefore, the rules are
simple and easy to be verified by a human expert.
The rules constructed for the gastric carcinoma
data set have been verified and found to be correct
by the expert gastro-enterologists.

The BCFP algorithm is applicable, in particular,
to concepts where each feature, independent of the
other features, can be used in the classification.
One might think that this requirement may limit the
applicability of BCFP, since in some domains the
features might be dependent on each other. How-
ever, Holte has pointed out that the most real-world
data sets for classification tasks are such that their
attributes can be considered independently of each
other [19]. Also, Kononenko claimed that in the data
sets used by human experts there are no strong
dependencies between features [20].

The BCFP algorithm achieved very good accuracy
on the gastric carcinoma data set available. The
result was even better than the medical students
specializing on internal medicine. This showed us
that the differential diagnosis of gastric carcinoma
classes is quite difficult even for medical doctors.
We used a genetic algorithm for selecting the rele-
vant features. With selected features the BCFP
algorithm achieved an excellent classification accu-
racy.

The BCFP algorithm constructs a rule for each
interval formed by the projections of training
instances on features. The votes of an interval to
the class labels are based on the number of training
instances with that class value falling in that inter-
val, and the entries of the benefit table. A rule
which gives similar votes to each class does not
make any difference in the final classification of
the query instance. Such a rule is usually uninter-
esting to the domain expert. Therefore, it can be
discarded from the model. As a future work we plan
to develop a system that can measure the interest-
ingness of a rule constructed by the BCFP algorithm.
Selecting and providing these interesting rules con-
structed from the data available may provide a
domain expert with some pointers for further
experiments and research ideas.
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