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Cobb–Douglas type production functions and time-delay are not sufficient for the economy
to behave cyclic. However, capital dependent population dynamics can enforce Hopf
bifurcation.
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1. Introduction

Kaleckian investment lag is historically important since
Kalecki laid a mathematical foundation of the economic
cycles as early as mid 30s. The main mathematical appara-
tus (namely the Hayes’ Theorem) which analyzes the char-
acteristic roots of quasi-polynomials emerged at fifties.
Hayes gives a complete stability characterization for the
first order linear delay differential equations. However, as
Zak [20] points out, the first thorough analysis of a general
class delay differential equations is by Bellman and Cooke
[3] with later fundamental work by Hale [7].

Kalecki [8] introduces production lags, a time delay
between the investment decisions and delivery of the cap-
ital goods, to show the generation of endogenous cycles.
Kalecki employ a linear delay differential equation of the
deviation of investment which is denoted by J. The invest-
ment equation is _JðtÞ ¼ AJðtÞ � BJðt � hÞ. Model of Kalecki
[8] exhibits endogenous cycles by employing simple time
lags in a linear DDE.1

Periodic solutions to dynamic systems are also analyzed
extensively in control theory. One way to detect limit
cycles is Hopf bifurcation. Hopf bifurcation discards te-
dious calculations and provides a powerful and easy tool
. All rights reserved.
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to detect limit cycles. Hopf cycles appear when a fixed
point loses or gains stability due to a change in a parameter
and meanwhile a cycle either emerges from or collapses
into the fixed point [1]. Under the circumstances the sys-
tem can either have a stable fixed point sorrounded by
an unstable cycle (called a subcritical Hopf bifurcation);
or a stable cycle loses its stability and a stable cycle ap-
pears (called a supercritical Hopf bifurcation) as the param-
eter(s) approaches to a critical value [1]. Both cases can be
economically significantly meaningful. Supercritical case
which implies a stable cycle can be considered as a stylized
business cycle or growth cycles and the subcritical case can
correspond to the corridor stability [9]. The Hopf bifurca-
tion dominates the literature when the problem reduces
to detect cycles in dynamic models. The analysis further
boils down to finding a pair of pure imaginary roots, since
the non-zero speed condition is not actually necessary for
having a Hopf bifurcation2 (see [6, p. 418]; [16, p. 578]). Zak
[20], [17,18] and [19] applied the improvements of Hopf the-
orem to the Solow–Kalecki type of growth models.

According to the model presented by Zak [20], the cap-
ital becomes productive after a time period, say s. That is,
the productive capital at time t is k(t � s). Moreover, capi-
tal also depreciates through production. Therefore, the
evolution of capital is governed by the following DDE:
2 To be more specific, let us quote [6, p.418]: ‘‘[The non-zero speed
condition] is expressed by saying that the pair of complex conjugate
eigenvalues crosses the imaginary axis with non-zero speed. This is also a
generic requirement, though it is not absolutely necessary: the existence
part of the Theorem remains valid even in the degenerate case when this
derivative is zero [etc.]’’.
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5 Let W 2 Rm�n and Y 2 Rp�q . Then W � Y 2 Rpm�qn is as follows

W � Y ¼
w11Y . . . w1nY

� � �
wm1Y . . . wmnY

0
B@

1
CA:

6 Capital lagged Cobb–Douglas type production function is assumed to be

YðtÞ ¼ Kaðt � sÞL1�aðtÞ:

7 Note that A � I = A if I 2 R1x1 for any A 2 R1x1:
8 This does not mean that the solutions exhibit no oscillations at all. Note

that the characteristic equation which is associated with the capital
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_kðtÞ ¼ f ðkðt � sÞÞ � dkðt � sÞ: ð1Þ
However, Brandt-Pollman et al. [4] classify the lag struc-
ture given in Eq. (1) as a delivery lag3 rather than a time-
to-build lag.4 Yet, we will employ time-to-build lag structure,
which is of the form

_kðtÞ ¼ f ðkðt � sÞÞ � dkðtÞ: ð2Þ

We show in the paper that the capital evolution with the
lag structure in Eq. (2) will not yield Hopf cycles if the pro-
duction function is of Cobb–Douglas type.

The population growth in Zak [20] is assumed to be
zero. However, the results will mostly remain if constant
population growth is used. Cigno [5] introduced a capital
dependent (variable) population growth. The said popula-
tion growth equation tries to link the growth of population
with per capita consumption and degree of industrializa-
tion, where the relation is positive for the former, but neg-
ative for the latter. That is, the dynamics of the population
reflect the positive effect of higher per capita consumption
and the negative effect of higher degree of industrializa-
tion. Denoting the per capita consumption with
ð1� sÞQ=L, the dynamics of the population in the paper is
governed by nðtÞ ¼ fð1� sÞðQ=LÞgv1 ðK=LÞv2 , where v1,
v2 > 0. Cigno [5] found out the stability characterization
of endogenous population growth in an exhaustible re-
source framework. Cigno [5] concludes that, for certain
parameter settings the steady state is stable.

We show that constant population growth is not suffi-
cient to obtain cyclical behaviour in certain type of capital
accumulations, given that the production is Cobb–Douglas.
However, a capital-dependent population growth rule
leads to Hopf cycles.

This paper is organized as follows. In Section 2, we show
that Cobb–Douglas production function and constant pop-
ulation growth model does not contain Hopf cycles. We
have introduced the theorem from Louisell [15], which
gives an easier method to detect pure imaginary roots. In
Section 3, we extend the model so that the population
growth is now capital dependent. Employing similar tech-
niques, we have found out that the latter model gives Hopf
cycles. Section 3 is the conclusion.

2. Constant population growth

Finding pure imaginary roots has been widely discussed
in the literature. The following theorem from Louisell [15]
constitutes a shortcut to detect the pure imaginary roots of
certain type of difference-differential systems.

Let A0;A1 2 Rn�n; s > 0. Consider the following differ-
ence-differential equation

_xðtÞ ¼ A0xðtÞ þ A1xðt � sÞ; ð3Þ

which has a characteristic function of

TðkÞ ¼ kI � A0 � A1e�sk: ð4Þ
3 Delivery lag is such that investment for new capital goods is made at
time t but the new capital goods need some time s to be delivered and,
thus, to be productive [4].

4 Time-to-build lag is such that capital goods need some time s over
which they require investments in order to be produced [4].
n�n
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Theorem 1 (Louisell [15]). Let A0;A1 2 R ; s > 0 and let

J ¼
A0 � I A1 � I

�I � A1 �I � A0

� �
; ð5Þ

where � denotes the Kronecker product.5 Then, all imaginary
axis eigenvalues of the delay Eq. (3) are the eigenvalues of J.

Assume that we are faced with an economy endowed
with Cobb–Douglas production function and capital lag6

which is given as follows:

_kðtÞ ¼ skaðt � sÞ � ðnðtÞ þ dÞkðtÞ; ð6Þ

where a 2 (0,1) is the constant capital’s share in produc-
tion, s > 0 is the constant capital lag, d > 0 is the constant
depreciation of capital and s > 0 is the constant rate of sav-
ings. Denote nðtÞ ¼ _LðtÞ

LðtÞ. Under the standard growth model
with time lag, where the rate of population growth is as-
sumed to be constant, i.e. n(t) = n for all t > 0, we will show
that this Solow–Kalecki growth model does not induce any
Hopf cycles.

The steady state level of capital is

kss ¼
s

nþ d

� � 1
1�a

ð7Þ

and the linearization of the dynamic system around its
steady state will yield

_zðtÞ ¼ aska�1
ss

� �
zðt � sÞ � ðnþ dÞzðtÞ; ð8Þ

with the change of variable z(t) = k(t) � kss. The matrix
which should be used to employ the result of the theorem
from Louisell (2001) is as follows:7

J ¼
A0 A1

�A1 �A0

� �
;

where A0 = �(n + d) and A1 ¼ aska�1
ss ¼ aðnþ dÞ. In this case,

we have k1;2 ¼ �ðnþ dÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2
p

2 R as eigenvalues. Since,
this matrix does not possess any pure imaginary eigen-
values, the linearized system which is characterized by
Eq. (8) has no pure imaginary eigenvalues therefore, Kalec-
kian growth models with Cobb–Douglas type of production
functions and capital lag do not admit any Hopf bifurca-
tion, thus persistent cycles.8
accumulation equation in (6) is as follows

hðkÞ :¼ k� saka�1
ss

� �
e�sk � ðnþ dÞ:

This is a quasi-polynomial of order one which has infinite number of
complex roots. Thus, assuming stabilizing initial conditions and parame-
ter combinations, the resulting system will exhibit dampened
oscillations.
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3. Capital dependent population growth

Note that any variation in the population growth rate
within some certain limits does not change the above re-
sult. Suppose that the population growth is not constant
but exogenously time dependent. Moreover, suppose that
the n(t) is convergent for some nss, that is n(t) ? nss as time
goes to infinity. Then neither the steady state values, nor
the linearized system dynamics which is given by (8) is ef-
fected. Thus, time-varying population growth is not suffi-
cient for cyclic behaviour,9 since the only mechanism
that would give this kind of behaviour is a Hopf cycle.

On the other hand, the behaviour can drastically change
if we use wealth-induced population dynamics, even if we
stick to the Cobb–Douglas production function. Cigno [5]
proposes the following population growth

nðtÞ ¼ ð1� sÞv1 kðtÞav1�v2 ;

where v1 and v2 are positive constants. For the ease of cal-
culations, assume zero depreciation, i.e. d = 0. Substituting
this into the capital accumulation equation, we obtain

_kðtÞ ¼ skaðt � sÞ � ð1� sÞv1 kðtÞ1þav1�v2 : ð9Þ

Steady state equation will adjust accordingly:

kss ¼
s

ð1� sÞv1

� � 1
1�að1�v1Þ�v2

; ð10Þ

whence the linearized system around the steady state will
be governed by

_zðtÞ ¼ aska�1
ss

� �
zðt � sÞ � ð1� sÞv1 ð1þ av1 � v2Þkav1�v2

ss zðtÞ;

ð11Þ

with the change of variable zðtÞ ¼ kðtÞ � kss.

Proposition 2. The growth model with endogenous popula-
tion but without positive delay admits monotonic solutions.
Proof. The above equations of capital accumulation (9),
steady state capital (10) and linearized dynamics (11) are
preserved with s = 0. The eigenvalue associated with this
system is

k ¼ ska�1
ss ða� ð1þ av1 � v2ÞÞ S 0;

when ða� ð1þ av1 � v2ÞÞ S 0. Thus, the solutions will be
monotonically converging to the steady state (diverging
to infinity) if a < 1þ av1 � v2 ða > 1þ av1 � v2Þ. h

This propositions implies that the endogenous popula-
tion growth à la Cigno [5] alone is not sufficient to create
oscillatory behaviour, not even temporary ones.

To characterize limit cycle behaviour of the model with
time delay, we have to calculate the corresponding matrix J
in accordance with Louisell [15] which is cast as follows

J ¼
A0 A1

�A1 �A0

� �
;

9 Time-varying population growth case is exploited for the insights it
presents. Other than that, the author is fully informed that this kind of
population growth functions are not employed in the literature.
where A0 ¼ �ð1� sÞv1 ð1þ av1 � v2Þkav1�v2
ss and A1 ¼

aska�1
ss

� �
. The two eigenvalues of J are

k1;2 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

0 � A2
1

q
: ð12Þ
Proposition 3. If �a < 1þ av1 � v2 < a , then the system
undergoes a Hopf bifurcation.

Proof. The eigenvalues are pure imaginary given that
A2

0 � A2
1 < 0. This is the case if and only if j 1þ av1 � v2

j<j a j¼ a. Next, we have to check the transversality
condition. Note that the characteristic equation associated
with the law of capital accumulation (11) is

k ¼ A1e�sk þ A0:

Differentiating both sides with respect to s, we have

dk
ds
¼ A1e�sk kþ s dk

ds

� �
¼ ðk� A0Þ kþ s dk

ds

� �
:

Thus,

dk
ds
¼ �kðk� A0Þ

1þ sðk� A0Þ
:

Finally,

Re
dk
ds

����
k¼ix;s¼sbi

¼ x2

ð1� sA0Þ2 þ ðsxÞ2
> 0;

where x is the eigenvalue in (12) and sbi is the bifurcating
delay which we do not need to find explicitly thanks to
[15]. h

We know from D-subdivision method that the Hopf
boundary is obtained in either the first or second quadrant
of the coefficient space.10 The sign of the coefficient of
z(t), which is �ð1� sÞv1 ð1þ av1 � v2Þ, determines on which
quadrant the coefficients lie. If (1 + av1 � v2) > 0, the coeffi-
cients are on the second quadrant and otherwise they are
on the first. We should also note that the saddle-path stabil-
ity is sacrificed for a limit cycle. That is, endogenous popula-
tion growth eliminates the unstable manifold, however we
obtained a limit cycle.

The Hopf cycles exist when the parameters are in a rela-
tionship within some limits. To see this, we utilize the fol-
lowing restatement of proposition 3:

Proposition 4. If v1 < 1, then the system undergoes a Hopf
bifurcation if 1�v2

1�v1
< a and 1�v2

1þv1
> �a:
Proposition 5. If v1 > 1, then the system undergoes a Hopf
bifurcation if 1�v2

1�v1
> a and 1�v2

1þv1
> �a:
10 The coefficients can lie on the first or second quadrant of the parameter
space (a, b), since b > 0 and these quadrants are those on where the Hopf
boundary (the boundary where the system loses it stability) lies (see [2]).
The parameters (a,b) are the coefficients of the characteristic equation
hðzÞ ¼ zþ aþ be�zs ¼ 0.
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Fig. 1. v1 and v2 combinations which allows for Hopf bifurcation when a ¼ 1
3 (the horizontal axis is v2 and the vertical axis is v1).

Table 1
Behaviour of the solutions in different setups where population growth is
constant/endogenous and time delay structure exists/does not exist.

Behaviour of the solutions

s = 0 s > 0

Constant pop.
growth

Monotonic Dampened oscillations

Endogenous pop.
growth

Monotonic Dampened oscillations ðs – sbiÞ
Persistent oscillations ðs ¼ sbiÞ
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Both propositions keep the parameters v1 and v2 close
enough to ensure nonexplosive dynamics11 where cyclic
behaviour is not possible. In the both propositions, the rela-
tive ratio of distance to one should not exceed a given a low-
er bound to v2 for a given v1. Whereas, the other inequality is
an upper bound to v2. To be more illustrative, we can substi-
tute for a common value for the constant of the share of cap-
ital in production, a, is a ¼ 1

3 and further analyze the
parameter combinations that allows for Hopf cycles.

Proposition 6. Let a ¼ 1
3. If �4þ 3v2 < v1 < �2þ 3v2,

then the system undergoes a Hopf bifurcation.
Proof. Plug a ¼ 1
3. The rest is straightforward. h

This relation between parameters v1 and v2 is visualized
in Fig. 1.

The shaded region gives the v1 and v2’s which induces
Hopf cycles when a ¼ 1

3, whereas the bold lines gives the
boundaries of this region.

4. Conclusion

In this paper, we have analyzed the effects of varying
population growth in a Solow–Kalecki type of growth
11 The positivity constraint of the parameters v1 and v2 maintains the
economic intuition as in Cigno [5], that the population growth rate is
positively related to per capita consumption and inversely related to the
degree of industrialization. We do not see these explicitly since we are
employing per capita variables. Yet, Cigno [p. 285] [5] also finds a similar
result and underlines that these parameters should be close to each other to
obtain stable growth.
model. We show that Cobb–Douglas type production func-
tions and time-delay are not sufficient for the economy to
have persistent cycles, yet it exhibits dampened oscilla-
tions. This is contrary to the common belief that delay is
sufficient to obtain cyclic dynamics.

We extend the model so that population growth is
endogenized. Then we show that capital dependent popu-
lation dynamics supports Hopf bifurcation and thus limit
cycles. However, it should be noted that without the delay
structure, the economy may not, exhibit cycles. We sum-
marize the results in Table 1.

Thus, the interaction between the delay structure and
endogenous population causes limit cycles, whereas the
delay or the endogenized population is not sufficient for
limit cycle solutions. The mechanism that leads to cycles
is an adjustment failure between the level of capital and le-
vel of population, where the failure is a result of delay
structure. In the constant population case, failure is cor-
rected after some period (dampened oscillations), yet in
the endogenized population case, for a specific set of
parameters (bifurcating parameters), failure cannot be cor-
rected and persistent oscillations are possible.
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