
Computers & Industrial Engineering 52 (2007) 57–70

www.elsevier.com/locate/dsw
Satisfying due-dates in the presence of sequence
dependent family setups with a special comedown structure

Mehmet R. Taner a, Thom J. Hodgson b, Russell E. King b,*, Scott R. Schultz c

a Department of Industrial Engineering, Bilkent University, Ankara, TR 06800, Turkey
b Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, NC 27695, USA

c Department of Mechanical and Industrial Engineering, Mercer University, Macon, GA 31207, USA

Received 27 March 2006; received in revised form 25 September 2006; accepted 27 October 2006
Available online 22 December 2006
Abstract

This paper addresses a static, n-job, single-machine scheduling problem with sequence dependent family setups. The
setup matrix follows a special structure where a constant setup is required only if a job from a smaller indexed family
is an immediate successor of one from a larger indexed family. The objective is to minimize the maximum lateness (Lmax).
A two-step neighborhood search procedure and an implicit enumeration scheme are proposed. Both procedures exploit the
problem structure. The enumeration scheme produces optimum solutions to small and medium sized problems in
reasonable computational times, yet it fails to perform efficiently in larger instances. Computational results show that
the heuristic procedure is highly effective, and is efficient even for extremely large problems.
� 2006 Elsevier Ltd. All rights reserved.

Keywords: Scheduling; Maximum lateness; Sequence dependent family setups; Comedown; Heuristics
1. Introduction

An n-job, single-machine scheduling problem with sequence dependent family setups is considered. It is
assumed that the jobs are released simultaneously. There are N families with ni jobs in each family
i = 1,2, . . . ,N. Each job j has a given due-date dj and processing time pj. Setup is required only if a job from
a smaller indexed family is an immediate successor of one from a larger indexed family. When required, the
setup time between two families is a given constant s. The initial setup of the machine is also given. The objec-
tive is to determine a schedule that minimizes the maximum lateness (Lmax).

The special setup structure in this problem may be seen in process industries. In Conway, Maxwell, and
Miller (1967), it is described as the comedown problem, which occurs in the rolling of steel strips. The rollers
are slightly scored by the edges of the strip being rolled. Consequently, the next strip in the sequence must be
narrower or the rollers must be reground. Another closely related problem is dyeing operations in the textiles
0360-8352/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cie.2006.10.008

* Corresponding author. Tel.: +1 919 515 5186; fax: +1 919 515 1543.
E-mail address: king@eos.ncsu.edu (R.E. King).

mailto:king@eos.ncsu.edu

58 M.R. Taner et al. / Computers & Industrial Engineering 52 (2007) 57–70
industry. Usually, a relatively minor setup is involved when lighter to darker shades are dyed in progression.
However, when a lighter shade is to be dyed after a dark shade, the dye vessel needs to be cleaned incurring a
significant setup time.

In Section 2, a brief overview of research on single-machine scheduling problems with setup times and Lmax

performance criterion is presented. An effective two-step neighborhood search procedure is developed to solve
the problem in Section 3. Section 4 describes an implicit enumeration procedure that relies on the ideas pro-
posed in Monma and Potts (1989) and exploits the special structure of the setup matrix. This enumeration
scheme is used to evaluate the effectiveness of the proposed heuristic mechanism. Computational results are
provided in Section 5. Finally, some conclusions are presented in Section 6.

2. Previous research

There are a number of studies on single-machine problems with setup times and the Lmax performance crite-
rion. Allahverdi, Gupta, and Aldowaisan (1999), and Potts and Kovalyov (2000) give an excellent review of the
scheduling literature with setup considerations. According to Potts and Kovalyov (2000) classification scheme,
the problem addressed in this paper belongs to the class of models with family setup times and job availability.
They define a batch as a maximal set of jobs that are scheduled contiguously on a machine and share a setup.
(Note: In the context of our problem, families in a batch will be sequenced in increasing order of the family index.)
In the following, a brief discussion of the most relevant literature is presented. The interested reader is referred to
Allahverdi et al. (1999) and/or Potts and Kovalyov (2000) for a more elaborate discussion.

Monma and Potts (1989) use a dynamic programming procedure to minimize Lmax in the presence of family
setups. They establish the NP-hardness of the problem with variable number of families even when the setup
times are sequence independent. Although their algorithm efficiently solves the problem when the number of
batches is fixed, it is mainly of theoretical value as its complexity is exponential in the number of batches.
Ghosh and Gupta (1997) propose an improved backward dynamic programming procedure to solve the same
problem. The complexity of their procedure is also exponential in the number of batches. To the best of the
authors’ knowledge the problem has not yet been addressed heuristically.

Schutten, van deValde, and Zijm (1996) develop a branch and bound procedure to solve the problem with
non-simultaneous release times and sequence independent family setups. Hariri and Potts (1997) study the
problem with sequence independent setups when all jobs are released at time zero and develop a branch
and bound procedure that can solve up to 50-job problems. Since exact algorithms fall short of solving
practical sized problems in reasonable computational times, several heuristic algorithms are also proposed.
Zdrzalka (1991, 1995) develops heuristic methods and establishes worst-case bounds on the solution. Baker
(1999) proposes two heuristic neighborhood search methods that improve the solution obtained by an existing
heuristic to minimize Lmax on a single machine with constant, sequence independent family setups. Baker and
Magazine (2000) examine an optimal solution procedure exploiting the special structure of this problem. Their
procedure compresses the effective problem size by creating composite jobs and accelerating the enumeration
procedure using dominance properties and lower bounds.

To the best of the authors’ knowledge, this study is the first heuristic attempt for the problem of minimizing
Lmax on a single-machine subject to sequence dependent family setups and job availability. In addition, it also
appears to be the first paper to address the problem with due-dates and the particular set up structure described.

3. Approach and methodology

The approach can be explained in three stages. First, a reduction procedure is devised to transform a given
instance of the problem to an equivalent, smaller-sized form. Next, characteristics of an optimal solution are
determined. Then, a heuristic solution approach is developed based on these characteristics. The following
notation is necessary.

Fi: Set of jobs which belong to family i, where i = 1,2, . . . ,N.
F r

i : Subset of Fi assigned to batch r.
R: Number of batches.

M.R. Taner et al. / Computers & Industrial Engineering 52 (2007) 57–70 59
Table 1 shows the changeover matrix for family setups.

3.1. Problem reduction

Hariri and Potts (1997) prove a result that facilitates the reduction of an instance of the single-machine
scheduling problem with sequence independent setups and the objective of minimizing the maximum lateness.
The following lemma is a direct result of adaptation of their Theorem 3 to our problem.

Lemma 1. Let j and j+1 be two consecutive jobs in the earliest due-date order of all jobs belonging to family i

(i = 1,2, . . . ,N). If jobs j and j + 1 satisfy the following condition:
Table
Chang

Fromn
1
2
.
.
.
N � 1
N

dj P djþ1 � pjþ1
then there exists an optimal solution in which jobs j and j+1 are scheduled contiguously.

We skip the proof here as it closely mimics Hariri and Potts’ original proof. Along the same lines with
Hariri and Potts, when the condition of Lemma 1 is satisfied, we replace jobs j and j + 1 belonging to the same
family by a composite job with processing time pj + pj+1 and due-date min {dj + pj+1, dj+1}. The composite job
is treated in the same way as an original job in the subsequent computations. The reduction process continues
until the condition of Lemma 1 is not satisfied for any two jobs in the current set of composite jobs. This
reduction procedure requires O(n log (n)) time. Determination of this complexity is discussed in Appendix A.

3.2. Optimality conditions

The optimality conditions depend upon the relative magnitudes of the processing and setup times and due-
dates. It is well-known that when the setup times are all zero, processing the jobs in earliest due-date order
minimizes Lmax. When the setup times are significant, the form of the optimal solution can be represented
as follows:
f½F 1
1; F

1
2; . . . ; F 1

N �; . . . ; ½F R
1 ; F

R
2 ; . . . ; F R

N �g:

Note that some subsets of Fi can be empty. Monma and Potts (1989) (Theorem 1) prove that there is an opti-
mal schedule where jobs in each family are processed in earliest due-date order. It follows from this result that
given the subsets F r

i for each batch r = 1,2, . . . ,R and for each family i = 1,2, . . . ,N, sequencing the jobs in
each subset F r

i in due-date order minimizes Lmax.
Without loss assume that initially the machine is set up. A possible solution is represented by a sequence of

batches. Jobs that belong to the same family are sequenced in due-date order and, within each batch, families
are sequenced in increasing family index order. Fig. 1 shows two consecutive batches. Let ai and bi denote the
number of jobs in family i in batches r and r + 1, respectively. Jobs from all families need not be processed in a
batch (i.e. ai and/or bi can be zero for some i 2 {1,2, . . . ,N}). Let job h be the last (ath

i Þ job of family i in batch
r and job k be the first job of family i in batch r + 1. Let T be the starting time of job h, K be the sum of the
processing times of all jobs between job h and job k and let L 0 be largest lateness among jobs processed
between job h and job k.
1
eover matrix for family setups

To 1 2 . . . N � 1 N

0 0 . . . 0 0
s 0 . . . 0 0
.
.
.
s s . . . 0 0
s s . . . s 0

...1,2,..,a1 1,2,..,ai 1,2,..,aN 1,2,..,b1 1,2,..,bi 1,2,..,bN

...

Batch r Batch r+1

Family 1 Family i Family N Family 1 Family i Family N

K: sum of the processing
times in this interval
L′ : Largest lateness value in
this interval

Job h Job k

Fig. 1. Two consecutive batches.

60 M.R. Taner et al. / Computers & Industrial Engineering 52 (2007) 57–70
Lemma 2. There exists at least one optimal schedule that satisfies the following three inequalities for each family

i = 1,2, . . . ,N and batch r = 1,2, . . . ,R � 1 such that F r
i 6¼ ; and F rþ1

i 6¼ ;.

(1) T þ K þ sþ ph � dh P L0

(2) L0 þ pk P T þ ph þ K þ sþ pk � dk

(3) max
j2F r

i

fdjg 6 min
j2F rþ1

i

fdjg

Proof 1. Suppose that inequality (1) is not satisfied, then job h can be moved to batch r + 1 with a potential
improvement in the value of Lmax. Similarly, if inequality (2) is not satisfied, job k can be moved to batch r

with a potential improvement in the value of Lmax. Adding pk to both sides of inequality (1) reveals that any
optimum schedule that satisfies inequality (1) may be transformed into a schedule that satisfies inequalities (1)
and (2) simultaneously. For such a schedule it must be that
T þ K þ sþ ph þ pk � dh P L0 þ pk P T þ ph þ K þ sþ pk � dk:
Since this implies dh 6 dk, inequality (3) follows directly from (1) and (2). Therefore, any optimum schedule
may be modified to satisfy these three inequalities without change in the value of Lmax. h

3.3. Solution technique

The solution technique has three fundamental schedule improvement techniques.

• Forward insertion: The last job of a family within a batch is moved (inserted) before the first job in the cor-
responding family in the next batch.

• Backward insertion: The first job of a family within a batch is moved (inserted) after the last job in the cor-
responding family in the preceding batch.

• Setup insertion: An additional setup is inserted after the job that has lateness equal to the Lmax value
(referred to as the Lmax job here on) so that some jobs with larger due-dates can be delayed until after this
new setup to expedite the completion of urgent jobs.

Forward and backward insertion moves are pursued under the conditions that follow from Lemma 2.
Define the following additional notation:

fj: Job j’s family index.
I: The job being considered for insertion.
J: The job with the maximum lateness between job I’s current and potential insertion points including job I.

J 0: The job with the maximum lateness between job I’s current and potential insertion points not including
job I.

M.R. Taner et al. / Computers & Industrial Engineering 52 (2007) 57–70 61
KJ: The sum of the processing times of all jobs after job J and before the potential insertion point of job I.
Lj: The lateness of job j.
TJ: The total processing and setup time up to and including job J in the current sequence.
Corollary 1. Forward insertion of job I (Fig. 2) should be pursued if s + KJ < dI � dJ when fJ P fI, or if KJ <
dI � dJ when fJ < fI.

It is clear that no job other than job I will have a larger lateness after the insertion. Thus, the insertion will

result in an improvement if TJ + KJ + s � dI < TJ � dJ for fJ P fI (Note that TJ includes job I’s processing time).

Cancelling like terms on each side and rearranging yields s + KJ < dI � dJ. When fJ < fI, job J is in the same batch

as the insertion point and so TJ includes the setup time for that batch as well as job I’s processing time. Thus, the

insertion will result in an improvement if TJ + KJ � dI < TJ � dJ. Cancelling like terms yields KJ < dI � dJ.

Corollary 2. Backward insertion of a job I (Fig. 3) should be pursued if LJ 0 + pI < LJ.

Jobs J and J 0 are the same except if J = I. Clearly, this inequality can only be true if job J is job I. In this case,

no job other than job I can have a smaller lateness value after the insertion and the backward insertion results in an

improvement if the largest of the increased lateness values does not exceed the current lateness of job I (i.e.
LJ0 + pI < LI).

The following heuristic procedure is based on Lemma 2, and Corollaries 1 and 2.

Algorithm 1

Step 0: Set r = 1 and Sr ¼ f½F 1
1; F

1
2; . . . ; F 1

N �g where jobs within each family are in earliest due-date order. This
is the optimal schedule with a single batch.

Step 1: Insert a setup immediately following the Lmax job.
Step 2: Set r = r + 1 and Sr ¼ f½F 1

1; F
1
2; . . . ; F 1

N �; . . . ; ½F r
1; F

r
2; . . . ; F r

N �g.
Step 3: Consider all forward insertion moves according to Corollary 1. If at least one move has been made,

repeat Step 3.
...
1,2,..,a1 1,2,..,I 1,2,..,aN 1,2,..,b1 1,2,..,bfI 1,2,..,bN

….

Batch r Batch r+1

Family 1 Family fI Family fJ Family N Family 1 Family f I Family N

1,2,..,J,...afJ

Jobs between current and potential positions of job I

Fig. 2. Forward insertion of job I.

Fig. 3. Backward insertion of job I.

62 M.R. Taner et al. / Computers & Industrial Engineering 52 (2007) 57–70
Step 4: Consider all backward insertion moves according to Corollary 2. If at least one move has been made,
repeat Step 4.

Step 5: If at least one backward insertion was made then repeat at Step 3.
Step 6: Save Sr and its associated maximum lateness value, Lr

max. If Lr
max comes from a job that was shifted

forward in the schedule due to the most recent setup insertion, go back to Sr�1 insert a setup imme-
diately following the Lr

max job, replace Sr with the resulting schedule and go to Step 3.
Step 7: If the final setup is followed by a vacuous batch, set r = r � 1, report the resulting schedule (i.e., Sr+1

with the last batch deleted) and the corresponding Lmax value and STOP. Otherwise, go to Step 1.
The time complexity of this algorithm is O(n3 log (n)). Determination of this complexity is discussed in
Appendix A.

Example 1. This example illustrates the algorithm on a simple scenario with three families and nine jobs.
Consider the problem given in Table 2a. (In the table, the batch number is given with the family identifier, e.g.,
1-1 under the Family column represents family 1, batch 1.) Suppose that the initial setup of the machine is for
family 1, and s = 125. The jobs within each family are already in due-date order. Hence, Table 2a shows the
optimum schedule with a single batch. The algorithm terminates in 5 steps as outlined in Tables 2a–2f. The
Lmax value at each step is shown in a box in the L column. The optimum solution has three batches, and an
Lmax value of zero.
3.4. A post processing scheme

Initial experimentation with Algorithm 1 indicated a propensity for the procedure to terminate at a local
optimum respect to the neighborhood structure. An improvement procedure was proposed as a post process-
ing procedure based on the results of the initial experimentation. This procedure alters the schedule obtained
from Algorithm 1 in an attempt to improve it. Forward and backward insertion of jobs and insertion of new
setups generate the neighborhood structure used in this procedure. New setups are always inserted at the end
of the schedule. Forward and backward insertion moves are pursued as long as they do not cause some job’s
lateness value to exceed Lmax for the current schedule. Propositions 1 and 2, respectively, state the conditions
under which a forward or a backward insertion does not make Lmax worse and may be pursued in the post
processing procedure.

Proposition 1. Forward insertion of job I (Fig. 2) cannot make Lmax worse if TJ + KJ + s � dI 6 Lmax when

fJ P fI, or if TJ + KJ � dI 6 Lmax when fJ < fI.

Since no job other than job I will have a larger lateness after the insertion, Lmax cannot get worse unless the

lateness of job I after the insertion exceeds the initial Lmax. If job I currently precedes the Lmax job and is inserted

after it, the insertion may make the schedule better.

Proposition 2. Backward insertion of a job (Fig. 3) cannot make Lmax worse if LJ 0 + pI 6 Lmax.
Table 2a
Step 0

Family Job p d L

1-1 1 50 287 �237
1-1 2 79 359 �230
1-1 3 269 1087 �689
2-1 1 4 247 155
2-1 2 30 267 165
2-1 3 167 589 10
3-1 1 3 287 315
3-1 2 86 331 357

3-1 3 149 881 �44

Jobs are in due-date order within each family.

Table 2b
Step 1

Family Job p d L

1-1 1 50 287 �237
1-1 2 79 359 �230
1-1 3 269 1087 �689
2-1 1 4 247 155
2-1 2 30 267 165
2-1 3 167 589 10
3-1 1 3 287 315
3-1 2 86 331 357

3-2 3 149 881 81

Insert a setup after job 2 of family 3.

Table 2c
Step 2

Family Job p d L

1-1 1 50 287 �237
1-1 2 79 359 �230
2-1 1 4 247 �114
2-1 2 30 267 �104
2-1 3 167 589 �259
3-1 1 3 287 46
3-1 2 86 331 88

1-2 3 269 1087 �274
3-2 3 149 881 81

Forward insert job 3 of family 1 to batch 2. No other forward insertions possible.

Table 2d
Step 3

Family Job p d L

1-1 1 50 287 �237
1-1 2 79 359 �230
2-1 1 4 247 �114
2-1 2 30 267 �104
2-1 3 167 589 �259
3-1 1 3 287 46
3-1 2 86 331 88

3-1 3 149 881 �313
1-2 3 269 1087 �125

Backward insert job 3 of family 3 to batch 1. No other backward or forward insertions possible.

M.R. Taner et al. / Computers & Industrial Engineering 52 (2007) 57–70 63
Note that after the insertion, only job I will have a smaller lateness, the lateness values of all jobs that reside
between job I’s insertion point and its original position will increase by pI, and no other job’s lateness value will

change. Hence, the schedule will not get worse unless LJ0 + pI 6 Lmax , and it may get better if job I is the Lmax

job.

The following post processing algorithm is proposed based on Propositions 1 and 2.

Algorithm 2

Step 0: Initialize r and Sr ¼ f½F 1
1; F

1
2; . . . ; F 1

N �; . . . ; ½F r
1; F

r
2; . . . ; F r

N �g as the number of batches and the sche-
dule in the local optimum solution obtained from Algorithm 1. Set L0max ¼ Lmax and q = 0.

Table 2e
Step 4

Family Job p d L

1-1 1 50 287 �237
1-1 2 79 359 �230
2-1 1 4 247 �114
2-1 2 30 267 �104
2-1 3 167 589 �259
3-1 1 3 287 46
3-1 2 86 331 88

3-2 3 149 881 �188
1-3 3 269 1087 0

Insert a setup after job 2 of family 3.

Table 2f
Step 5

Family Job p d L

1-1 1 50 287 �237
1-1 2 79 359 �230
2-1 1 4 247 �114
2-1 2 30 267 �104
3-1 1 3 287 �121
3-1 2 86 331 �79
2-2 3 167 589 �45
3-2 3 149 881 �188
1-3 3 269 1087 0

Forward insert job 3 of family 2. No other forward or backward insertions possible. 1087 is the largest due-date. An additional batch will
be vacuous. Stop.

64 M.R. Taner et al. / Computers & Industrial Engineering 52 (2007) 57–70
Step 1: Insert a new setup in the end of the schedule. Set r = r + 1.
Step 2: Consider all forward insertion moves according to Proposition 1. If at least one move has been made,

repeat Step 2.
Step 3: Update the Lmax value.
Step 4: Consider all backward insertion moves according to Proposition 2. If at least one move has been

made, repeat Step 4.
Step 5: Update Lmax. If Lmax < L0max, set L0max ¼ Lmax and go to Step 2.
Step 6: Consider all forward insertion moves according to Corollary 1. If at least one move is made, repeat

Step 6.
Step 7: Consider all backward insertion moves according to Corollary 2. If at least one move has been made,

repeat Step 7.
Step 8: Consider all forward insertion moves according to Corollary 1. If at least one move has been made,

go to Step 6.
Step 9: Update Lmax. Set L0max ¼ Lmax. If the final batch is not vacuous, go to Step 1.

Step 10: If q = 0, set q = 1, interchange Steps 2 and 4 and go to Step 2. Otherwise, go to Step 11.
Step 11: Set r = r � 1, report Lmax and Sr. Stop.

The time complexity of this algorithm is O(n4 log (n)). Determination of this complexity is discussed in
Appendix A.

M.R. Taner et al. / Computers & Industrial Engineering 52 (2007) 57–70 65
4. An implicit enumeration procedure

An implicit enumeration procedure was developed in order to determine the effectiveness of the proposed
methodology. The procedure relies on the dynamic programming procedure proposed by Monma and Potts
(1989) while exploiting the special comedown structure.

The enumeration scheme works in a depth-first fashion. The nodes of the enumeration tree represent jobs,
and the level of the node represents the sequence of the job in the schedule. The tree has as many levels as there
are jobs. The root node represents the first job in the sequence, and nodes at the bottom level represent the last
job in the sequence.

Since an optimal solution in which the jobs belonging to each family are in earliest due-date order exists, the
procedure considers only the unscheduled job with the earliest due-date from each family for scheduling next
at any level.

At the beginning, the Lmax value is set equal to the heuristic solution obtained from Algorithm 2. As this is
a depth-first enumeration, a maximum lateness for a feasible job sequence typically is obtained early in the
enumeration. When job sequences are evaluated to completion, the incumbent Lmax may be updated to reflect
a new minimum. As a node is added to the enumeration tree, the lateness of the most recently added job is
easily calculated. If the value is greater than or equal to the incumbent Lmax, then the branch is fathomed.

A branch is also fathomed using a lower bound. The nodes already fixed in the tree represent a partial job
sequence. The remaining jobs are unscheduled. To calculate the lower bound, all unscheduled jobs are
sequenced in EDD order after the last scheduled job. The completion time for the last scheduled job is known.
Therefore, the relaxed completion times (and their lateness values) can then be calculated for the unscheduled
jobs. Since the jobs belonging to families with a smaller index than that of the last scheduled job must be pre-
ceded by at least one setup, their completion times (and lateness values) are incremented by one setup. To illus-
trate this, suppose that only two jobs i 2 Fk and j 2 Fq remain unscheduled at a particular branch where di < dj.
Let t be the completion time of the most recently scheduled job and l be its family index where k < l < q. The
lower bound procedure determines the completion times of jobs i and j as t + s + pi and t + pi + pj, respective-
ly. When the relaxed completion times (and lateness values) of all unscheduled jobs are determined, the largest
lateness value in the relaxed schedule is used as the lower bound for that particular branch. If this lower bound
equals or exceeds the incumbent Lmax, then the branch is fathomed.

The procedure continues until all schedules are fathomed and the minimum Lmax value found.

5. Computational results

Algorithms 1 and 2, and the enumeration procedure are implemented in C++. Experimentation is per-
formed on a 1.80 GHz Pentium 4 PC. Test problems are generated with 2, 4, 6, 8, and 10 families (N), and
between 8 and 80 jobs (n) distributed evenly to each family. Processing times are generated from the Uniform
distribution with a range of [1,19]. Setup times are systematically set equal to 5, 15, and 25. Due-dates are
sampled from a Uniform distribution with a lower limit of 1. The range of the distribution is varied as 10,
30, 50, and so on up to the maximum total processing time in all problems except for the largest set in each
family. In particular, in the two family 80 job, four family 64 job, six and eight family 48 job, and ten family 40
job problems, this range is varied in increments of 60 as 10, 70, 130, and so on within the same range to keep
the total computational time with the enumeration scheme under a reasonable limit. Five randomly generated
instances of each problem are attempted using both the heuristic and the enumeration procedure.

In an attempt to compare the performance of our heuristic also with the most relevant attempts found in
the literature, Baker’s (1999) GAP/CS procedure for the case with sequence independent family setups is
adapted and implemented for this problem. However, the adaptation performed poorly as it was originally
designed for an inherently different problem. Hence, its results are not reported here.

The results for problems for which the implicit enumeration procedure fails to terminate in 30 min of CPU
time are discarded since we then have no basis for comparison of our heuristic algorithm to the optimal solu-
tion. Our heuristic computes a schedule in less than a second in all cases (8820 problems). The implicit enu-
meration procedure completes in less than 30 minutes for about 98 % (8653 problems) of those attempted.
About 96% (8332 problems) of the problems for which the optimum schedule could be determined are solved

66 M.R. Taner et al. / Computers & Industrial Engineering 52 (2007) 57–70
optimally using Algorithm 1. The post processing mechanism increases this percentage to 99.5% (8611 prob-
lems). For all problems not solved by the enumeration algorithm in 30 min CPU time, the incumbent solution
had the same value as the heuristic solution when it was terminated.

The results for 2-family problems are shown in Table 3. Problems with 28, 32, 36, 40, and 44 jobs are
solved. The heuristic finds the optimal schedule for all (3900) problems in this class. Both procedures run
quickly in these problems. The enumeration procedure takes slightly longer CPU time than the heuristic in
larger instances with 44 and 80 jobs. Using the heuristic result as an initial upper bound (UB) speeds up
the enumeration procedure.

Table 4 displays the results for 4-family problems. Four-family problems with 8, 16, 24, 32, 40, and 64 jobs
are attempted. The heuristic gives optimal results for 2106 of the 2118 problems for which the enumeration
completes. The twelve unsolved problems have medium due-date ranges, which in general result in longer
CPU times with the enumeration scheme. The average and maximum percentage deviations in sub-optimal
cases are, respectively, 5.50% and 14.29% in 32-job problems, 4.42% and 7.41% in 40-job problems, and
9.26% and 12.50% in 64-job problems. Both the enumeration and the heuristic run quickly for up to 40-job
problems, but the enumeration takes significantly longer for problems with 64 jobs. The enumeration runs
faster when the heuristic result is used as an initial upper bound. Not using this first initial upper bound ren-
ders three more problems with 64 jobs unsolvable by the enumeration algorithm in the allotted 30-min CPU
time.

The results for 6, 8, and 10-family problems are given in Table 5. Six-family problems with 12, 24, 36, and
48 jobs are attempted. The heuristic yields optimum solutions for all 12-job problems. Among those problems
for which the optimum solution could be secured, two of the 24-job problems, eight of the 36-job problems,
and four of the 48-job problems are solved sub-optimally by the heuristic. The average and maximum percent-
age deviations from optimal are 2.92% and 4.08%, respectively in the sub-optimal cases with 24 jobs. The aver-
age and maximum percentage deviations, respectively, are 4.98% and 9.52% in the sub-optimal cases with 36
jobs, and 3.02% and 5.32% with 48 jobs.

Problems with 16, 32, and 48 jobs and 8 families are attempted. All except one of the 16-job problems are
solved optimally by the heuristic. The percentage deviation from optimum in the sub-optimal case is 5.66%.
The heuristic gives sub-optimal results for 9 of the 475 32-job problems for which an optimum solution could
be obtained. The average and maximum percentage deviations from the optimal, respectively, are 2.26% and
4.17%. Among the 172 48-job problems for which optimum results are found, 168 are solved optimally also by
Table 3
Computational results for 2-family problems

Families Jobs s Problems
attempted

optimal before
post processing

optimal after
post processing

Algorithms 1 and
2 avg. CPU (s)

Enumeration
avg. CPU (s)

Enumeration without
UB avg. CPU (s)

2 28 5 140 139 140 0.00086 0.00007 0.0015
15 140 138 140 0.00050 0.00014 0.0008
25 140 138 140 0.00043 0.00007 0.0007

2 32 5 160 156 160 0.00031 0.00063 0.0014
15 160 154 160 0.00031 0.00050 0.0014
25 160 157 160 0.00056 0.00051 0.0013

2 36 5 180 178 180 0.00094 0.00050 0.0032
15 180 178 180 0.00028 0.00011 0.0035
25 180 173 180 0.00033 0.00028 0.0027

2 40 5 200 193 200 0.00085 0.00050 0.0043
15 200 194 200 0.00070 0.00030 0.0041
25 200 193 200 0.00035 0.00050 0.0032

2 44 5 220 214 220 0.00105 0.00087 0.0077
15 220 212 220 0.00064 0.00064 0.0067
25 220 214 220 0.00100 0.00032 0.0061

2 80 5 400 388 400 0.00318 0.11768 0.2880
15 400 374 400 0.00225 0.08585 0.3180
25 400 363 400 0.00150 0.04970 0.3148

Table 4
Computational results with 4-family problems

Families Jobs s Problems
attempted

optimal before
post processing

optimal after
post processing

Algorithms 1 and
2 avg. CPU (s)

Enumeration
avg. CPU (s)

Enumeration without
UB avg. CPU (s)

4 8 5 40 40 40 0.00075 0.00000 0.0003
15 40 40 40 0.00000 0.00000 0.0000
25 40 40 40 0.00025 0.00000 0.0003

4 16 5 80 79 80 0.00038 0.00050 0.0006
15 80 80 80 0.00025 0.00013 0.0005
25 80 80 80 0.00025 0.00013 0.0003

4 24 5 120 119 120 0.00142 0.00708 0.0095
15 120 118 120 0.00092 0.00308 0.0054
25 120 117 120 0.00067 0.00260 0.0034

4 32 5 160 156 159 0.00194 0.21429 0.3581
15 160 154 159 0.00156 0.08488 0.1071
25 160 152 158 0.00050 0.02445 0.0362

4 40 5 200 192 199 0.00381 2.21796 2.6627
15 200 194 200 0.00221 0.41671 0.5466
25 200 189 199 0.00130 0.13880 0.1809

4 64 5 99/110a 97 98 0.01275 269.1275 307.9050
15 109/110 97 106 0.00718 62.66461 65.1978
25 110 96 108 0.00427 21.38174 46.4473

a The enumeration procedure produces optimum results for 99 of 110 attempted problems within the 30-min CPU time limit.

Table 5
Computational results with 6, 8 and 10-family problems

Families Jobs s Problems
attempted

Optimum before
post processing

Optimum after
post processing

Algorithms 1 and
2 avg. CPU (s)

Enumeration
avg. CPU (s)

Enumeration without
UB avg. CPU (s)

6 12 5 60 60 60 0.00050 0.00033 0.0007
15 60 60 60 0.00050 0.00000 0.0005
25 60 60 60 0.00050 0.00017 0.0002

6 24 5 120 119 119 0.00218 0.29459 0.3185
15 120 113 120 0.00117 0.11191 0.1344
25 120 117 119 0.00083 0.04741 0.0616

6 36 5 178/180 172 176 0.00491 57.12302 72.3744
15 180 174 180 0.00306 4.85639 8.5275
25 180 167 174 0.00239 1.90626 2.3971

6 48 5 63/80 60 63 0.00764 435.93093 467.6206
15 70/80 67 68 0.00363 287.54796 356.5465
25 77/80 71 75 0.00339 167.95275 191.7284

8 16 5 80 80 80 0.00075 0.04169 0.0509
15 80 80 80 0.00163 0.00751 0.0089
25 80 78 79 0.00050 0.00400 0.0053

8 32 5 155/160 149 154 0.00451 155.75249 200.5427
15 160 153 158 0.00263 28.00793 31.0732
25 160 149 154 0.00207 5.03504 5.9762

8 48 5 51/80 48 49 0.00928 722.15823 771.3054
15 57/80 54 55 0.00513 573.22731 619.1070
25 64/80 58 64 0.00363 424.75965 499.7161

10 20 5 100 99 100 0.00150 3.04555 3.1084
15 100 96 100 0.00120 0.18190 0.1945
25 100 97 99 0.00090 0.06846 0.0717

10 40 5 48/70 46 47 0.00914 586.82480 644.0883
15 52/70 50 52 0.00516 525.74956 597.2685
25 60/70 59 60 0.00414 362.94666 425.7549

M.R. Taner et al. / Computers & Industrial Engineering 52 (2007) 57–70 67

68 M.R. Taner et al. / Computers & Industrial Engineering 52 (2007) 57–70
the heuristic. In the sub-optimal cases the average and maximum deviations from the optimum are 2.16% and
3.33%, respectively.

In addition, 20- and 40-job problems with 10 families are attempted. All but one of the 20-job problems are
solved optimally using the heuristic. The percentage deviation from the optimum in the sub-optimal case is
12.28%. Among the 210 attempted problems with 40 jobs, the enumeration algorithm solves 160 within a
30-min CPU time. The heuristic algorithm gives a sub-optimal result in only one of these problems. The per-
centage deviation from the optimum is 13.89% in this problem.

In general, computational times for the heuristic are less than the enumeration scheme. The difference
becomes more significant as the number of jobs is increased. Providing the heuristic result as an initial upper
bound increases the speed of the enumeration scheme. Not using this initial bound renders thirty-two more
problems in this set unsolvable by the enumeration algorithm within the 30-min CPU time limit.

Finally, 1000 randomly generated, 6-family, 24-job problems with a due-date range of 210 and setup time of
5 are evaluated. This particular scenario is chosen since one of the five randomly generated problems with
these parameters is previously solved sub-optimally by the heuristic. Of these, 989 (�99%) are solved optimally
by the heuristic. The average and maximum percentage deviations from optimum Lmax in the 11 cases not
solved optimally are 3.95% and 14.28%, respectively. It should be noted that the worst case (14.28%) deviation
corresponds to less than one-third of the average job processing time. The average CPU time for the heuristic
(0.00098-s) is about four orders of magnitude smaller than that of the enumeration scheme (2.15-s).

Additional experimentation is performed to observe the practical complexity of the heuristic procedure.
First, a set of problems with 1500 jobs, a due-date range of 15,000 and a setup time of 15 are considered.
The number of families is varied between 2 and 50 in increments of 2. Five randomly generated instances
of each problem are solved. Fig. 4 shows the average CPU time in seconds. CPU time seems to vary as an
approximate linear function of the number of families. Next, the number of jobs is varied between 12 and
4800 in increments of 12 for 6-family problems with a setup time of 15. The due-date range is set equal to
10 times the number of jobs. Five random instances of each problem are solved. Fig. 5 shows the average
CPU time. CPU time seems to vary as a polynomial function of the number of jobs.
0
1
2
3
4
5
6
7
8
9

10

0 10 20 30 40 50

Number of Families

A
ve

ra
g

e
C

P
U

 T
im

e
(s

ec
)

Fig. 4. CPU time as a function of the number of families.

0

2

4

6

8

10

12

14

0 1000 2000 3000 4000

Number of Jobs

A
ve

ra
g

e
C

P
U

 T
im

e
(s

ec
)

Fig. 5. CPU time as a function of the number of jobs.

M.R. Taner et al. / Computers & Industrial Engineering 52 (2007) 57–70 69
6. Concluding remarks

In this paper an n-job, static single-machine scheduling problem with sequence dependent family setups is
addressed. Consistent with the textile dyeing operations, setup is required only if a job from a smaller indexed
family (lighter colored fabric) is an immediate successor of one from a bigger indexed family (darker colored
fabric). An exact implicit enumeration scheme and an effective two-step neighborhood search procedure are
developed to minimize the maximum lateness. The exact procedure solves small and medium sized instances
efficiently, however, its computational requirements are formidable in large instances. Extensive computation-
al experimentation with the proposed heuristic procedure justifies that the technique is highly effective, and is
computationally efficient even for large problems.

Acknowledgements

The authors wish to thank the three anonymous referees for their valuable comments on an earlier draft of
this paper.

Appendix A

Define

N: Number of families
n: Number of jobs
where N 6 n.
Initialization

Put all jobs in earliest due-date order. Complexity: O(n log (n)).

Reduction procedure

Complexity associated with checking if any of the n jobs can be combined with the next job (e.g., if all jobs
were in the same family) is O(log (n)). Even if two jobs were to be combined at a time, the procedure would be
repeated no more than n times. Thus the overall complexity is O(n log (n)).

Algorithm 1

Complexity associated with checking if any forward (backward) insertion moves are possible in a single
pass is log(n). For a given number of batches, even if each job were to be moved to the next (previous) batch
in the sequence one at a time, the maximum number of self-calls for the forward (backward) insertion proce-
dure would be n. In addition, since each backward insertion move may result in a revocation of step 3, there
are a maximum of n recursions of steps 3–8 as a result of a backward insertion move. Finally, the maximum
number of batches is limited by n (i.e., each job forming a separate batch). Hence, the complexity of Algorithm
1 is O(n3 log (n)).

Algorithm 2

Complexity associated with checking if any forward insertion moves can be made at a single pass in step 2 is
log(n). Even if only one job were to be moved in each pass, the maximum number of self-calls would be n.
These observations are also applicable to step 4. The maximum number of revocations of step 2 as a result
of the test performed in step 5 is n2, that is, the number of combinations of all possible forward and backward
insertion moves, respectively in steps 2 and 4 for a given number of batches. The complexity of the process that
takes place in steps 6-8 is the same as the complexity of Algorithm 1 for a given number of batches (i.e.,

70 M.R. Taner et al. / Computers & Industrial Engineering 52 (2007) 57–70
O(n2 log (n))). Once again, the maximum number of batches is limited by n. Hence, the complexity of Algo-
rithm 2 is O(n4 log (n)).

Based on these observations the overall complexity of the proposed heuristic procedure is O(n4 log (n)).

References

Allahverdi, A., Gupta, J. N. D., & Aldowaisan, T. (1999). A review of scheduling research involving setup considerations. Omega, The

International Journal of Management Science, 27, 219–239.
Baker, K. R. (1999). Heuristic procedures for scheduling job families with setups and due-dates. Naval Research Logistics, 46, 978–991.
Baker, K. R., & Magazine, M. J. (2000). Minimizing maximum lateness with job families. European Journal of Operational Research, 127,

126–139.
Conway, R. W., Maxwell, W. L., & Miller, L. W. (1967). Theory of scheduling. Reading, MA: Addison Wesley Publishing Co, pp. 54.
Ghosh, J. B., & Gupta, J. N. D. (1997). Batch scheduling to minimize maximum lateness. Operations Research Letters, 21, 77–80.
Hariri, A. M. A., & Potts, C. N. (1997). Single machine scheduling with batch setup times to minimize maximum lateness. Annals of

Operations Research, 70, 75–92.
Monma, C. L., & Potts, C. N. (1989). On the complexity of scheduling with batch setups. Operations Research, 37, 798–804.
Potts, C. N., & Kovalyov, M. Y. (2000). Scheduling with batching: a review. European Journal of Operational Research, 120, 228–249.
Schutten, J. M. J., van deValde, S. L., & Zijm, W. H. M. (1996). Single machine scheduling with release dates, due-dates and family setup

times. Management Science, 42, 1165–1174.
Zdrzalka, S. (1991). Approximation algorithms for single machine sequencing with delivery times and unit batch set-up times. European

Journal of Operational Research, 51, 199–209.
Zdrzalka, S. (1995). Analysis of approximation algorithms for single machine scheduling with delivery times and sequence independent

batch setup times. European Journal of Operational Research, 80, 371–380.

	Satisfying due-dates in the presence of sequence dependent family setups with a special comedown structure
	Introduction
	Previous research
	Approach and methodology
	Problem reduction
	Optimality conditions
	Solution technique
	A post processing scheme

	An implicit enumeration procedure
	Computational results
	Concluding remarks
	Acknowledgements
	Appendix A
	Define
	Initialization
	Reduction procedure
	Algorithm 1
	Algorithm 2

	References

