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a b s t r a c t

We consider the problem of optimal portfolio choice using the lower partial moments
risk measure for a market consisting of n risky assets and a riskless asset. For when the
mean return vector and variance/covariancematrix of the risky assets are specifiedwithout
specifying a return distribution, we derive distributionally robust portfolio rules. We then
address potential uncertainty (ambiguity) in the mean return vector as well, in addition to
distribution ambiguity, and derive a closed-form portfolio rule for when the uncertainty in
the return vector is modelled via an ellipsoidal uncertainty set. Our result also indicates a
choice criterion for the radius of ambiguity of the ellipsoid. Using the adjustable robustness
paradigm we extend the single-period results to multiple periods, and derive closed-form
dynamic portfolio policies which mimic closely the single-period policy.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The purpose of this paper is to give an explicit solution to the optimal portfolio choice problem by minimizing the lower
partial moment risk measure of mean semi-deviation from a target return under distribution and mean return ambiguity
using a robust optimization (RO) approach.

Portfolio optimization in single andmultiple periods, using different criteria such asmean–variance and utility functions,
has been studied extensively; see, e.g., [1–14]. In particular, Hakansson [5] treats correlations between time periods while
Merton [8,9,15] concentrates on continuous-time problems. These references usually consider a stochastic model for the
uncertain elements (asset returns) and study the properties of an optimal portfolio policy. An important tool here is
stochastic dynamic programming.

The philosophy of robust optimization (RO) [16,17] is to treat the uncertain parameters in an optimization problem
by confining their values to some uncertainty set without defining a stochastic model, and find a solution that satisfies
the constraints of the problem regardless of the realization of the uncertain parameters in the uncertainty set. It has been
applied with success to single-period portfolio optimization; see, e.g., [18–21]. The usual approach is to choose uncertainty
sets that lead to tractable convex programming problems that are solved numerically. In the present paper, we instead
find closed-form portfolio rules. In the case of multiple-period portfolio problems, RO was extended to adjustable robust
optimization (ARO), an approach that does not resort to dynamic programming, and ismore flexible than the classical RO for
sequential problems, but may lead to more difficult optimization problem instances; see [22,23]. A related approach, which
is data-driven with probabilistic guarantees and scenario generation, is explored in e.g. [24].
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The optimal portfolio choice problem using lower partial moments risk measures under distribution ambiguity was
studied by Chen, He and Zhang in a recent paper [25] in the case of n risky assets. The authors assumed that the mean
return vector µ and variance–covariance matrix Γ of risky assets are fixed, and compute portfolios that are distributionally
robust in the sense that they minimize a worst-case lower partial moment risk measure over all distributions with fixed
first-moment and second-moment information. They obtained closed-form distributionally robust optimal portfolio rules.
In the present paper we first extend their result to the casewhere a riskless asset is also included in the asset universe, a case
which is an integral part of optimal portfolio choice theory. The inclusion of the riskless asset in the asset universe simplifies
considerably the optimal choice formula in some cases as we shall see below in Theorem 1. A criticism levelled against the
distributionally robust portfolios of Chen et al. [25] is the sensitivity of these portfolios to uncertainties or estimation errors
in the mean return data, a case that we refer to as mean return ambiguity; see [18]. To address this issue, we analyse the
problem for when the mean return is subject to ellipsoidal uncertainty in addition to distribution ambiguity and derive
a closed-form portfolio rule. Since the majority of contributions in robust portfolio optimization aim at providing convex
optimization formulations our explicit portfolio rule constitutes a worthy addition to the literature. Our result is valid for
choices of the ellipsoidal uncertainty (ambiguity radius) parameter ϵ not exceeding the optimal Sharpe ratio attainable
in the market. Furthermore, the difference between the optimal mean semi-deviation risk under distribution ambiguity
only and the same measure under joint uncertainty in distribution and mean return may also impose an optimal choice of
ϵ, an observation which we illustrate numerically. For other related studies on portfolio optimization with distributional
robustness, the reader is referred to [19,26,27]. We also obtain optimal dynamic portfolio rules using the adjustable robust
optimization paradigm [22,23] for both cases of distribution ambiguity and expected return ambiguity combined with
distribution ambiguity. The resulting portfolio rules are myopic replicas of the single-period results. The plan of the paper
is as follows. In Section 2 we derive the optimal portfolio rules under distributional ambiguity for two measures of risk in
the presence of a riskless asset. We study the multiple-period adjustable robust portfolio rules in Section 3. In Section 4, we
derive the optimal portfolio rule for themean squared semi-deviation from a targetmeasure under distributional ambiguity
and ellipsoidalmean return uncertainty.We also discuss the optimal choice of the uncertainty/ambiguity radius for themean
return. The multiple-period extension is given in Section 5.

2. Minimizing lower partial moments in the presence of a riskless asset: single period

The lower partial moment risk measure LPMm for m = 0, 1, 2 is defined as

E [r − X]m
+

for a random variable X and target r . We assume, in addition to the n risky assets with given mean return µ and
variance–covariance matrix Γ , that a riskless asset with return rate R < r exists. If R ≥ r , then the benchmark rate is
attained without risk, i.e. the lower partial moment LPMm is minimized taking value 0 by investing entirely in the riskless
asset. Denote by y the variable for the riskless asset, for handling it separately, and by e the n-dimensional vector of entries
1; the LPMm minimizing robust portfolio selection model under distribution ambiguity is

RPRm = min
x,y

sup
ξ∼(µ,Γ )

E

r − xT ξ − yR

m
+

(1)

s.t xT e + y = 1. (2)

We use the notation ξ ∼ (µ, Γ ) to mean that random vector ξ belongs to the set whose elements have mean µ and
variance–covariance matrix Γ . Now, we provide the analytical solutions of the riskless asset counterpart of the problem for
m = 1, 2 (expected shortfall and expected squared semi-deviation from a target, respectively) following a similar line to the
proof of LPMm solutions in [25]. The optimal portfolio choice form = 0, which corresponds to minimizing the probability of
falling short of the target, is uninteresting in the presence of a riskless asset in comparison to the case of risky assets only,
since the optimal portfolio displays an extreme behaviour (the components vanish or go to infinity). Therefore, we exclude
this case in the theorem below.

Theorem 1. Suppose Γ ≻ 0 and R < r. The optimal portfolio in (1)–(2) is obtained in the two different cases as follows.

1. For the case m = 1 the optimal portfolio rule is

x∗
=

2r̃
1 + H

Γ −1µ̃.

2. For the case m = 2 the optimal portfolio rule is

x∗
=

r̃
1 + H

Γ −1µ̃,

where H = µ̃TΓ −1µ̃, µ̃ = µ − Re and r̃ = r − R.
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Proof. The equality constraint (2) can be dropped letting y = 1 − xT e:

RPRm = min
x

sup
ξ∼(µ,Γ )

E

(r − R) − xT (ξ − eR)

m
+

.

One-to-one correspondence between the sets of distributions

D = {π |Eπ [ξ ] = µ, Covπ [ξ ] = Γ ≻ 0}

and

D̃ = {π |Eπ [ξ ] = µ − eR, Covπ [ξ ] = Γ ≻ 0}

can be easily established. Hence, the model can be written as

RPRm = min
x

sup
ξ∼(µ̃,Γ )

E

r̃ − xT ξ

m
+

where r̃ = r−R and µ̃ = µ−eR. To be able to use the bounds derived for LPMm, the equivalent single-variable optimization
model should be noted:

RPRm = min
x

sup
ζ∼(xT µ̃,xTΓ x)

E

r̃ − ζ

m
+

.

The equivalence of the single-variable and multi-variable optimization models is based on the one-to-one correspondence
of the sets of distributions that ξ and ζ may assume (a proof of this fact can be found in [25]).

We define objective functions with respect to mean return and variance, using the tight bounds provided for LPMm,
m = 1, 2 in [25]:

f1 (s, t) := sup
X∼(s,t2)

E


r̃ − X
1
+


=

r̃ − s +


t2 +


r̃ − s

2
2

,

f2 (s, t) := sup
X∼(s,t2)

E


r̃ − X
2
+


=


r̃ − s


+

2
+ t2.

Then, ν being the optimal value, the problem becomes

ν(RPRm) = min
x


fm

xT µ̃,

√

xTΓ x


= min
s∈R

min
x


fm

s,

√

xTΓ x


| xT µ̃ = s


. (3)

Noting that fm is non-decreasing in variance (t2) for m = 1, 2, the inner optimization in (3) is solved by minimizing the
variance:

min
x

xTΓ x

s.t xT µ̃ = s.

Thus, we obtain

2Γ x − uµ̃ = 0,
xT µ̃ = s,
u ∈ R.

Hence we have the optimal solution for the inner optimization:

x =
uΓ −1µ̃

2
,

uµ̃TΓ −1µ̃

2
= s,

which gives

u =
2s

µ̃TΓ −1µ̃

x∗

s =
s

µ̃TΓ −1µ̃
Γ −1µ̃.
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Having found the optimal value for x given a fixed value of s, we can now define the objective function as a function of s
only:

φm(s) := fm


µ̃T x∗

s ,


x∗T
s Γ x∗

s


= fm


s,

x∗T
s Γ x∗

s


.

Following the notation H = µ̃TΓ −1µ̃, we have

x∗T
s Γ x∗

s =
s2

H2
µ̃TΓ −1Γ Γ −1µ̃

=
s2

H2
µ̃TΓ −1µ̃

=
s2

H
,

and thus we write

φm(s) = fm


s,


s2

H


,

ν(RPRm) = min
s

{φm(s)} .

Now we can seek s that minimizes φm(s), for casesm = 1 and 2 separately. Form = 1 we have

φ1(s) =

r̃ − s +


s2
H +


r̃ − s

2
2

.

We are minimizing γ1(s) =


s2
H +


r̃ − s

2
− s. The first-order condition gives

γ1
′(s) =

s
H − r̃ + s

s2
H +


r̃ − s

2 − 1 = 0,

which is equivalent to s
H

− r̃ + s
2

=
s2

H
+

r̃ − s

2 and (4)

s
H

− r̃ + s ≥ 0. (5)

Eq. (4) has two roots, one of which is 0, not satisfying (5). The other root, s =
2r̃

1+ 1
H
, satisfies (5) and is the minimizer of γ1(s),

since γ ′

1(s) is negative to the left and positive to the right of this value. To see this, we let a := 1 +
1
H , and write

γ ′

1(s) =

s
H − r̃ + s

s2
H +


r̃ − s

2 − 1

=
s

1 +

1
H


− r̃

s2

1 +

1
H


+ r̃2 − 2r̃ s

− 1

=
as − r̃

√
as2 + r̃2 − 2r̃s

− 1, (6)

observing γ1
′(s) ≤ −1 if s ≤

r̃
a . If s ∈


r̃
a ,

2r̃
a


, then the nominator in (6) is positive, but

as − r̃
2

= a2s2 − 2asr̃ + r̃2

= as

as − 2r̃


+ r̃2
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< s

as − 2r̃


+ r̃2

= as2 − 2r̃ s + r̃2

=


as2 − 2r̃s + r̃2

2
. (7)

We have as − r̃ <
√
as2 + r̃2 − 2r̃ s, and thus γ1

′(s) < 0. In inequality (7), note that r̃ > 0, a > 1, s > 0 and
as − 2r̃ < 2r̃ − 2r̃ = 0. If s > 2r̃

a , then as − 2r̃ > 0; and inequality (7) is in the opposite direction. It follows that
γ1

′(s) > 0 if s > 2r̃
a , and γ1

′(s) < 0 if s < 2r̃
a ; hence s∗1 =

2r̃
a is the unique minimizer of γ1(s) and φ1(s).

Finally, form = 2, the minimizer of φ2(s) is s∗2 =
r̃

1+ 1
H
. φ2(s) can be defined in piecewise form:

φ2(s) =


r̃ − s


+

2
+

s2

H

=



r̃ − s

2
+

s2

H
if s < r̃

s2

H
if s ≥ r̃,

and has continuous first derivative:

φ′

2(s) =


2s

1 +

1
H


− 2r̃ if s < r̃

2s
H

if s ≥ r̃.

φ′

2(s) is positive if s ≥ r̃ , and 2s

1 +

1
H


−2r̃ is an affine function of swith positive slope that takes value 0 at s∗2 =

r̃
1+ 1

H
< r̃ .

Therefore s∗2 is the unique minimizer of φ2(s), with negative first derivative to the left and positive to the right side. �

The constantH that appears in the optimal portfolio rules is the highest attainable Sharpe ratio in themarket; see e.g. [28].
This constant plays an important role in Theorem 3 in Section 4.

Comparing our results form = 1, 2 to the corresponding result (Theorem 2.5) of [25] we notice that the optimal portfolio
rules look much simpler. In fact, the optimal portfolio rule in the case where m = 1 is exactly twice the optimal portfolio
rule in the case where m = 2. This simple relationship between the two rules can be attributed to the fact that the case
m = 2 is more conservative in that it punishes more severely the deviations from target compared to the case m = 1. As
the two optimal portfolios are almost identical up to a constant multiplicative factor, and it is easier to deal with the case
m = 2, we shall concentrate on that case in the next section.

An immediate but slight generalization is to allow a budget W0 instead of 1 in (2). This has the effect of redefining r̃ as
r − W0R.

3. A multi-period portfolio rule under distribution ambiguity with a riskless asset

In the present sectionwe shall extend the result of the previous section for the casem = 2 to amultiple-period adjustable
robustness setting. The reason that we limit ourselves to m = 2 is the fact that we shall deal exclusively with that case in
the rest of the paper when we consider ambiguity in mean return.

Consider now, for the sake of illustration, a multiple-period problem with three periods, i.e., T = 3. The situation is the
following. At the beginning of time period t = 1, the investor has a capitalW0 which he allocates among n risky assets with
mean return vector µ1 and variance/covariance matrix Γ1 and riskless rate R (for the sake of simplicity, assumed constant
throughout the entire horizon) according to the expected semi-deviation from a target risk measure. His endowment isW1
at the beginning of period t = 2 where he faces expected return vector µ2, and variance/covariance matrix Γ2 where he
allocates his wealth again to obtain at the end of period t = 2 a wealth W2. This wealth is again invested into risky assets
with expected return vector µ3 and matrix Γ3. It is assumed that all matrices Γii = 1, 2, 3 are invertible.

Let the portfolio positions be represented by vectors xt ∈ Rn for t = 1, 2, 3 (risky assets), and by scalars yt , for t = 1, 2, 3
(riskless asset). For a chosen end-of-horizon target wealth r , the adjustable robust portfolio selection problem is defined
recursively as follows:

V3 = min
x3,y3

max
ξ3∼(µ3,Γ3)

E[r − ξ T
3 x3 − Ry3]2+

subject to

eT x3 + y3 = W2

V2 = min
x2,y2

max
ξ2∼(µ2,Γ2)

E[V3]
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subject to

eT x2 + y2 = W1

V1 = min
x1,y1

max
ξ1∼(µ1,Γ1)

E[V2]

subject to

eT x1 + y1 = W0.

The idea is thatwhile for an observer at the beginning of period 1, thewealthsW1 andW2 are randomquantities, the realized
wealth, W̃1 say, is a known quantity at the beginning of period 2. The same is true of realizedwealth, W̃2 say, at the beginning
of period 3. These observations allow us to adjust the portfolio according to realized random information instead of selecting
all portfolios for all periods at the very beginning.

We begin solving the problem above from period t = 3. Using Theorem 1, we have that

x∗

3 =


r − W2R
1 + H3


Γ −1
3 µ̃3

where µ̃3 = µ3 −Re and H3 = µ̃T
3Γ

−1
3 µ̃3. We substitute this quantity into the objective function and obtain the expression

V3 =
1

(1 + H3)2
[(r − W2R)2+ + (r − W2R)2H3].

Now we need to find the supremum of the expectation of V3 over all random variables ξ2 ∼ (µ2, Γ2), i.e., we need to solve
the problem

sup
ξ2∼(µ2,Γ2)

1
(1 + H3)2

E[(r − R2W1 − R(ξ2 − Re)T x2)2+ + H3(r − R2W1 − R(ξ2 − Re)T x2)2]

after substituting for y2. This maximization problem is solved using a simple extension of Lemma 1 of [25] (its proof is a
verbatim repetition of the proof of Lemma 1 of [25], and thus omitted):

Lemma 1. Let the random variable X have mean and variance (µ, σ 2). Then we have for any α, β ∈ R

sup
X∼(µ,σ 2)

E[α(r − X)2
+

+ β(r − X)2] = (α + β)σ 2
+ β(r − µ)2 + α(r − µ)2

+
.

Applying the above result gives the function

1
(1 + H3)2


R2xT2Γ2x2 + H3(r − R2W1 − R(µ2 − Re)T x2)2 + (r − R2W1 − R(µ2 − Re)T x2)2+


to be minimized over x2 using the techniques in the proof of Theorem 1. This results in the solution

x∗

2 =


r − W1R2

R(1 + H2)


Γ −1
2 µ̃2,

where µ̃2 = µ2 − Re and H2 = µ̃T
2Γ

−1
2 µ̃2. Repeating the above steps for V2 (the details are left as an exercise) we obtain

the solution x∗

1 as

x∗

1 =


r − W0R3

R2(1 + H1)


Γ −1
1 µ̃1,

with µ̃1 = µ1 −Re and H1 = µ̃T
1Γ

−1
1 µ̃1. The above process can be routinely generalized to arbitrary integer T time periods.

Thus we have the following theorem.

Theorem 2. Let r − Wt−1RT−t+1 > 0 for t = 1, . . . , T . The adjustable robust multi-period portfolio rule using the expected
squared semi-deviation from a target wealth r risk measure in a setting of T periods is

x∗

t =


r − Wt−1RT−t+1

RT−t(1 + Ht)


Γ −1
t µ̃t ,

for t = 1, 2, . . . , T where µ̃t = µt − Re and Ht = µ̃T
t Γ

−1
t µ̃t .
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Compared to Theorem 3.1 of [25] our result is very much simpler, and gives a myopic dynamic portfolio policy in the
following sense. The single-period optimal portfolio policy consists in setting a target excess wealth beyond that which
could be obtained by putting all the present wealth in the riskless asset: r − W0R. Dividing this excess target wealth by
the optimal Sharpe ratio H plus 1, one obtains the coefficient in the optimal rule. A similar formula is given in the previous
theorem for themulti-period case. Note that each term r−Wt−1RT−t+1

RT−t has the following economicmeaning: the investor looks
at the end of the current period t and sets the excess wealth target equal to

r
RT−t

− Wt−1R

which is exactly the discounted target wealth value at time t + 1 minus the wealth that would be obtained if the current
wealthWt was kept in the riskless account for one period. If this number is equal to zero or is negative, then the final target
can simply be achieved by investing the current wealth into the riskless asset for the rest of the horizon; hence the optimal
position in risky assetswould be zero for the remaining periods. If this excess target remains positive for all periods t , divided
by the optimal period t Sharpe ratioHt plus 1, we have the optimal rule for each period. In other words, it is as if the investor
is solving at each time period the following problem:

min
xt ,yt

max
ξt∼(µt ,Γt )

E
 r
RT−t

− ξ T
t xt − Ryt

2
+

subject to

eT xt + yt = Wt−1.

4. Distribution and expected return ambiguity: single period

It is well-documented that the optimal portfolios may be quite sensitive to inaccuracies in the mean return vector; see
e.g. [29,30,18]. To address this issue we consider now the problem

RPRR2 = min
x,y

sup
ξ∼(µ̄,Γ ),µ̄∈Uµ̄

E

r − xT ξ − yR

2
+

(8)

s.t xT e + y = 1 (9)

where we define the ellipsoidal uncertainty set Uµ̄ = {µ̄|∥Γ −1/2(µ̄ − µnom)∥2 ≤
√

ϵ} for the mean return denoted µ̄,
where µnom denotes a nominal mean return vector which can be taken as the available estimate of the mean return. The
ellipsoidal representation of uncertain parameters is nowawell-established choice in the robust optimization literature, and
in particular in portfolio optimization; see e.g. [16,17,31–33] for discussion and motivations for the choice of an ellipsoidal
set. We refer to the positive parameter ϵ as the radius of ambiguity.

Theorem 3. Let r̃ > 0 and µ∗
= µnom − Re. Then the optimal portfolio rule x∗ for (8)–(9) is given by

x∗
=

r̃(
√
H +

√
ϵ)(H − ϵ)

√
H[(

√
H +

√
ϵ)2 + (H − ϵ)2]

Γ −1µ∗

provided that ϵ < H. If ϵ ≥ H, all wealth is invested into the riskless asset.

Proof. Using Remark 2.8 of [25] we can pose the problem (8)–(9) as

min
x,s

(r̃ − s)2
+

+ xTΓ x

subject to

s ≤ min
µ̄∈Uµ̄

xT (µ̄ − Re)

after elimination of the variable y as in the proof of Theorem 1. Writing the constraint explicitly we get the problem

min
x,s

(r̃ − s)2
+

+ xTΓ x

subject to the conic constraint

s ≤ xTµ∗
−

√
ϵ
√

xTΓ x,

where µ∗
= µnom − Re. Assuming r̃ > s and the constraint to be active, the stationarity equations of the KKT necessary and

sufficient optimality conditions give (note that Slater’s condition holds trivially)

s =
λ

2
+ r̃
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where λ is a non-negative Lagrange multiplier, and

2Γ x − λ


µ∗

−

√
ϵ

√
xTΓ x

Γ x


= 0,

under the hypothesis that x ≠ 0. Defining σ =
√
xTΓ xwe rewrite the last equation as

2Γ x − λ


µ∗

−

√
ϵ

σ
Γ x


= 0,

which yields

x∗
=

λσ

2σ + λ
√

ϵ
Γ −1µ∗.

We have two equations that allow us to solve for λ and σ : the first equation comes from the definition of σ and gives

λ2σ 2

(2σ + λ
√

ϵ)2
H = σ 2,

and the second equation comes from the conic constraint

r̃ −
λ

2
=

λσ

2σ + λ
√

ϵ
H −

√
ϵ

λσ

2σ + λ
√

ϵ

√
H.

We solve the first equation for λ holding σ fixed, and obtain the roots

2(
√

ϵ +
√
H)σ

H − ϵ
,
2(

√
ϵ −

√
H)σ

H − ϵ
.

The second root is always negative while the first root is positive for ϵ < H provided σ is positive, which we assume to be
the case. Solving for σ from the second equation above, we obtain after some straightforward simplification

σ =
r̃(H − ϵ)(

√
H +

√
ϵ)

(
√
H +

√
ϵ)2 + (H − ϵ)2

which is positive provided ϵ < H . Substituting back into the expression for x∗ and simplifyingwe get the desired expression.
If H ≤ ϵ then our hypothesis that σ > 0 is false; hence the KKT conditions do not yield an optimal solution, except when
H = ϵ in which case the optimal choice is x∗

= 0.
On the other hand, assuming r̃ ≤ s, we obtain λ = 0 and x∗

= 0 which gives s ≤ 0. But this is a contradiction since
r̃ > 0, so this case is impossible. �

The optimal portfolio is a mean–variance efficient portfolio. The optimal Sharpe ratio H serves as an upper bound for the
radius of ambiguity. We note that when ϵ = 0 we recover exactly the optimal portfolio rule for case 3 of Theorem 1 with
µnom = µ where µ was defined in Section 2. We define for ease of notation

κ(ϵ) =
(
√
H +

√
ϵ)(H − ϵ)

√
H[(

√
H +

√
ϵ)2 + (H − ϵ)2]

,

which is the critical factor introduced by robustness against ambiguity in the mean return vector. This quantity κ(ϵ) is a
decreasing function in ϵ as illustrated in Fig. 1.

Consider now the difference RPR2 − RPRR2 in the risk measures. The respective values are given as

RPR2 =


(r − R)


1 −

H
1 + H

2
+

− (r − R)2
H

1 + H
,

and

RPRR2 =

(r − R)(1 − κ(ϵ)H − κ(ϵ)H

√
ϵ)
2
+

− (r − R)2κ(ϵ)H.

Weexpect the difference RPR2−RPRR2 to be positive at least for a range of values of ϵ. Since the function RPRR2 is complicated
to analyse, we provide a numerical example with H = 0.24, r = 1.05 and R = 1.03 in Fig. 2. The gain in mean squared
semi-deviation risk reaches a peak for some value ϵ∗ of ϵ and then starts to fall. This behaviour could guide the choice for
an appropriate value of the radius of ambiguity ϵ. We also note that as H increases, the maximizer ϵ∗ shifts to the right as
well. This can be seen by comparing with Fig. 3 where we used H = 0.54, all other parameters being equal.
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Fig. 1. κ as a function of the ellipsoidal uncertainty radius ϵ with H = 0.54.

Fig. 2. Gain in mean semi-deviation risk as a function of the ellipsoidal uncertainty radius ϵ with H = 0.24, r = 1.05, R = 1.03.

5. A multi-period case under distribution and mean return ambiguity with a riskless asset

In the present sectionwe shall extend the result of the previous section to amultiple-period adjustable robustness setting.
Consider again a multiple-period problemwith three periods, i.e., T = 3. The situation is the following. At the beginning

of time period t = 1, the investor has a capital W0 which she allocates among n risky assets with mean return vector µ̄1
and variance/covariance matrix Γ1 and riskless rate R (for the sake of simplicity, assumed constant throughout the entire
horizon) according to the expected semi-deviation from a target risk measure. Her wealth is W1 at the beginning of period
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Fig. 3. Gain in mean semi-deviation risk as a function of the ellipsoidal uncertainty radius ϵ with H = 0.54, r = 1.05, R = 1.03.

t = 2 where she faces expected return vector µ̄2, and variance/covariance matrix Γ2 where she allocates her wealth again
to obtain at the end of period t = 2 a wealthW2. This wealth is again invested into risky assets with expected return vector
µ̄3 and matrix Γ3. It is assumed that all matrices Γi i = 1, 2, 3 are positive definite. The vectors µ̄1, µ̄2 and µ̄3 are assumed
uncertain, and to belong to respective ellipsoids

U t
µ̄ = {µ̄|∥Γ −1/2(µ̄ − µt

nom)∥2 ≤
√

ϵt}

for the mean return denoted as µ̄, where µt
nom denotes a nominal mean return vector and the ϵt are positive constants for

t = 1, 2, 3. Let the portfolio positions be represented by vectors xt ∈ Rn for t = 1, 2, 3 (risky assets), and by scalars yt for
t = 1, 2, 3 (riskless asset). For a chosen end-of-horizon target wealth r , the adjustable robust portfolio selection problem is
defined recursively as follows:

V3 = min
x3,y3

max
ξ3∼(µ̄3,Γ3),µ̄3∈U3

µ̄

E[r − ξ T
3 x3 − Ry3]2+

subject to

eT x3 + y3 = W2

V2 = min
x2,y2

max
ξ2∼(µ̄2,Γ2),µ̄2∈U2

µ̄

E[V3]

subject to

eT x2 + y2 = W1

V1 = min
x1,y1

max
ξ1∼(µ̄1,Γ1),µ̄1∈U1

µ̄

E[V2]

subject to

eT x1 + y1 = W0.

The computations are tedious but similar to those in Section 3 with the exception that one has to use the proof technique
of Theorem 3 in solving the period minimization problems. By way of illustration we look at the periods t = 3 and t = 2.
For t = 3, we have immediately the optimal portfolio rule from Theorem 3:

x∗

3 =
(r − W2R)(

√
H3 +

√
ϵ3)(H3 − ϵ3)

√
H3[(

√
H3 +

√
ϵ3)2 + (H3 − ϵ3)2]

Γ −1
3 µ∗

3
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where µ∗

3 = µ3
nom − Re provided that ϵ3 < H3 and r > W2R. Substituting this solution back to the objective function and

using Lemma 1 of Section 3 to evaluate the sup over ξ2 ∼ (µ̄2, Γ2) we obtain the function

(Ar̃2 − AR(µ̄2 − Re)T x2)2+ + A2R2xT2Γ2x2 + B2R2xT2Γ2x2 + B2(r̃2 − R(µ̄2 − Re)T x2)2,

where r̃2 = r − W1R2, A = 1 − κ3H3 + κ3
√
H3ϵ3, B = κ3

√
H3, and

κ3 =
(
√
H3 +

√
ϵ3)(H3 − ϵ3)

√
H3[(

√
H3 +

√
ϵ3)2 + (H3 − ϵ3)2]

.

Now we evaluate the sup of the above expression over µ̄2 ∈ U2
µ̄ and obtain the optimization problem

min
x2,s

(Ar̃2 − ARs)2
+

+ A2R2xT2Γ2x2 + B2R2xT2Γ2x2 + B2(r̃2 − Rs)2

subject to

s ≤ µ∗T
2 x2 −

√
ϵ2


xT2Γ2x2

where µ∗

2 = µ2
nom − Re. We solve this problem using the KKT conditions exactly as in the proof of Theorem 3 and obtain

x∗

2 =
(r − W1R2)(

√
H2 +

√
ϵ2)(H2 − ϵ2)

R
√
H2[(

√
H2 +

√
ϵ2)2 + (H2 − ϵ2)2]

Γ −1
1 µ∗

2,

under the condition ϵ2 < H2 and r > W1R2. Repeating the above steps one more time for t = 1 we arrive at

x∗

1 =
(r − W0R3)(

√
H1 +

√
ϵ1)(H1 − ϵ1)

R2
√
H1[(

√
H1 +

√
ϵ1)2 + (H1 − ϵ1)2]

Γ −1
1 µ∗

1

under the conditions ϵ1 < H1 and r > W0R3. Hence, generalizing the previous derivation to an arbitrary number of periods
we obtain the following theorem.

Theorem 4. Let r − Wt−1RT−t+1 > 0 and µ∗
t = µt

nom − Re and Ht = (µ∗
t )

TΓ −1
t µ∗

t for t = 1, . . . , T . Then the adjustable
robust multi-period optimal portfolio rule under distribution and mean return ambiguity in a setting of T periods is given by

x∗

t =
(r − Wt−1RT−t+1)(

√
Ht +

√
ϵt)(Ht − ϵt)

RT−t
√
Ht [(

√
Ht +

√
ϵt)2 + (Ht − ϵt)2]

Γ −1
t µ∗

t ,

provided that ϵt < Ht for t = 1, . . . , T .

Notice that for ϵt = 0 and µt
nom = µt as defined in Section 3, we obtain the dynamic portfolio rule of Theorem 2. Remarks

similar to those made after Theorem 2 in Section 3 also hold for the dynamic portfolio rule of Theorem 4, i.e., the excess
target wealth is chosen exactly as described at the end of Section 3. The remaining part of the portfolio rule is identical to
the single-period rule. In other words, it is as if the investor is solving at each time period the following problem:

min
xt ,yt

max
ξt∼(µ̄t ,Γt ),µ̄t∈U t

µ̄

E
 r
RT−t

− ξ T
t xt − Ryt

2
+

subject to

eT xt + yt = Wt−1.

The conditions r − Wt−1RT−t+1 > 0 also make economic sense because if at any time point the condition fails to hold it
means that we have achieved a wealth figure that can equal or exceed the target wealth r by staying in the riskless asset for
the remaining portion of the horizon until the end of period T .

6. Conclusion

In this paper we derived explicit optimal portfolio rules in single-period and multiple-period investment environments
using the risk measure of expected squared semi-deviation from a target under both distribution ambiguity of asset returns
and ambiguity of mean returns. We incorporated a riskless asset into the asset universe, which considerably simplifies the
portfolio rules. In multiple periods, the optimal portfolio rule is a myopic replica of the single-period rule in the following
sense. If the target has not been reached, it is as if the investor is solving at every period a single-period problem with some
adjustments to the target. The case of expected shortfall (i.e.,m = 1) under distribution andmean return ambiguity remains
a challenge. It will be addressed in a future work.
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