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Abstract

In this paper we describe a new, multi-graph approach for development of a comprehensive set of complexity

management techniques for interactive graph visualization tools. This framework facilitates efficient implementation of

management of multiple associated graphs with navigation links and nesting of graphs as well as ghosting, folding and

hiding of unwanted graph elements. The theoretical analyses show that the involved data structures and operations on

them are quite efficient, and an implementation in a graph drawing tool has proven to be successful.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Graphs are commonly used to model relational

information that arises in numerous areas including

Web analysis, relational databases, biochemical net-

works, telecommunication networks, financial analysis,

software engineering and geographical studies. Elements

are the nodes in a graph; relations or links are the edges

in a graph. The usefulness of the relational model

depends on whether the drawing, or the layout, of the

graph effectively conveys the relational information to

the users. A poorly drawn diagram with a large number

of graph elements confuses the user of an application,

while a well laid out diagram with a reasonable number

of graph elements improves the user’s comprehension of

the data.
e front matter r 2005 Elsevier Ltd. All rights reserve
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Considerable amount of research in graph drawing

[1,2] has been done over the past couple of decades. As

graphical user interfaces have improved, and more state-

of-the-art software tools have incorporated visual

functions, interactive graph editing and diagramming

facilities have become important components in visua-

lization systems. The increase in the size of the

information (e.g., size of information databases and

the complexity of their structures) to be visualized forced

the demand for more sophisticated complexity manage-

ment techniques for many applications (see Fig. 1 for

examples of complex real-life graphs).

In this paper, we present a comprehensive framework

for visualizing complex graphs with the help of a variety

of techniques. This framework meets the industry

requirements for generality (works for all sorts of

directed and undirected graphs), efficiency (works well

within an interactive tool), and extendibility (can be

easily customized).

The base structure of our framework is a graph

manager, which is an extension of the well-known
d.
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Fig. 1. Examples of complex real-life graphs with nesting and intergraph relations from biology and software modeling (courtesy of

Tom Sawyer Software).
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compound graphs [3,4]. A graph manager is defined as a

collection of related simple graphs (i.e., graphs without

any nesting or inclusion) and methods to apply changes

on these graphs. Therefore, it represents both the

underlying data structures and the operations defined

on these structures. The most significant and novel

features of this framework can be summarized as

follows:
�
 It is based on a new structure, namely graph manager,

which consists of multiple, possibly independent

simple graphs. Multiple graphs allow us to define

isolated abstraction levels.
�
 It is mainly designed for interactive use and dynami-

cally changing data. The topology of a graph manager

may be efficiently edited. The clear separation of

abstraction levels increase the efficiency of interactive

operations performed locally on a single graph.
�
 Most common complexity management operations

(e.g., expanding and collapsing a node, folding a

group of nodes, and hiding parts of a graph manager)

can be efficiently implemented on top of the graph

manager structure.
�
 Empirical results of an implementation of the system

verifies that the framework satisfies industry stan-

dards for generality and efficiency.
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2. Related work

A good deal of research has been conducted and

results have been incorporated into various frameworks

and tools to solve the complexity management problem

for complex and/or large graphs. Some studies [5,6,3]

describe how to extend graphs with a hierarchical

structure. Some frameworks were designed to specifi-

cally create clusters based on a given data set [7,8]. HGV

[9] is a framework with support for multiple views and

hierarchies. Systems for efficient layout of compound

graphs have also been proposed [10].

There are many techniques proposed for navigating

and visualizing very large graphs. Sarkar and Brown

describes the fisheye view [11,12] approach for complex-

ity management in large graphs. In [13,14] authors

explain techniques of expanding and collapsing certain

nodes of a hierarchical graph representation to obtain

different views of the compound graph, with extensive

technical analysis of each operation using different data

structures. A survey of techniques for graph visualiza-

tion and navigation can be found in [15].

VCG [16] is a tool that uses the compound graph

structure, with the ability to fold nodes and edges under

certain cases and hide edges of specific types. D-

ABDUCTOR [17] is another tool based on compound

graphs [3]. It supports information hiding via expand

and collapse operations. Higres [18], on the other hand,

is a visualization system for clustered graphs and

handles compound graphs. Huang and Eades describes

DA-TU [19], another interactive system based on

compound graphs, designed for clustering and navigat-

ing huge graphs.

A graph manager consists of multiple associated

graphs whereas other tools based on compound graphs

usually consist of a single flat graph with an inclusion

tree built on it. This allows us to isolate abstraction

levels from each other when needed. This way opera-

tions on a certain part of the topology might be handled

with minimal interference to other parts.

Previous studies have been mostly based on visualiza-

tion of static graphs. However, we propose an interactive

framework where the user is capable of dynamically

changing the topology of each graph independently or

the graph manager as a whole as well as changing his/her

viewpoint as desired. The supporting structures inside a

graph manager facilitate much simpler implementations

of complexity management operations.

Most previous frameworks focus on a certain limited

set of complexity management operations. Some of them

only offer visual methods like panning, zooming and

fisheye views; others allow expanding and collapsing the

nodes of the compound graph, while others propose

hiding unwanted parts of the topology. Our framework

offers mechanisms for efficiently implementing the most

comprehensive complexity management tools.
3. Graph managers

A graph G is defined by two finite sets V and E, such

that E � ½V �2. The elements of V are the nodes (or

vertices) of G, and the elements of E are the edges of G.

An edge e is given as ðu; vÞ, where u 2 V is the source

node of e and v 2 V is the target node of e.

A rooted tree T is defined by a node set V , an edge set

E, and a node r, such that for every node a 2 V � frg,

there is a unique path p from r, the root of the tree, to a.

A graph manager M ¼ ðS; I ;F Þ is a structure based on

compound graphs, defined by a graph set S ¼

fG1;G2; . . . ;Glg, an intergraph I, and a navigation forest

of rooted trees F ¼ ðVF ;EF Þ ¼ T1 [ T2 [ � � � [ Tk.

Each graph Gi 2 S, each node v 2 VGi , and each edge

e 2 EGi is represented by a distinct node in VF . For each

node v 2 VGi , there exists an edge ðGi; vÞ 2 EF and for

each edge e 2 EGi , there exists an edge ðGi; eÞ 2 EF ,

representing ownership relations in the graph manager.

Then Gi is called the owner of v (or e); conversely v (or e)

is called a member of Gi.

A navigation link associates a member of a graph and

another graph. Each such link is represented in the

navigation forest by an edge ðm;GiÞ 2 EF between a

node or an edge m and a graph Gi, where Gi is not the

owner of m. We say the graph member m navigates to

the associated graph Gi; and Gi is said to be the child

graph of the parent member m. Conversely, the owner of

the graph member m is called the parent graph of Gi.

Another way of associating two different graphs in a

graph manager M ¼ ðS; I ;F Þ is via the intergraph edges,

maintained by the intergraph I. Let u 2 VGi and v 2 VGj

be two nodes where GiaGj and Gi;Gj 2 S. Then the

edge ðu; vÞ is called an intergraph edge, representing a

relation between objects (nodes) that belong to different

entities, graphs Gi and Gj in this case.

Overall a graph manager is not only responsible for

maintaining a set of graphs but also their interrelations,

through navigation links and intergraph edges. The

contents of the graphs along with navigation links

in a graph manager can be represented by a directed

navigation forest, defining the ‘‘skeleton’’ of the

graph manager. An example navigation forest and

a pictorial representation of the graph manager with

this navigation forest are given in Figs. 2 and 3,

respectively. The navigation forest provides a clean,

dynamic way of navigating through the graph manager

contents.

Graph managers provide a better representation and

clean separation of abstraction levels. In a typical

compound graph representation, all the nodes and edges

are placed in a single flat graph structure, and

abstraction is provided virtually via inclusion trees. A

graph manager, on the other hand, allows placement of

graph members into different graphs, thus permitting

solid boundaries between members of each graph.
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Fig. 2. The navigation forest of a graph manager, representing

both ownership (solid) and navigation (gradient) links.

Fig. 3. A pictorial representation of the graph manager with

the navigation forest in Fig. 2. The gradient arrows show the

navigation links and the dashed edges are the intergraph edges.
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Interactive graph editing operations are transparent

to a graph manager. Whenever we add or remove a node

or an edge to one of the graphs of a graph manager, only

that graph is directly affected from this operation; others

are not notified of this change. This allows simpler local

manipulations of a graph.

Accessing the edge set of a single graph is much easier

with this structure as each graph keeps its own list of

nodes and edges. In a compound graph structure, access

of edges in a certain abstraction can be obtained by first

collecting a list of nodes belonging to that abstraction,

and then traversing over all the edges to determine

whether both its ends belong to this abstraction.

In our framework, the intergraph is a special graph

which only stores intergraph edges (no nodes), and is not
placed in the graph list of a graph manager. This

facilitates traversal over intergraph edges in time, linear

in the number of intergraph edges. A node incident with

an intergraph edge stores the intergraph edge locally but

in an incident edge list different from regular edges. Thus,

we can selectively iterate over regular, intergraph, or both

types of incident edges of a given node as desired, in time

linear in the number of desired incident edges.
4. Drawing managed graphs

Drawing the structures inside a graph manager

requires many additional structures on top of the ones

described earlier. At the drawing layer every graph

member has a geometry describing the location, dimen-

sion or routing of the member in its owner graph. Some

elements like the node and edge labels, have their

coordinates maintained relative to their owner graph

members. Briefly the major design criteria are as follows:
�
 Ability to define flexible viewports from any graph of

the graph manager.
�
 Capability to visualize inclusion relations among

graphs through navigation or nesting.
�
 Support for editing any part of the graph manager

which is currently visible to the user.
�
 Fast and efficient structures for local graph drawing

operations like moving and resizing nodes inside the

graph bounds.
�
 Ability to layout each graph with possibly different

styles and parameters.
�
 Efficient visualization of intergraph edges.
�
 A representation for unviewable intergraph edges.

4.1. Main graph and navigation

A main graph is the drawing and transformation base

for all other items in a graph manager. The architecture

supports viewing the elements of the manager from

different points of the structure. The nodes and edges in

the main graph are rendered using a simple transforma-

tion from the graph coordinates to the device coordi-

nates. If the graph manager has multiple graphs

associated with navigation links, the user might want

to change the main graph by following the navigation

links (e.g., navigate to the parent or child graph),

displaying one graph at a time.

4.2. Nesting

A nesting of a graph in its parent node, is a visual

representation of an inclusion relation, facilitating the

drawing of multiple graphs simultaneously. The node

within which a graph is nested is said to be expanded. In
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Fig. 5. Three graphs of a graph manager nested with varying

scroll and zoom levels. Currently unviewable parts of the nested

graph C is shown faded for clarity.
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our architecture, a navigation link is simply an abstract

symbolic relation between a node and a graph, which

may be optionally realized in a drawing using nesting.

The structure of the nesting relations are stored in a

nesting forest, where the nodes represent nested graphs

and edges represent expanded nodes in which these

graphs are nested. Fig. 4 shows a graph manager and the

associated nesting forest. The plus sign on a node

indicates that the node has a navigation link to another

graph, but the child graph is not currently nested. Thus,

there is an edge between the node and the graph in the

navigation forest, but not one in the nesting forest.

Notice that edges may not be expanded; nevertheless

they allow navigation through them.

When multiple graphs are to be displayed simulta-

neously, only the main graph’s coordinates are directly

used, the other graphs’ member coordinates should first

be transformed into the coordinate system of the main

graph. For efficient handling of these transformations, a

unique transformation matrix is maintained by each

nested graph to transform its members’ coordinates to the

coordinates of its parent graph. This facilitates separate

zoom and scroll levels for each graph. Fig. 5 shows a

drawing with three nested graphs. A node in Graph A is

expanded to provide a viewport for its child graph’s

(Graph B) contents. Because of its current zoom and

scroll levels Graph B contents are only partially visible.

This design brings certain benefits during visualization

of the graph objects. For instance, when the coordinates

of a node with a child graph nested into it is updated, the

coordinates of the child graph objects remain un-

changed; it suffices to change the coefficients of the

associated transformation matrix so that each child

graph object reports the right transformed coordinates

with respect to the main graph for operations such as

rendering and hit-testing. On the other hand, when

working within a single nested graph, local coordinates

may be used without any transformation, forming an

isolated workspace for operations such as layout. In

addition, this separation of graphs and use of separate
Fig. 4. Left: Drawing of a graph manager with multiple levels

of nesting realized. Right: The corresponding nesting forest.
independent coordinate systems allows us to apply

different layout techniques to each abstraction. For

instance, a naive implementation may layout each graph

at the leaves of the navigation forest independently in its

own coordinate system. Then the parent nodes of each

such graph may be treated as single (larger) nodes in

their owner graphs, and can be laid out possibly in a

different style, resulting in a bottom-up layout approach

for multiply nested graphs. Of course the intergraph

edges need to be routed in a post-processing step as well.

An example may be found in Fig. 6.

Our framework also supports editing a nested graph

directly without navigating to it through the links, a

feature called in-place editing. This is simply done by

first applying an inverse transformation (inverses of

matrices used for drawing and hit-testing graph objects)

from the input device coordinates to the local graph

coordinates. This helps the user work on the ‘‘big

picture’’ without having to focus on a limited part of a

graph manager.

4.3. Intergraph edges

Maintenance and drawing of intergraph edges present

a difficult issue since normally an edge’s coordinates are

stored in the coordinate system of its owner graph but

intergraph edges are not directly a member of any graph.

Since their end-nodes are placed in different graphs, they

partly belong to different coordinate systems. We store

the bend points of an intergraph edge in the coordinate

system of the lowest common ancestor graph of the

intergraph edge as this is most prone to changes in

coordinates (e.g., a change in the transformation matrix

of the owner graph of an end-node). A lowest common

ancestor graph for an intergraph edge is the graph
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furthest to a root in the navigation forest, which is an

ancestor of both end-nodes.

4.4. Meta edges

Not all graph elements that belong to a graph

manager will be viewable at all times. A graph is said

to be viewable if it is immediately or deeply nested within

the current main graph; unviewable otherwise. A graph

element is viewable if it is owned by a viewable graph.

Thus an intergraph edge will be unviewable unless both

its end-nodes are viewable. Alternatively, an intergraph

edge is said to be viewable if and only if the lowest

common ancestor graph of the intergraph edge is a

descendant of the main graph in the nesting forest.

Additionally, an intergraph edge is said to be reachable

if and only if the lowest common ancestor graph of the

intergraph edge is connected to the main graph in the

navigation forest of the graph manager. Note that when

an intergraph edge is removed (might be a temporary

removal such as one during a hide operation), the edge is

also considered to be unreachable. If an intergraph edge

is reachable but unviewable, then a meta edge is created

between the two respective nodes in which the source

and target of this intergraph edge is hidden (Fig. 7). This

way the user can still realize the relationship between the

underlying objects.
Fig. 7. Left: Graph B nested inside a node has incident intergraph

therefore not drawn when graph B is unnested. The meta edges (in r

Fig. 6. Different layout techniques applied to each graph inside

a graph manager.
One can clearly identify conditions under which an

intergraph edge should be represented by a meta edge,

and conditions under which a meta edge should be

discarded to reveal the associated intergraph edge(s).

Firstly, we can only visualize a reachable and viewable

intergraph edge. In addition, it is impossible to have a

viewable but unreachable intergraph edge. Table 1

summarizes all different states and transition conditions

among those states for an intergraph edge; actions

referred to in the table are as follows:
(1)
edg

ed) r

Tab

Con

and

‘‘un

Init

R–V

R–U

UR
Do nothing.
(2)
 A corresponding meta edge is created whenever a

reachable and viewable intergraph edge becomes

unviewable but stays reachable.
(3)
 The intergraph edge now becomes viewable so we do

not need to represent it via a meta edge anymore. If

this intergraph edge is the only edge represented by

the meta edge, then remove the meta edge and

display the intergraph edge. Otherwise, display the

intergraph edge as well as the meta edge.
(4)
 The intergraph edge was already being represented

by a meta edge, but now we may need a new meta

edge to represent the intergraph edge. So, if needed,

create a new meta edge for the intergraph edge,

otherwise, the old meta edge keeps representing the

intergraph edge.
es. Right: These intergraph edges become unviewable and

epresent the underlying intergraph relations.

le 1

ditions and transitions for an intergraph edge; V, R, UV

UR stand for ‘‘viewable’’, ‘‘reachable’’, ‘‘unviewable’’ and

reachable’’, respectively

ial state Ending state Action taken

R–V (1)

R–UV (2)

UR–UV (1)

V R–V (3)

R–UV (4)

UR–UV (5)

–UV R–V (1)

R–UV (6)

UR–UV (1)
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(5)
 The intergraph edge was already being represented

with a meta edge, but now the intergraph edge is

removed. If the meta edge was representing only this

intergraph edge, then discard the meta edge, other-

wise, keep the meta edge.
(6)
 The intergraph edge was inserted back, but it is

still unviewable by default, so we create a meta edge

for it.
For efficiency reasons, a meta edge is created only when

it will be viewable. Furthermore, a single (compressed)

meta edge may represent multiple edges, helping

reduction of complexity. This is especially useful when

we have a significantly smaller nesting forest compared

to the size of the navigation forest.
5. Complexity management operations

In preceding sections, the structure of our framework

and the way it handles multiple associated graphs with

nesting relations have been described. This section will

detail out and present an analysis of the complexity

management operations built on this structure.

It is crucial that such operations are efficient enough

to be used as part of an interactive graph drawing and

editing tool. Our framework allows one to efficiently

implement the complexity management operations

described previously. With the help of the nesting forest,

basic operations such as finding a graph that is deeply

nested into a node takes time linear in the order of the

number of graphs in the graph manager. Similarly,

building a list of graphs or nodes deeply nested into a

node is linear in the number of graphs.

Next we look into some important basic and

supplementary operations followed by a discussion of

complexity management operations.

One basic operation is finding the lowest viewable

ancestor of a node, which is done in OðdNF Þ time, where

dNF is the depth of the tree the main graph belongs to in

the navigation forest. We simply navigate over the

navigation tree, starting from the node under considera-

tion to the root of the tree, until we find a viewable

ancestor.

Finding the lowest common ancestor of two nodes (or

an edge) is again a basic operation with OðdNF Þ time

complexity as follows. In this algorithm, both steps have

time complexity of OðdNF Þ:

Algorithm LOWESTCOMMONANCESTOR (node1; node2)

(1) Mark all ancestors of node1 as traversed

(2) Iterate the ancestors of node2 to find a previously

marked ancestor

Node insertion is straightforward and can be performed

in constant time complexity. However, edge insertion
requires more effort. If the edge is a normal edge, then

the insertion again takes constant time. If the edge to be

inserted is an intergraph edge, on the other hand, then

OðdNF Þ time is required as described below:
Algorithm INSERTINTERGRAPHEDGE(node1; node2)

(1) Insert edge as a normal intergraph edge

(2) if node1 or node2 is unviewable then

(3) v1 ¼ FindViewableAncestorðnode1)

(4) v2 ¼ FindViewableAncestorðnode2)

(5) Create a meta edge between v1 and v2
(6) endif
Steps (1) and (5) are of Oð1Þ time, and Steps (3) and (4)

are of OðdNF Þ time, resulting in an overall time

complexity of OðdNF Þ.

Edge removal is favorably easier than insertion

assuming each edge keeps a reference to its meta edge.

However, maintenance of this reference brings an extra

space requirement and may be omitted, sacrificing speed

for space. The algorithm is as follows:

Algorithm REMOVEINTERGRAPHEDGE(intergraphEdge)

(1) Remove intergraphEdge from intergraph

(2) if intergraphEdge was unviewable before removal

then

(3) if its meta edge is only for this intergraphEdge

then

(4) Discard its meta edge

(5) else

(6) Remove intergraphEdge from associated edge

list of its meta edge

(7) endif

(8) endif

Steps (1), (4) and (6) require Oð1Þ time to complete.

Thus, the overall time complexity of the algorithm is

Oð1Þ.

Other supplementary operations can also be imple-

mented efficiently using our framework. For instance,

the average time complexity of hit testing of objects

in a graph is OðdNT � nÞ where dNT is the depth of

the nesting tree and n is the number of objects in the

graph. Assuming graph objects are uniformly distrib-

uted to the graphs and the nesting forest is a balanced

tree with constant non-leaf vertex degrees, the average

complexity turns out to be OððnGM þmGM Þ=g lg gÞ,

where nGM , mGM , and g stand for the total number of

nodes, edges, and graphs in the graph manager,

respectively.

5.1. Expand/collapse

An expand operation is applied on a node, which has

a navigation link to a child graph, to form a nesting

relation between the node and the graph. A collapse

operation is applied on a node, which has a nesting
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relation with a graph, to undo the nesting relation. Note

that collapsing a node does not break its navigation link.

Most applications require multiple levels of abstrac-

tion, where the user would like to visualize the

information with varying levels of abstraction for

different parts of the drawing. At any time during

visualization, we may want to view a single portion of

the whole manager. If this portion defines a subtree in

the skeleton of our graph manager, then we can set our

main graph as the root of this subtree and view only that

part. Via the collapse operation, we can hide the nested

graph of a node (avoiding inclusion) and draw it as a

normal node.

In Fig. 8, there are two different views of the same graph

manager. On the left, the graphs A and B are nested into

their parent nodes, whereas on the right these parent nodes

are collapsed to unnest graphs A and B, respectively.

Collapse is one of the more sophisticated operations:

Algorithm COLLAPSE(node)

(1) Mark all graphs to be affected from the operation

(2) Build affected intergraph edges list

(3) Create/assign meta edges for all affected intergraph

edges

Step (1) is handled in OðgÞ time, where g denotes the

number of graphs in the graph manager, by simply

navigating over the nesting forest. Step (2) can be

finished in OðmIGÞ time, by iterating over all edges of the

intergraph and checking whether the owners of both end

nodes of the intergraph edges are marked, where mIG

denotes the number of edges in the intergraph. Step (3)

has OðmIG � dNF Þ time complexity. Thus the overall time
Fig. 8. Two different nestings of the same graph mana
complexity is OðmIG � dNF Þ, assuming g is much smaller

than mIG � dNF .

Expand operation can be defined as follows:
Algorithm EXPAND(node)

(1) Build a list of affected meta edges

(2) Discard affected meta edges

(3) Insert revealed intergraph edges
Step (1) may be handled in OðmIGÞ time. However, using

more space, we can decrease the time complexity if we

keep a meta edge list for each collapsed node. This

lowers the time complexity to the order of the number of

meta edges connected to the node to be expanded, mmeta,

which is in the worst case equal to mIG , but on the

average far smaller than mIG. Step (2) is trivial and

requires OðmmetaÞ time. Step (3) is normal edge insertion

which is OðdNF Þ per single edge. Since we have mmeta

edges the overall complexity is Oðmmeta � dNF Þ.

5.2. Folding/grouping

A fold operation is applied to a group of graph members,

and results in a new (folder) node and its new child graph

with these members. The folder node is created in collapsed

state (reducing the graph’s size) and may subsequently be

expanded to nest the folded contents of the child graph.

Another common way of using this facility is by first

creating an empty folder and consequently filling its

contents. At any time, an unfold operation may be applied

on a folder node to reverse the effects of the fold operation.

Often times members of a graph need to be put

together according to some criteria to emphasize certain
ger realized with expand and collapse operations.
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grouping. This can be achieved through folding followed

by an expand operation, enabling all the group members

to be gathered in the newly created child graph.

Currently the framework does not support over-

lapping groups, since a node may not exist in two or

more different graphs’ topologies. However, during the

implementation of the framework, multiple views for a

single node could be allowed. Although, this will not let

us draw overlapping groups, a node could have multiple

views under multiple folders at the same time.

Fig. 9 shows a single graph with 15 nodes in it. A fold

operation on the selected node set (with highlighted

borders) results in the graph manager on the right. A

new folder node is created inside the graph and a new

child graph is created for this new node. Then the

selected nodes and their edges are transferred into this

newly created child graph. The edges of A, B and C

whose one end is now inside the folder are converted to

intergraph edges, and represented by meta edges since

they are not viewable.

Following is the pseudo code for the fold operation:

Algorithm FOLD(nodeList)

(1) Transfer all nodes in the nodeList to newly created

child

graph of folder node

(2) Build a list of all affected edges using nodeList

(3) foreach edge in the affected edges list do

(4) Remove edge from its old owner graph

(5) Insert edge to its new owner graph

(6) endfor
Fig. 9. An example of t
Step (1) consumes OðnGM Þ time, where nGM is the total

number of nodes in the graph manager. Step (2) is

trivially OðmGM þmIGÞ by iterating over nodeList and

building a combined edge list from their connected

edges. Step (3) iterates mGM þmIG times in the worst

case, Step (4) is of Oð1Þ, and Step (5) has OðdNF Þ time

complexity. Thus the overall time complexity of the

algorithm is OðnGM þ ðmGM þmIGÞ � dNF Þ. Assuming

mGM is larger than both nGM and mIG, we can simplify

the time complexity as OðmGM � dNF Þ.

Unfold has almost the same algorithm with fold,

except nodeList is the set of all nodes of the child graph

of the unfolded node, and the transfer occurs from the

child graph to the owner graph of the unfolded node.

Overall time complexity is again OðmGM � dNF Þ.

5.3. Invisibility/hiding/ghosting

A graph member is said to be invisible when it is not

rendered on the display; yet it is part of the graph

topology. Hiding, on the other hand, is used to avoid

any means of user interaction on a set of graph

members, and temporarily removes graph contents from

the graph topology as well. When a member of a graph

is hidden, it is removed from its owner graph and placed

in a special graph called the hide graph. Each graph in

the graph manager has a hide graph associated with it.

Any set of graph members may later be unhidden

reversing the hide operation’s effects. These members

are removed from the hide graph and transferred

back to the original owner graph. So, one can think
he fold operation.
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of a hide graph as a special folder to hold the hidden

graph elements, where the folder node is neither

included in the graph topology nor has a visual

representation.

Ghosting can be used to visually decrease the

importance of a graph member by means of changing

its color and/or brightness of its skin, and sending it to

the background, ‘‘behind’’ other members. Unlike

hiding, ghosting only tries to lose focus on the ghosted

member but the member is still there both visually and

topologically; that is, the user may still interact with it.

These operations are demonstrated in Fig. 10. The

graph manager on the left has eight nodes. On the right,

we have the same graph manager after hiding E,

ghosting A, and setting D invisible. Upon hiding E, E

and its incident edges are moved to the hide graph of its

owner graph. Ghosting A makes A along with its

contents ghosted. Also, all intergraph edges which has

one end-node under A are also ghosted. Setting D

invisible does not move it to the hide graph but it is not

drawn in its owner graph anymore.
6. Implementation

Fig. 11 shows a class diagram summarizing the

framework architecture. In this diagram, only the major

inheritance and aggregation relations along with sig-

nificant data and functionality of each class have been

included. The underlying classes might be classified into

two: abstract level graph manager and its components,

and the corresponding drawing level classes.
Fig. 10. Hiding, ghosting and invisibil
Major parts of our framework and most complexity

management operations discussed earlier on have been

successfully implemented and integrated into Tom

Sawyer Software’s Graph Editor Toolkit for Java,

version 5. Left of Fig. 12 shows a network (around a

hundred PCs, several printers, a few network devices

such as servers and routers, etc.) after several steps of

complexity management operations including folding of

PCs in a lab together, hiding printers and PCs currently

unavailable for use. On the right is the same network

with varying levels of details of the server revealed

through nesting as well as the PCs in certain labs being

unfolded for detailed analysis. Of course, some real life

applications such as a call graph or a network of a large

university campus could be of much higher complexity.

In a graph of that kind, benefits of complexity manage-

ment techniques become much clearer.

We have performed experiments on execution time of

the complexity management operations (including ex-

pand/collapse, and fold) on different data set (on a PC

with Pentium III 733MHz CPU and 256MB memory).

Each test was executed 10 times and the average time is

used as the result. The graph managers used in the tests

are created randomly and uniformly. We have assumed

a binary navigation tree for these graph managers with

total number of nodes and edges uniformly distributed

among the graphs. Also intergraph edges were distrib-

uted uniformly among the graphs such that any two

arbitrary graphs in the graph manager have almost an

equal number of intergraph edges connected to their

nodes.

All test results are in accord with the theoretical

bounds. However, due to space considerations we will
ity realized on a graph manager.
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Fig. 11. A class diagram showing important parts of our framework design.

Fig. 12. Left: A map of a computer network after a series of complexity management operations applied. Right: The same network

with certain desired parts revealed for detailed analysis.
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give a sample test case where the operation to be tested is

Fold and the parameter to be tested is nGM . We started

the test with a graph of 1000 nodes, 2000 edges and 100
intergraph edges. Hence a navigation tree of depth 3 is

constructed with exactly 7 graphs. Then at each step the

number of nodes in the graph manager is increased all
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Fig. 13. Affect of nGM on fold. (mGM ¼ 2000; mIG ¼ 100).
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the way up to 2000, without changing the number of

edges and intergraph edges. The plot obtained from

these tests is given in Fig. 13. It clearly shows the

contribution of nGM in the Fold operation to the

execution time is linear (the theoretical time complexity

of Fold was found to be OðnGM þ ðmGM þmIGÞ � dNF Þ).
7. Conclusion

We have described a comprehensive framework for

development of complexity management techniques for

interactive graph visualization tools. The architecture

supports management of multiple associated graphs on

which various complexity management operations such

as navigation, folding, and nesting may be applied.

Clear separation of abstractions facilitates more efficient

manipulation of both the topology and the geometry of

graphs. The implementation as well as the theoretical

analysis of this framework show that the involved data

structures and algorithms are efficient enough to be used

within an interactive graph drawing and editing tool.
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