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Abstract

Computerized ionospheric tomography (CIT) is a method to estimate ionospheric electron density distribution by using the global
positioning system (GPS) signals recorded by the GPS receivers. Ionospheric electron density is a function of latitude, longitude, height
and time. A general approach in CIT is to represent the ionosphere as a linear combination of basis functions. In this study, the model of
the ionosphere is obtained from the IRI in latitude and height only. The goal is to determine the best representing basis function from the
set of Squeezed Legendre polynomials, truncated Legendre polynomials, Haar Wavelets and singular value decomposition (SVD). The
reconstruction algorithms used in this study can be listed as total least squares (TLS), regularized least squares, algebraic reconstruction
technique (ART) and a hybrid algorithm where the reconstruction from the TLS algorithm is used as the initial estimate for the ART.
The error performance of the reconstruction algorithms are compared with respect to the electron density generated by the IRI-2001
model. In the investigated scenario, the measurements are obtained from the IRI-2001 as the line integral of the electron density profiles,
imitating the total electron content estimated from GPS measurements. It has been observed that the minimum error between the recon-
structed and model ionospheres depends on both the reconstruction algorithm and the basis functions where the best results have been
obtained for the basis functions from the model itself through SVD.
� 2007 COSPAR. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Computerized ionospheric tomography (CIT) is becom-
ing an attractive alternative in obtaining ionospheric elec-
tron density images. The global positioning system (GPS)
makes it feasible to obtain measurements from various sta-
tions on the Earth with no additional cost to the users (Hajj
et al., 1994). The signals transmitted from the satellites in
two L-band frequencies are collected by the Earth based
receivers and recorded as pseudo-range and phase. Total
electron content (TEC) is defined as the number of elec-
trons included in a cylinder with 1 m2 cross-section. As is
widely discussed in the literature, TEC, which corresponds
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to the line integral of the electron density in the path join-
ing the satellite and the receiver, can be obtained from GPS
receiver pseudo-range and phase measurements (Hocke
and Pavelyev, 2001). With appropriate inversion and
reconstruction methods, the electron density images can
be obtained using the TEC measurements from the GPS
receivers. This seemingly easy outline of obtaining electron
density images actually requires complicated signal pro-
cessing tools due to inherent errors in ionospheric electron
density models, GPS measurements and TEC computation
(Sutton and Na, 1998; Yeh and Raymund, 1991).

Ionospheric electron density is a function of latitude,
longitude, height and time. A general approach in CIT is
to represent the ionosphere as a linear combination of basis
functions. In the literature, the ionosphere is usually repre-
sented by a linear combination of basis functions in two
dimensions, namely latitude and height (Hajj et al.,
ed.
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1994). In this study, following the examples in the litera-
ture, the model electron density distribution of the iono-
sphere is obtained from the International Reference
Ionosphere (IRI) in latitude and height only. The best basis
function set in height is determined to be eigenvectors from
the singular value decomposition (SVD) of the IRI model
in height (Sutton and Na, 1998). For the possible basis
functions in latitude, Squeezed Legendre polynomials,
Cut Legendre polynomials, Haar Wavelets and SVD of
the IRI model in latitude are considered. The optimum
number of basis functions in height and latitude are chosen
under the minimum error criterion of reconstructed
images. The 2-D CIT is performed by using a set of certain
reconstruction algorithms, namely total least squares
(TLS), regularized least squares (RLS), algebraic recon-
struction technique (ART) and a hybrid algorithm
(HART) where the reconstruction from the TLS algorithm
is used as the initial estimate for the iterations of ART
(Yavuz et al., 2005a,b). The performance of the reconstruc-
tion algorithms and basis functions are tested in a scenario
in the [�28� to 28�] latitude interval. Ionosphere is divided
into a grid formed by rectangular pixels. It is assumed that,
electron density has uniform distribution in each pixel. As
an initial step in the overall investigation of the perfor-
mance of various CIT techniques, the TEC estimates from
the IRI are used. Thus, the measurement vector is obtained
from the line integral of the electron density of the IRI
model over the constructed grid. For the chosen ideal sce-
nario, the reconstruction error is obtained as low as 0.2 for
SVD bases both in height and latitude used with TLS and
RLS algorithms. The computational complexity of TLS is
lower than RLS. ART is independent of basis functions
and very sensitive to the initial state. The highest error is
observed when the squeezed Legendre polynomials are
used in latitude.

In Section 2, the general set up of the electron density
reconstruction model is provided. The basis functions
and reconstruction algorithms are briefly discussed in
Section 3 and the results of the study are presented in
Section 4.

2. CIT model

CIT is method of reconstruction of ionospheric electron
density from GPS measurements. Since ionosphere varies
with respect to position (latitude and longitude), height
from earth’s surface and time, the formulation of CIT in
four dimensions is highly complicated. In this section, the
ionospheric electron density is represented as a linear com-
bination of basis functions in latitude and height. Our goal
is to test the accuracy and computational complexity of the
various possible orthonormal basis function sets and
reconstruction algorithms in a reduced dimension system.
In this study, g(r,h) represents the ionospheric electron
density profile in height, r, and in angle measured from glo-
bal zenith, h, corresponding to 90�-latitude, where latitude
takes positive values in northern hemisphere and negative
values in southern hemisphere. Let us define a grid struc-
ture which expands the region of interest in ionosphere.
A pixel in the grid is defined by the pair (nr,nh), where
nr = 1, . . . , Nr and nh = 1, . . . ,Nh. Any sample of g(r,h) at
(nr,nh) can be given as gs(nr, nh) where the subscript s

denotes the sampled electron density profile at the grid
pixel (nr,nh). Instead of using two dimensions as grid pixel
notation, a lexicographical index l can be defined as
l = nr + (nh � 1)Nr and the sampled electron density can
be given as gs(nr, nh) = gs(l). This notation helps us to
reduce computational dimension from two to one. The
model electron density vector using the index l can be
defined as

g ¼ ½gsð1Þ . . . gsðlÞ . . . gsðNrN hÞ�T1�NrNh
ð1Þ

where the superscript T denotes the transpose.
In serial expansion method, the electron density profile

g(r,h) is approximated by a finite number of 2-D basis
functions with unknown coefficients as follows:

gðr; hÞ � ĝðr; h; M ;NÞ ¼
XM

m¼1

XN

n¼1

am;numðrÞvnðhÞ ð2Þ

¼
XK

k¼1

ak/kðr; hÞ ð3Þ

where M and N represent the number of basis functions um(r)
in height and vn(h) in latitude, respectively. With shorthand
notation, /k(r,h) = um(r)vn(h) where k = m + (n � 1)M
and K = MN. The tomography problems are usually formu-
lated in a linear system and the coefficients am, n or ak are
the unknowns to be determined in the reconstruction
problem.

For a pixel (nr,nh), denoted by the index l in the grid, the
samples of the basis functions /k can be expressed as
/ks(l) = ums(nr)vns(nh), where ums and vns are the sampled
height and latitude basis functions, respectively. From the
sampled basis functions, the vector /k is defined as

/k ¼ ½/ksð1Þ . . . /ksðlÞ . . . /ksðN rN hÞ�T1�NrNh
ð4Þ

and the sampled ionospheric electron density function can
be rewritten as

gðlÞ �
XK

k¼1

ak/k ð5Þ

where g(l) corresponds to the lth member of g in Eq. (1)
and thus is equal to gs (nr,nh).

In the tomographic reconstruction scenario in this
study, the measurements are obtained as the line integrals
of the electron density profiles or the summations of the
samples of ionospheric electron density function. Let the
number of measurements be denoted as nm = 1, . . . ,Nm,
and the measurement on the nth

m projection to be dnm where

dnm ¼
XNrNh

l¼1

bnm;l gsðlÞ ð6Þ
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and bnm;l is equal to 1 if the lth pixel is on the nth
m projection;

and 0 otherwise. Then, we can define a matrix
Bðnm; lÞ ¼ bnm;l and the measurement vector
d ¼ ½d1 . . . dnm . . . dNm �

T using Eq. (6) as

dNm�1 ¼ BNm�NrNh
gNrNh�1: ð7Þ
If the serial expansion in Eq. (5) is used in the above mea-
surement equation, the measurement vector can be rewrit-
ten as

d �
XK

k¼1

B/k|{z}
pk

ak: ð8Þ
Eq. (8) can be expressed in a more closed form matrix nota-
tion as

d ¼ Pa; ð9Þ
where

P ¼ ½p1 � � � pK �Nm�K ð10Þ
and

a ¼ ½a1 � � � aK �T: ð11Þ
Eq. (9) translates the 2-D reconstruction problem of
gðrnr ; hnh

Þ to a 1-D reconstruction problem in terms of basis
coefficients a. Eq. (9) is in the form of a typical linear sys-
tems problem. P denotes the model ionosphere in the form
of basis functions, d represents the measurement vector and
a are the unknown coefficients to be determined by the
solution of the linear system of equations. There are vari-
ous alternatives for the basis functions to be used in the se-
rial expansion and the number of total basis functions is a
parameter to be determined for a given scenario. Usually,
the model matrix P is not full rank or the model includes
certain errors. The measurements can be noisy and sparse
to properly represent the electron density. Therefore, the
solution of Eq. (9) is a challenge, where computational
complexity and accuracy of the solutions are important
performance criteria to be considered. In the next section,
we will discuss possible alternatives to solve this problem
and choices of basis functions in height and latitude.
3. Basis functions and reconstruction algorithms

The performance of CIT depends on both the number
and choice of basis functions in height and latitude and
the reconstruction algorithms to be implemented to solve
the linear system problem (Fremouw and Secan, 1992).
Using the notation of Section 2, the sampled model elec-
tron density matrix defined over the grid Nr · Nh can be
given as
G ¼

gsð1; 1Þ � � � � � � gsð1;N hÞ
..
. . .

. ..
.

gsðnr; nhÞ
..
. . .

. ..
.

gsðN r; 1Þ � � � � � � gsðN r;N hÞ

2
666666664

3
777777775

Nr�Nh

ð12Þ

In height and in latitude, the natural basis is obtained by
the singular value decomposition of the electron density
matrix G as

G ¼ URVH ð13Þ

where the superscript H denotes the Hermitian. R is a diag-
onal matrix containing the singular values r in decreasing
order. The matrix U contains left singular vectors and V

has the right singular vectors. If the singular values in R
are plotted, it is observed that most of the energy is cap-
tured in first few singular values. Thus, the singular value
decomposition of G can be approximated as

G �
XNs

ns¼1

rns uns v
H
ns
: ð14Þ

where Ns is the number of significant singular values rns .
Here, the vectors uns and vns denote the first Ns left and
right singular vectors of G, respectively. Then, the basis
functions in Eq. (2) are formed using uns in height and vns

in latitude.
Another commonly used basis in CIT is obtained from

the Legendre functions of the first kind, which are also
called as Legendre polynomials. Legendre polynomials,
Pn(x), where �1 < x < 1, are solutions to the ordinary
Legendre differential equation. Here, n is an integer denot-
ing the order and x is the argument. When the second order
differential equation is represented in spherical coordinates,
the total differential equation in h turns out to be Legendre
differential equation whose solution can be expressed as
Legendre polynomials with argument x = cosh. The range
of h in spherical coordinates is 0 < h < p. Thus, Pn(cosh)
constitutes a natural orthonormal basis set in latitude if
the region of interest extends from 0 < h < p. For any other
region extending from hi to hNh

, the polynomials have to be
modified to form a new orthonormal basis in the region of
interest. One possible way is to scale the polynomials so
that the squeezed polynomials form an orthogonal set in
the region of interest. Further, the squeezed polynomials
have to be orthonormalized by using the Gram–Schmidt
algorithm (Yavuz et al., 2005b). Another way is to truncate
the Legendre functions in the region extending from hi to
hNh

. Since the truncated polynomials will not be orthonor-
mal, Gram–Schmidt algorithm will again have to be used
to obtain orthonormalized Truncated Legendre bases in
latitude (Yavuz et al., 2005b).

Wavelets with their multi-scale structure are plausible
alternatives in the selection of latitude basis functions.
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Haar Wavelets are very easy to generate and implement in
any region of interest in latitude (Yavuz et al., 2005a,b).
Other possible wavelet bases to be used in CIT reconstruc-
tions include spherical Haar and Mexican Hat wavelets.

To obtain robust and computationally efficient estimates
to the electron density distributions, it is important to use
only few number of basis vectors.

The tomographic reconstruction algorithms vary in
terms of their computational complexity and accuracy.
One of the simplest algorithms is Algebraic Reconstruction
Technique (ART) which does not require any explicitly
defined basis functions (Austen et al., 1988; Roerdink,
1992). However, being an iterative technique, it is highly
dependent on the starting estimate of the electron density
distribution.

Regularized least squares (RLS) brings a regularization
to the basic least squares solution as

âRLS ¼ ðPHP� lIÞ�1
PHd; ð15Þ

where l is the regularization coefficient that should be cho-
sen carefully according to the nature of the problem (Go-
lub et al., 2000).

Total least squares (TLS) algorithm assumes that there
are uncertainties in both the model ionosphere matrix
and the measurement vector in Eq. (9), and estimates the
unknown coefficients as

âTLS ¼ ðPHP� r2IÞ�1
PHd; ð16Þ

where r is the smallest non-zero singular value of the aug-
mented matrix [Pjd] and I is the identity matrix. The com-
putational complexity and accuracy of the above
mentioned algorithms are compared in the next section as
they are applied to an example scenario.

4. Results

The RLS, TLS and HART reconstruction algorithms
are applied with SVD, Squeezed Legendre, Truncated
Legendre and Haar Wavelet bases to an ionospheric elec-
tron density reconstruction problem. A CIT scenario is
constructed to compare the computational complexity of
the basis functions and reconstruction algorithms. The ref-
erence electron density is obtained from the IRI-2001
model for [�28� to 28�] latitude interval. The input param-
eters of IRI-2001 for this scenario are provided in Table 1
and the contour plot of the electron density is given in
Table 1
Input parameter set of IRI-2001 for the chosen CIT scenario

Parameter Value

Year, Month, Day, Hour 2003, 08, 05, 15.5
Longitude 34�E
Solar zenith angle 66.5�
Magnetic inclination (dip) �61.56�
Modified dip (modip) �48.83�
Solar Sun spot number (Rz12) 60.6
Ionospheric-effective Solar index (IG12) 71
Fig. 1. Ionosphere is divided into 95 pixels in the vertical
direction and 29 pixels in the latitude direction. Height of
each pixel is 10 km, and the width of each pixel is 2�.
The projections are collected at 0� in [�28� 28�] latitude
interval. There are 57 projections equally distributed in lat-
itude. Electron density in each pixel is assumed to have a
uniform distribution. Ionosphere is assumed to be time
invariant during the computation.

The reconstructed electron density on the grid can be
defined as

ĜsðN ; MÞ ¼
XM

m¼1

XN

n¼1

âm;n ums ðnrÞvnsðnhÞ ð17Þ

where âm;n ¼ âðmþ ðn� 1ÞMÞ represent the estimated un-
known basis function coefficients.

Once an estimate, â, for the basis coefficients is obtained,
the normalized reconstruction error, �(N,M), is defined as

�ðN ; MÞ ¼ kG� ĜsðN ; MÞk
kGk ð18Þ

where iÆi denotes the L2 norm.
The optimum number of latitude and vertical basis func-

tions are important parameters in performance of the
reconstruction algorithms. The optimum number of verti-
cal basis functions are determined by examining the SVD
of the ionospheric electron density profile G in height direc-
tion. The optimum number in height is found to be 3 for
the examined scenario. The optimum number of basis func-
tions in the latitude direction, No, is determined by examin-
ing the reconstruction error in Eq. (18), �(No,3). The
reconstruction error drops sharply as the number of basis
functions increase and settles to a limiting value where fur-
ther increasing the basis number does not change the error
significantly. The optimum number of basis functions in
the latitude, No, is determined as the point where the error
does not change significantly as the number of basis func-
tions increase. For the chosen scenario, all the above men-
tioned reconstruction algorithms and basis function sets
are tried for the lowest possible error and the optimum
number of latitude basis functions in each case is recorded.
In Table 2, a summary of best error performance for a
selection of basis functions and reconstruction algorithms
are provided when SVD basis is chosen for the height. As
can be observed from the results, the minimum number
of basis functions in latitude is obtained for SVD basis of 3.

In Table 2, the overall reconstruction error for the opti-
mum number of basis functions in both height and latitude,
�(No,3), is also provided for various reconstruction algo-
rithms. The contour map of the electron density distribu-
tion obtained from using RLS as the reconstruction
algorithm, SVD basis functions in height and squeezed
Legendre bases in latitude is provided in Fig. 2. The
squeezed Legendre bases actually gives the highest error
for all reconstruction algorithms. Thus, as expected, using
Legendre polynomials as they are within the region of
interest results in very high error and high computational
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Fig. 1. The contour map of the electron density distribution obtained from IRI-2001 model for the region and dates given in Table 1.

Table 2
The optimum reconstruction error performance for certain algorithms and
basis functions for the chosen CIT scenario

Reconstruction algorithm Basis function in latitude No �(No,3)

RLS Squeezed Legendre 34 0.5511
ART – – 0.3324
RLS Truncated Legendre 32 0.2454
TLS Haar Wavelets 26 0.2206
HART – – 0.2191
TLS SVD 3 0.1937
RLS SVD 3 0.1934
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complexity. As stated in the previous section, ART does
not require basis functions and it is an iterative method.
In Fig. 3, the contour map of the electron density distribu-
tion reconstruction using ART is given. Although it is
lower in computational complexity, the error is highly
dependent on the initial state. If the iteration is started with
an uneducated guess such as a zero matrix, the reconstruc-
tion error increases to unacceptable levels. Truncated
Legendre bases with TLS or RLS algorithms reduces the
reconstruction error to almost half of the squeezed Legen-
dre bases errors. Thus, if Legendre polynomials are trun-
cated to the region of interest and orthonormalized, the
reconstruction error reduces significantly. Using wavelet
basis further reduces the error for both RLS and TLS.
Haar Wavelets are very easy to generate and implement
to the desired region of interest. The optimum numbers
of latitude bases for Haar Wavelets for RLS and TLS are
also lower than those for the Legendre bases. The contour
map of the electron density distribution obtained from
using TLS as the reconstruction algorithm, SVD basis
functions in height and Haar Wavelet bases in latitude is
given in Fig. 4. When the reconstructed electron density
distribution in Fig. 4 is used as the initial state of the
ART algorithm, a fast and low computationally complex
reconstruction is obtained with reduced error as given in
Table 2. The lowest number of optimum bases in height
and latitude and the best error performance is obtained
when SVD bases is used. Only for K = 9 or M = 3 and
No = 3, the lowest error in reconstruction is obtained both
for RLS and TLS algorithms. The contour map of the elec-
tron density distribution obtained from using regularized
least squares as the reconstruction algorithm, SVD basis
functions in both height and latitude is given in Fig. 5.
Since SVD provides the natural basis for the region of
interest, the reconstructions are very successful even
though the projections are collected at only one position.
As the number of projections and collection positions
increase, it is expected that the reconstruction errors will
further decrease.
5. Conclusions and future work

In this study, the error performance of RLS, TLS, ART
and HART algorithms are investigated when they are used
with SVD bases in height and Squeezed Legendre,
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Fig. 2. The contour map of the electron density distribution obtained from using regularized least squares as the reconstruction algorithm, 3 SVD basis
functions in height and 34 squeezed Legendre bases in latitude.
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Fig. 3. The contour map of the electron density distribution obtained from using algebraic reconstruction technique which does not require any bases.
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Fig. 4. The contour map of the electron density distribution obtained from using total least squares as the reconstruction algorithm, 3 SVD basis functions
in height and 26 Haar Wavelet bases in latitude.
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Fig. 5. The contour map of the electron density distribution obtained from using regularized least squares as the reconstruction algorithm, 3 SVD basis
functions in height and 3 SVD basis functions in latitude.
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Truncated Legendre, Haar Wavelet and SVD bases in lat-
itude for an example scenario. The IRI-2001 is used as the
reference model in the serial expansion method and the
measurements are obtained again from IRI-2001 by inte-
grating the electron density in the pixels on the ray path.
The reconstruction errors for the optimum number of lat-
itude basis functions are provided for the chosen scenario.
It is observed that SVD bases, which are the natural bases
of the chosen distribution, provide the most successful
reconstruction with the least computational complexity.
As the number of bases increases, the reconstruction error
decreases. The iterative algorithms such as ART are very
sensitive to the initial state. When the initial state is chosen
as the reconstruction of electron density distribution using,
for example, TLS algorithm and Haar Wavelet basis func-
tions, the reconstruction error in ART can be reduced sig-
nificantly. It is expected that the reconstruction error to be
further reduced when multiple satellites and receivers are
used. In the future, this study will be extended to other lat-
itude ranges and for various states of the ionosphere. The
synthetic data will be replaced by the TEC values com-
puted from the GPS recordings. The analytic expressions
will be derived for multiple satellite and receiver cases.
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