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For wireless sensor network applications that require location information for sensor
nodes, locations of nodes can be estimated by a number of localization algorithms, which
inevitably may introduce various types of errors in their estimations. How an application is
affected from errors and a location error metric’s response to errors may depend on the
error characteristics. Therefore it is important to use the right error metric to evaluate
the error performance of alternative localization techniques that is possible to use for an
application. To date, unfortunately, only simplistic error metrics that depend on the Euclid-
ean distance between an actual node position and its estimate in isolation to the rest of the
network has been considered for evaluation of localization algorithms. In this paper, we
first clarify the problem with this traditional approach and then propose some alternative
and new metrics that consider an overall network topology and its estimate in computing a
metric value. We compared the existing and new metrics via simulation experiments done
using some typical application and error scenarios, and observed that some new metrics
are more sensitive to some type of errors and therefore can distinguish better among alter-
native localization algorithms for applications that are more sensitive to those types of
errors. We also go through a case study with some localization algorithms from literature
to give an idea about the practical use of our approach. Finally, we provide a step-by-step
guideline for selecting the best metric to use for a given sensor network application.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Wireless sensor networks are used in a wide range of
applications such as scientific research, military, health-
care, and environmental monitoring [1–3]. In a wireless
sensor network, sensor nodes collect information about
the environment and communicate their observations to
a data collection point, a.k.a. the sink node [1,3], from
where users can access the collected data without the need
to travel to the monitored area. Sensor nodes tag their
observations with their location information and such
information is critical for illustrating a representative pic-
ture of the monitored environment.
. All rights reserved.
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oglu).
In wireless ad hoc sensor networks, node positions may
not be known prior to or at the time of deployment. The
process of estimating the unknown node positions within
the network is referred to as localization. The limited power
supply, size and cost considerations in sensor networks
may prohibit the use of a GPS (Global Positioning System)
module at each sensor node. Instead, it may be preferred to
limit the number of nodes with GPS modules and then rely
on location estimation algorithms for the rest of the nodes.

Obviously, errors are inevitable in estimations. In
Fig. 1(a), we illustrate a simple example for location estima-
tion of three sensor nodes. The actual positions of the nodes
are P1, P2, and P3, and they are represented by solid circles in
the figure. The actual positions of the nodes are not known
by the application and estimated by use of a localization
algorithm. Assume a localization algorithm estimates the
node positions as in Fig. 1(a). The estimated positions are

http://dx.doi.org/10.1016/j.comnet.2011.06.023
mailto:korpe@cs.bilkent.edu.tr
http://dx.doi.org/10.1016/j.comnet.2011.06.023
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet


Fig. 1. (a) position estimates, P01; P
0
2, and P03, for the sensor nodes P1, P2,

and P3, respectively; (b) comparison with an alternative set of estimates.
Individual errors look similar. However, the estimates, P001; P

00
2, and P003,

result in a completely misleading overall topology.
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P01; P
0
2, and P03 and shown with dotted circles. Now, assume

another localization algorithm produces node position esti-
mates for the same set of nodes as P001; P

00
2, and P003, shown in

Fig. 1(b).
When comparing the accuracy of these two sets of esti-

mates (i.e. the results of two localization algorithms), the
traditional approach uses the Euclidean distance between
the actual and estimated positions of the individual nodes,
P1; P

0
1, or P001, etc. In this example, if we consider the accu-

racy of each estimate in isolation to the estimates of other
nodes’ positions, this will suggest a similar error in both
cases, since the average Euclidean distance for both cases
is the same. However, these two sets of estimates may
have quite different implications for data management in
practical applications. In particular, in the estimates of
the second algorithm, the relative standing of the esti-
mated positions P001 and P002 (and also P001 and P003) are very dif-
ferent in comparison to the relative standing of the actual
node positions, and this may result in misleading conclu-
sions during data analysis for some applications. For in-
stance, the advection of a particulate pollutant monitored
by an environmental monitoring system may appear to
be in the reverse direction than it really is.

In this scenario, even though the Euclidean errors are
nearly the same for both estimation algorithms, the esti-
mates of the first algorithm (P01; P

0
2, and P03) are much better

than the estimates of the second algorithm (P001; P
00
2, and P003),

considering relative standing. This simple example of
Fig. 1 motivates the need for better metrics to distinguish
the error performance of localization algorithms, since
Euclidian distance metric is not distinguishing very well
for some cases. As an other simple example, consider a
topology that is simply shifted towards left (or right) in
its estimation version. Hence, the estimated position of
each node shifted to the same direction with the same
amount. In such a case, the Euclidian distance metric will
possibly have a large value as the error introduced by the
localization algorithm used. But, this kind of estimate
may be perfectly fine for some applications that just need
to use the relative positions of nodes against each other.
Hence, the error of such an estimate by some localization
algorithm can be considered as zero or very low for these
kind of applications.

In general, the precise location of each sensor node is not
necessarily needed in most sensor network applications [1].
Yet, accurate estimate of overall topologies are vital for
accurate identification,1 routing, in-network processing as
well as overall analysis of observations. Our focus, there-
fore, is on the overall estimation of the sensor network
topology, rather than on the individual estimates, as has
been the major focus in previous studies, e.g., [5–10].

Towards this goal, in this study we first set forth to
reply the question: ‘‘How do we measure the similarity
of two network topologies?’’ Defining the similarity of
two sets of data points, two sequences of coordinates,
etc. has been a challenging question in various fields. In
this study, we focus on location estimation metrics for
1 For large scale deployments, producing arbitrary addresses for billions
of nodes is not feasible; if estimated accurately, geographic locations can
help identify nodes, routing, etc.
localization algorithms designed to be used in wireless
sensor networks, especially in environmental engineering
applications of sensor networks. In this scope, we outline
some existing approaches to evaluate the accuracy of posi-
tion estimates and also propose some novel approaches to
address the problems we discussed.

The contributions of this paper are: (1) pointing out the
need for a new distance (similarity) measure for localiza-
tion algorithms in wireless sensor networks, (2) proposing
some new metrics; (3) emphasizing that a metric to be
used for evaluating alternative localization algorithms de-
pends on the context (i.e. application). Besides proposing
and analyzing some new metrics that consider application
requirements, we analyze some existing and commonly
used metrics as well.

The rest of this paper is organized as follows. In the next
section, we briefly discuss the related work. In Section 3, we
discuss the meaning of similarity for two topologies. In
Section 4 we describe traditional error metrics used in local-
ization studies and also present some new and novel alter-
natives that can be used within this scope. In Section 5 we
discuss some simple topology change scenarios and by
using them we evaluate the performance of the new and
existing metrics. In Section 6 we go through a case study
with some localization algorithms from the literature, and
in Section 7 we suggest a metric selection method that
can be used to select an appropriate metric for a certain
application. Finally, we present our conclusions in Section 8.
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2. Related work

Localization is an important issue for some wireless
sensor network applications [2–4,11–14], but not all of
such applications require absolute positions of sensor
nodes. There are a lot sensor network applications or ser-
vices that may do quite well with the knowledge of relative
positioning of the nodes. For example, a geographic routing
or data dissemination service may work equally well if the
relative positioning of the nodes against each other are
known; in other words, if the topology of the network is
known without the exact positions of the nodes. For such
applications and services, even though some location er-
rors are introduced by the estimation algorithms, this
may not be harmful for the applications provided that
the relative positioning information is correct.

Therefore, there are various localization algorithms pro-
posed for sensor networks that do not require use of GPS in
every node and that have different error performance.
Those localization algorithms can be classified in various
ways: range-based algorithms, range-free algorithms, re-
gion-based algorithms, connectivity-based algorithms,
hop-counting techniques, and so on [15–21]. There are also
some localization techniques developed for sensor net-
works where nodes can be mobile [22].

It is reported in the literature that the errors introduced
by those different classes of algorithms may have different
characteristics. Hence, there are various types of errors
that can be introduced by location estimation algorithms
[8]. In this paper, we consider three types of errors: shit,
rotational, and random (distorted) errors. There are also
studies that investigate the impact of various types of er-
rors on wireless sensor network applications [23].

Nearly all studies consider the average Euclidian dis-
tance between actual and estimated node positions as
the error metric in judging the accuracy of localization
algorithms. There are also metrics that are direct functions
of Euclidian distance, for example metrics that use the nor-
malized value of the distance (normalized according to the
communication range) [15,16,24]. There are, however, not
much studies that consider other metrics that we argue as
necessary in this paper.

To the best of our knowledge, this paper is the first at-
tempt to consider various other metrics as well while judg-
ing the accuracy of localization algorithms. Some of these
other metrics are already well-known in other domains
[25,26], but not much in the localization domain. Besides
these well-known metrics, this paper also proposes some
new novel metrics that can be better to use for some appli-
cations (depending on how applications tolerate various
types of errors) and therefore can be considered as alterna-
tive metrics in localization domain. Hence, we consider our
study here is as an original contribution to the literature of
performance of localization algorithms.
3. Similarity of topologies

In this study we are interested in evaluating metrics that
compare and evaluate the difference between two sensor
network topologies, one consisting of the actual positions
of the sensor nodes in the network, the other consisting of
the estimated positions of the same sensor nodes by some
algorithm. To be able to do that we should first define what
a topology is, so that we can define the distance or similarity
between two topologies. It is possible to come up with var-
ious definitions of a topology. One way is to consider a topol-
ogy as an undirected graph G (V,E), where V is the set of node
positions and E is set of edges so that there is an edge be-
tween two nodes that are in the transmission range of each
other (assuming symmetric range). According to this defini-
tion, topology depends on node positions and on the given
transmission range. Performance of localization algorithms,
however, does not have to depend on a given transmission
range. More important issue is absolute or relative node
positions and how we estimate them. Therefore we use an-
other definition of a topology in our study. We define sensor
network topology to be a set of x-y coordinates (i.e., points or
node positions) in a two dimensional space. It is possible to
extend this definition to three dimensional space consider-
ing the altitude of deployed sensor nodes, but for simplicity,
our discussion is confined to two-dimensional space.

More formally, when we refer to a topology T of N
nodes, we refer to a sequence of node positions P1,P2, . . . ,PN

where Pi = (xi,yi) is the coordinate of a sensor node i. We
then refer to the estimated topology as T0 consisting of a se-
quence of coordinates P01; P

0
2; . . . ; P0N where P0i ¼ x0i; y

0
i

� �
is the

estimated position of the sensor node i. We use the nota-
tion dx(P,P0) to denote the distance between node positions
P and P0 (nodal/point distance or positional distance), and
lx(T,T0) to denote the distance (dissimilarity) between net-
work topologies T and T0 (topological distance) based on
some distance metric x.

Additionally, V
!

ij ¼ PiPj

!
denotes the vector from node

position Pi to node position Pj; and V
!
0
ij ¼ P0iP

0
j

!
denotes the

vector from estimated node position P0i to estimated node
position P0j. Vector V

!
ij indicates the actual relative position-

ing (arp) of two nodes i and j; and vector V
!
0
ij indicates the

estimated relative positioning (erp) of two nodes i and j.
4. Existing and new metrics

In this section we describe different approaches and
metrics that can be used to evaluate localization algo-
rithms, and in the next section, Section 5, we evaluate all
these metrics when applied to some common scenarios
of topology estimations and changes.

We start this section by describing two common met-
rics, Euclidian distance metric and Manhanttan distance
metric [27], currently used by localization algorithms
followed by the description of two other metrics, Cosine
distance metric and Tanimoto coefficient distance metric
[25–27], that, to the best of our knowledge, are not applied
for localization algorithm evaluation, but can be consid-
ered as possible candidates. Then we propose and describe
four novel metrics that we think can be alternative metrics
for evaluating localization algorithms designed for wireless
sensor networks and environmental engineering applica-
tions: Relative Euclidian distance (RED) metric, Cumulative
vectorial distance (CVD) metric, Extremes distance metric,
Spring distance metric. We provide four versions of the
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Spring distance metric: Spring A, Spring B, Spring C, and
Spring D distance metrics.

Besides the metrics that we consider in this paper,
graph-theoretic distance metrics can be considered as well.
Graphs are modeled as set of vertices (V) and edges (E) and
this model is appropriate to describe the connectivity of a
sensor network. However, a graph-theoretic model does
not contain node positions which are particularly used in
location estimation problems. Thus, graph- theoretic mod-
els do not sense shift, rotation and connectivity preserving
distortion on sensor network topology. Therefore, graph-
theoretic distance metrics are not considered in this paper
and left as a future work.
Fig. 2. For a network topology of just two nodes, the figure provides an example f
original and estimated topology.
While describing each metric below, we also illustrate
an example in Fig. 2 about how the metric can be com-
puted. Fig. 2(a) contains a sample network of two nodes
and its estimation under a localization algorithm. Based
on that, Fig. 2(b) through (i) provide examples of how dif-
ferent metrics can be computed to evaluate the error be-
tween the given topology and its estimate.

4.1. Euclidean distance

Euclidean distance (error) is the most widely used dis-
tance metric. It is defined to be the shortest distance (the
length of the straight line) between two coordinates. The
or each metric how it can be computed to reflect the distance between the
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Euclidean distance between two topologies can be com-
puted as follows (see also Fig. 2(b)):

dEuclidian Pi; P
0
i

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi � x0i
� �2 þ yi � y0i

� �2
q

; ð1Þ

lEuclidianðT; T
0Þ ¼ 1

N

XN

i¼1

dEuclidian Pi; P
0
i

� �
; ð2Þ

where xi and yi are the actual coordinates of a node i and x0i
and y0i are the estimated coordinates of the node. In this
equation and in the subsequent equations for other met-
rics, N is the number of nodes in the network. Above, the
topological distance lEuclidian(T,T0) indicates the error intro-
duced by a localization algorithm considering all node
positions and their estimates.

In this metric, each node position and its estimate are
considered in isolation to other node positions and their
estimates. As we discussed in the introduction, however,
since this metric does not take the direction or the relative
position of a node with respect to other nodes in the net-
work into consideration, it may not be a good metric in
applications for which estimating relative positions is
more important than estimating absolute positions. Many
scientific applications, for example, care more about rela-
tive positions of reporting nodes than a few perfect posi-
tion estimates - without knowing which ones.

4.2. Manhattan (Hamming) distance

Manhattan (Hamming) distance is another simple and
popular metric that is computed considering a two dimen-
sional coordinate system. It is the distance between two
coordinates measured along the axes at right angles. In
other words, assuming that you can move only along the
x and y-axis in the plane (not in any other arbitrary direc-
tion as in the case of Euclidean distance), it measures the
distance to get from one point to the other. Similar to
Euclidean distance, however, it falls short of representing
relative positioning of nodes. Below is the formula to com-
pute the Manhattan distance between a topology T and its
estimate T0 (see also Fig. 2(c)).

dManhattan Pi; P
0
i

� �
¼ x0i � xi

�� ��þ y0i � yi

�� ��� �
; ð3Þ

lManhattanðT; T
0Þ ¼ 1

N

XN

i¼1

dManhattan Pi; P
0
i

� �
: ð4Þ
4.3. Cosine distance

Cosine similarity is a well-known technique that con-
siders not only a single value and its estimate, but multiple
values at the same time [25]. It is a common metric used in
information retrieval domain. In localization domain, we
consider vectors V

!
ij and V

!
0
ij connecting any two nodes’

actual and estimated positions. The Cosine similarity is
defined to be the cosine value of the angle (h) between
these two vectors (see Fig. 2(d)). In this respect it is the
opposite of the Euclidian distance metric.

Note that Cosine similarity is a good metric for applica-
tions that only care about the relative direction of nodes
regardless of the actual distance between the pairs of esti-
mates. The absolute distance between nodes, however, is
not captured by this metric.

Cosine similarity, like other similarities, has a range of
�1 to +1. We define the Cosine distance between a
two-node topology and its estimate as (1 � cosh)/2. For
a topology with more than two nodes, all pairs of nodes
are considered, as shown below, to compute the topological
distance (Eq. (7)).

cos h ¼ Vij

!
�Vij

!
0

jVij

!
j Vij

!
0

����
����
; ð5Þ

dCosineðPi; PjÞ ¼
1� cos h

2
; ð6Þ

lCosineðT; T
0Þ ¼ 2

NðN � 1Þ
XN

i¼1

XN

j¼iþ1

dCosineðPi; PjÞ: ð7Þ
4.4. Tanimoto coefficient distance

Tanimoto coefficient is a more complex metric that con-
siders vectors rather than points [26]. It is a highly popular
metric in text matching problems of information retrieval
where it is defined as the size of the intersection divided
by the size of the union of the sample sets. It can be
adapted to our domain as follows. We consider the pair-
wise relative positions of nodes in both sets (T and T0) as
vectors (see Fig. 2(e)). We then compute Tanimoto coeffi-
cient (TC) of these vectors (Eq. (8)). Using the Tanimoto
coeffcient, we compute the Tanimato distance (Eq. (9))
for a node pair. Then the Tanimoto distance between a
topology T and its estimate T0 is computed as in Eq. (10).

TCðPi; PjÞ ¼
Vij

!
�Vij

!
0

Vij

!
����
����
2

þ Vij

!
0

����
����
2

� Vij

!
�Vij

!
0

; ð8Þ

dTanimotoðPi; PjÞ ¼
1� TCðPi; PjÞ

2
; ð9Þ

lTanimotoðT; T
0Þ ¼ 2

NðN � 1Þ
XN

i¼1

XN

j¼iþ1

dTanimotoðPi; PjÞ: ð10Þ
4.5. Relative Euclidean Distance (RED)

Relative Euclidean Distance (RED) is a novel metric that
we propose based on our observations on how Euclidean
distance fails to capture the relative position of a pair of
nodes. Euclidean distance considers a coordinate in refer-
ence to the origin which is a fixed point. With RED metric,
instead, we try to capture the relative positional difference
between two sets of positions: the actual positions set and
the estimated positions set.

To compute RED metric, we consider nodes in pairs. We
first compute the RED of one pair. i.e. of two nodes. It is
done as follows. Considering any pair of nodes i and j in
the network and their actual (Pi,Pj) and estimated P0i; P

0
j

� �
positions, we first obtain the vectors V

!
¼ P1P2

!
and

V
!
0 ¼ P01P02

!
. We then compute the RED metric value as the

magnitude of the vector connecting the end-points of these
two vectors (see Fig. 2(f) and Eq. (11)).
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The value of the metric depends on both the relative
directions of the vectors and the difference in the magni-
tudes of the vectors. For example, if the estimated posi-
tions are aligned along the same direction with the
actual positions, we expect the angle between the two vec-
tors to be relatively small, indicating that the directional
error is low. Similarly, if the vectors have nearly the same
magnitude, then their magnitude difference will be low,
indicating again a low error value.

The above process is repeated for all pairs of nodes to
compute the distance between a topology T and its esti-
mate. The topological RED distance is the average of the
RED distances of all pairs of nodes in the topology (Eq. (12)).

dREDðPi; PjÞ ¼ ½ðjV
!
j2 þ jV

!
0j2 � 2 V

!
�V
!
0Þ�1=2

; ð11Þ

lREDðT; T
0Þ ¼ 2

NðN � 1Þ
XN

i¼1

XN

j¼iþ1

dREDðPi; PjÞ: ð12Þ
4.6. Cumulative Vectorial Distance (CVD)

This metric we propose is motivated by Cosine similarity
metric. We aim at including distance as well as the angle
into account. First, for each node we record the difference
between its actual and estimated x-coordinate. We repeat
the same process for the y-coordinate. We then sum up
all these differences for both x and the y-coordinates and
construct two perpendicular vectors (starting at the origin)
whose magnitudes are equal to these sums respectively.
The distance between the end coordinates of these vectors
is defined as the CVD metric (Fig. 2(g)). The formula below
computes the CVD distance between topologies T and T0:

lCVDðT; T
0Þ ¼ 1

N

XN

i¼1

x0i � xi
� �" #2

þ
XN

i¼1

y0i � yi

� �" #2
0
@

1
A

1=2

:

ð13Þ
4.7. Extremes distance

The maximum error of location estimation may have a
significant effect on some applications and the quality of
service they get from the network and location based ser-
vices running on the network. For such applications, met-
rics assuring certain error bound (i.e. level of quality in
location estimation) are necessary. Thus, we introduce Ex-
tremes Distance metric which measures the distance be-
tween a topology T and its estimate T0 as the maximum
Euclidian distance among individual node positions and
their estimates (see also Fig. 2(h)).

lExtremesðT; T
0Þ ¼max

i21...N
dEuclidian Pi; P

0
i

� �� 	
: ð14Þ
4.8. Spring distance

For this final metric we use an analogy based on a phys-
ical model. We model the network topology as an elastic
object, and we consider the distance between the actual
and estimated topologies as the difference in the potential
energy of the original elastic object (corresponding to the
actual topology) and its deformed version (corresponding
to the estimated topology).

Hence, we model a sensor network as an elastic object
consisting of a set of nodes connected with springs. Each
sensor node in the model is connected to all other nodes
and the ground with springs.

For a network of N nodes, there are N � 1 springs per
node connecting the node to other nodes. These springs
are called Type-1 springs. Each such spring connects a pair
of nodes and is responsive (stores potential energy) to a
change in the Euclidean distance between those nodes.
Moreover, there is one spring per node connecting the node
to the ground. This spring is called Type-2 spring and is
responsive to the node’s individual relocation. In addition
to Type-1 and Type-2 springs, which are of tension/exten-
sion springs, we have an additional spring per pair of nodes,
Type-3 springs, which are torsion springs. A torsion spring is
a type of string that can not be extended or compressed, but
can be rotated/distorted when a force is applied. A Type-3
string is responsive to a change in the direction of the
Type-1 spring connecting these two nodes. Since we have
one Type-3 string per pair of nodes, there are N � 1 Types-
3 strings associated with a node (one string per other node
the node is connected to with a Type-1 string). The potential
energy stored on a Type-3 string is related with the angle of
distortion (h) of the string (vector) connecting the corre-
sponding two nodes.

We assume that all strings in the model of the actual
network have their relaxed length (equilibrium condition,
storing zero potential energy) and then we deform this
model into the model corresponding to the estimated net-
work. We then compute the potential energy that is stored
in the deformed network model, and this gives us the
Spring distance. We know that the more an elastic object
is deformed, the more potential energy is stored in it.
Therefore, we can consider the stored potential energy as
the measure of topological distance.

The potential energy of a tension/extension spring of
length l and elastic modulus or constant kunder compres-
sion or extension of x is Ue ¼ kx2

2l . Similarly, the potential en-
ergy of a torsion spring of elastic modulus or constant k with
the angle of twist (h) from its relaxed position is Ue ¼ 1

2 kh2.
Spring distance between topology T and its estimate T0

is the overall potential energy stored in Type-1, Type-2
and Type-3 springs (see Fig. 2(i) and Eq. (15)):

lspringðT; T
0Þ ¼ UT1ðT; T 0Þ þ UT2ðT; T 0Þ þ UT3ðT; T 0Þ; ð15Þ

where

UT1ðT; T 0Þ ¼
2

NðN � 1Þ
XN

i¼1

XN

j¼iþ1

krel Vij

!
����
����� V 0ij

!����
����

����
����
2

2jVijj
; ð16Þ

UT2ðT; T 0Þ ¼
1
N

XN

i¼1

kshiftdEuclidian Pi; P
0
i

� �2

2
; ð17Þ

UT3ðT; T 0Þ ¼
2

NðN � 1Þ
XN

i¼1

XN

j¼iþ1

1
2

kroth
2
ij; ð18Þ

hij ¼ arccos
Vij

!
�V 0ij
!

jVij

!
jjV 0ij
!
j

0
B@

1
CA: ð19Þ
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UT1 computes the potential energy stored in Type-1
springs under tension resulted by changes in relative loca-
tion of each pair of nodes (Eq. (16)). The type-1 spring con-
stant krelative is called displacement_sensitivity parameter
and assumed to be 1 in the model. UT2 computes the poten-
tial energy stored in Type-2 springs under tension resulted
by changes in the absolute location of each individual node
(Eq. (17)). The relaxed length of a Type-2 string is assumed
to be 1 and the type-2 string constant, kshift, is called
shift_sensitivity parameter in the model. UT3 computes the
potential energy stored in Type-3 springs under tension re-
sulted by changes in relative direction of each pair of nodes
(Eq. (18)). The type-2 spring constant krotate is the rota-
tional_sensitivity parameter of the model.

Computational complexity of UT2 is O(N) while it is
O(N2) for UT1 and UT3. Hence computational complexity
for Spring distance is O(N2) with N nodes in the network.

Force constants of springs affect the behavior of spring
distance metric. By increasing/decreasing the shift_sensi-
tivity and rotation_sensitivity parameters, metric’s re-
sponse to changes can be adjusted. In the simulations,
we use four versions of spring distance: Spring A distance
is the one with shift_sensitivity = rotational_sensitiv-
ity = 0.5; Spring B distance is the one with shift_sensitiv-
ity = 1 and rotational_sensitivity = 0; Spring C distance is
the one with shift_sensitivity = 0 and rotational_sensitiv-
ity = 1; Spring D distance is the one with shift_sensitiv-
ity = 0 and rotational_sensitivity = 0.
5. Evaluation of metrics under sample scenarios

In this section we present some basic topology change
(error) scenarios and use them to compare and evaluate
the metrics we presented in the previous section. For each
topology change scenario studied, we discuss the impact of
those types of errors on applications.

While some distance metrics we study give bounded
values, e.g., Cosine distance metric, some others give un-
bounded values, e.g., Euclidean distance metric. Therefore,
comparing the values of the metrics directly, without any
normalization, can be misleading. Because of this we nor-
malize each metric’s result with its maximum value re-
ported in simulations. In this way, we can monitor the
behavior of metrics in response to the changes in the net-
work topology.

We used Matlab for simulating error scenarios and eval-
uating the metrics. We have written custom Matlab code to
simulate various network topologies, topology changes,
and to compute the distances between the actual and chan-
ged (estimated) topologies according to various metrics we
study in this paper. For our simulation experiments, we
generate sample network topologies synthetically that are
deployed over a square area of 20 by 20 unit length. We
keep the area size constant. We consider 10 different net-
work sizes, changing from 40 nodes up to 400 nodes, with
a step size of 40. For each simulation experiment, the nodes
are deployed on the area with a uniform distribution. For
each network size, the simulation experiments re repeated
20 times and average results are reported. There are three
basic error scenarios that we consider: shifted topology, ro-
tated topology, distorted (random) topology. For shifted
and rotated topology simulations, actual network topology
is shifted or rotated depending on the scenario parameters,
i.e., rotation angle, and then the resulting topology is used
as the estimated topology. In case of distorted topologies,
three different distortion approaches are used. First, nodes
are distorted by uniform distribution with various ranges.
Second, nodes are distorted according to Gaussian distribu-
tion with fixed mean and various sigma values. Finally,
nodes are distorted by Gaussian distribution with fixed sig-
ma and various mean values.

5.1. Rotated topologies

Rotated topologies are common error scenarios for
environmental monitoring applications. We focus on
topologies that are rotated with respect to a coordinate
system. To simulate such a topology change scenario, we
place all nodes on a plane and then rotate the plane so that
the distance between any two nodes stay exactly the same
while the overall alignment differs.

We run simulations for various rotations by increasing
the angle of rotation. In Fig. 3, the distance between the ori-
ginal and estimated topology is plotted for various metrics
as rotation angle increases. As can be seen from the figure,
all metrics, except Spring D metric, report an increasing er-
ror as the angle increases up to 180 degrees. The behavior is
fully symmetric for all metrics studied, reaching a peak er-
ror at 180 degrees and returning back to zero error at 360
degrees, which reflects the original topology.

In traditional pattern matching problems, we would ex-
pect similarity degrees to be high in rotated topologies
since the shape on the plane does not change when we ro-
tate the plane. Yet, in environmental engineering applica-
tions the reference to the coordinate system does play a
significant role in the interpretation of the observations
from the network.

As seen in Fig. 3, Spring C metric increases exponen-
tially while Tanimoto, Cosine, Spring A, Spring B metrics
increase linearly and Euclidean, Manhattan, Extremes and
CVD metrics increase logarithmically while the angle of
rotation is increased from 0 to 180 degrees. In this regard,
among all metrics, Spring C seems to be the most sensitive
metric for rotated topologies. On the other hand, Spring D
distance metric is not sensitive to rotation operation at all.

5.2. Shifted topologies

The second error scenario we consider is a topology
with a perfect shift. That is all nodes in the network are
subject to the exact distortion in a particular direction.
For instance, all nodes deployed on a lake surface may have
moved northeast by forces of wind after location estima-
tion. We simulate this scenario by taking the estimated
location for a node as (x + n,y + n), where (x,y) is the origi-
nal coordinate of the node and n is a number representing
the shift amount, between 1 and 10, in both x and y dimen-
sions. Even though this is a rather simplified assumption,
i.e., in practice some nodes can move more than the others,
the scenario will help us to observe the behavior of metrics
for the general case of shifted topologies.
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Fig. 3. Behavior of metrics in case of rotated replicas of the original topology: On the x-axis the rotation angle is increased from 0 to 360 degrees and the
normalized metric value comparing the original and the rotated topology is reported on the y-axis.
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Fig. 4. Behavior of metrics in case of topology shifts. On the x-axis the shift amount is increased from 1 to 10 and normalized metric value is reported on the
y-axis. Cosine, Tanimoto, RED, Spring C and Spring D distance report no change for perfect shifts. Spring A and Spring B distance show exponential response;
and Euclidean, Manhattan, CVD and Extremes distance show linear response against perfect shift in network topology.
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Fig. 4 shows the values of various distance metrics as
the amount of the shift (n) is increased on the x-axis. As
seen, even though the complete topology (graph represen-
tation of the network) is preserved perfectly, Euclidean,
Manhattan, CVD, Extremes, Spring A and Spring B distance
metrics respond the change. Among these matrices, Spring
A and Spring B distance report a distance that is exponen-
tially related to the shift amount, while other metrics re-
port an error that is linearly related to the shift amount.
On the other hand, Cosine, Tanimoto, RED, Spring C and
Spring D distance metrics report no change for perfect
shifts. In shifted topologies, even though the absolute loca-
tion of nodes is changing, it may not be a major concern for
many expert applications. In most cases, shifts that main-
tain the relative positioning of nodes are acceptable for
environmental monitoring applications. For instance, a
pollutant flow in northeast direction will still appear in
the same direction if all nodes maintain their relative
positioning.
5.3. Distorted topologies

Distorted topologies represent arbitrary errors made in
position estimates. In this category we study a scenario
where node positions are shifted along statistically. We ap-
ply an independent distortion to each node such that the
resulting topology will have some relative accuracy errors.
First, we introduce uniformly distributed distortion on
each node, where size of the range of distortion changes
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Fig. 7. Distorted Topologies metric behavior in case of topology distortion with
shows l increasing from 1 to 20, and normalized metric value is reported on the
error; Spring A and Spring B metrics response exponential error; Spring D, Sprin
from 1 up to 20. As shown in Fig. 5, Tanimoto and Cosine
metrics report logarithmic error with respect to distortion
range, however, Extremes, RED, Euclidean and Manhattan
metrics report error perfectly linear with respect to distor-
tion range. On the other hand, Spring metrics report expo-
nential error with respect to distortion range. Only CVD
metric’s response is not stable. However, it can also be
approximated to a linear relationship with distortion
range. Second, we apply a distortion that is Gaussian dis-
tributed with a fixed l = 5 and an increasing r from 1 up
to 20. In response this distortion, metrics give similar re-
sults with the uniform case, as shown in Fig. 6. Finally,
we launch distortion that is Gaussian distributed with a
fixed r = 5 and an increasing l from 1 up to 20. As illus-
trated in Fig. 7, CVD, Euclidean, Extremes and Manhattan
metrics respond with a linear increase in error, and Spring
A and Spring B respond with an exponential increase in er-
ror when l is increased. This behavior resembles the previ-
ous behavior, however, in this case, Spring D, Spring C,
Cosine, Tanimoto and RED metrics show the same high re-
sponse to Gaussian distortion with r = 5 and l varied.
6. A practical case study

In order to illustrate the applicability of our approach to
evaluate localization algorithms with various metrics, we
perform a case study using a sample wireless sensor net-
work topology. We keep the topology as simple as possible
so that visual representation and interpretation of the re-
0 12 14 16 18 20
an

Topology 3

Euclidean
Manhattan
Cosine
Tanimoto
RED
CVD
Extremes
Spring A
Spring B
Spring C
Spring D

Gaussian error. Gaussian error with r = 5 and increasing l is used. x-axis
y-axis. CVD, Euclidean, Extremes and Manhattan metrics response linear
g C, Cosine, Tanimoto and RED metrics response constant high error.



Fig. 8. A sample sensor network of 13 nodes. The nodes labeled 1 to 10
are nodes whose locations are unknown and have to estimated. The nodes
labeled A1, A2, A3 are anchor nodes whose locations are known exactly
and can be used by localization algorithms to aid in the position
estimation of other nodes. There is a line between two nodes that are
in the range of each other, indicating a direct wireless link. We do not
show links to/from anchor points.

Fig. 9. DV-Hop Algorithm’s performance is visually represented and
numerically evaluated by each metric.
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sults become feasible. Fig. 8 shows our sample wireless
sensor network which has a total of 13 nodes. The figure
shows the actual positions of the nodes. Three of these
nodes, A1, A2, A3, are anchor points whose exact locations
are assumed to be already known. They may be utilized by
a localization algorithm to predict the locations of other
nodes. The locations of the other 10 nodes are not known
and have to be estimated via a localization algorithm.
These nodes are labeled with integers 1 through 10. The
figure also gives the reachability information, i.e. network
topology. Reachability information shows which node can
communicate with which other node directly. Any pair of
nodes in the range of each other are assumed to have a di-
rect wireless link between them, hence we have a line con-
necting them in the figure. The links to/from anchor points
are not shown to simplify the figure, since the positions of
anchor points will not be estimated.

We apply our approach on four localization algorithms
selected from the literature. We run simulations so that
each algorithm estimates the unknown node positions for
the sample network of Fig. 8. Then, for each algorithm, in
order to emphasize the nature of localization error of the
algorithm, we illustrate the actual and estimated node
positions in a figure where there is an arrow pointing from
each actual node position to its estimated position. Addi-
tionally, we show the estimated reachability graph (esti-
mated network) by using the estimated node positions.
We also compute the localization error according to each
metric we discuss in this paper. Hence, at the end we have
various metric values computed for all localization algo-
rithms. Using this data, for each metric, we can rank the
algorithms from best to worst. In this way, we can see
how different metrics evaluate the performance of differ-
ent localization algorithms. We can also see a metric’s sen-
sitivity to topology changes.

We use the following sample localization algorithms
from the literature: DV-Hop [29], DV-Distance [29], QUAD
[30] and Smooth [31]. They all can utilize one or more an-
chor nodes which may broadcast their locations periodi-
cally. The direct neighbors of anchor nodes estimate their
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positions based on received signal strength value and they
propagate their estimates to non-neighbor nodes that are
multiple-hops away from the anchor nodes. The algo-
rithms differ in how they propagate the estimations and
in the approach used by the rest of network to estimate
the distances and positions of the remaining nodes.

We simulated these localization algorithms over our
sample topology and estimated node positions. The results
are presented in Figs. 9–12. Each figure is about the results
of a different localization algorithm and each figure has 3
sub-parts. In part (a) we show the actual and estimated
node positions, in (b) we show the estimated topology
(network), and in (c) we show localization error values
according to various metrics.

Results for DV-Hop [29] algorithm are demonstrated in
Fig. 9. Fig. 9(a) shows that DV-Hop localization algorithm’s
estimation contains errors in east–west–south directions
Fig. 10. DV-Distance Algorithm’s performance is visually re
with different magnitudes. From Fig. 9(b) we notice that
the estimated topology contains 6 actual links, lost 14 links
(the links 2–3, 2–6, 3–6, 4–5, 4–6,. . .) and has two new
links (5–8, 5–10).

Fig. 10 demonstrates the performance of the DV-Dis-
tance [29] algorithm and how the various metrics are
expressing that performance numerically. The Fig. 10(a)
shows that nodes 1, 4, 8 are located very well, but other
nodes’ estimated locations have errors in east–west–south
directions. As Fig. 10(b) shows, the estimated topology
contains 9 actual links and one new link (6–10). It has,
however, 11 links missing.

Results for the QUAD localization algorithm [30] are
presented in Fig. 11. Fig. 11(a) shows that all estimations
are biased towards the center of the network, where esti-
mated locations have errors in all directions. As Fig. 11(b)
shows, the estimated topology contains all actual links,
presented and numerically evaluated by each metric.



Fig. 11. QUAD Algorithm’s performance is visually represented and numerically evaluated by each metric.
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however, many new links, i.e., 1–2, 1–5, 1–9, are also intro-
duced. The estimation results in a nearly fully-connected
topology.

In Fig. 12, the results of the Smooth algorithm [31], the
last localization algorithm we evaluate, are demonstrated.
Fig. 12(a) shows that Smooth algorithm’s estimation con-
tains errors in east-south directions with similar magni-
tudes. Therefore, we can say that the network estimation
has a shift in about south-east direction. As Fig. 12(b) shows,
the estimated topology contains 17 actual links, has three
links missing, and has no new links introduced. This estima-
tion has resulted with a topology that is nearly the same
with the actual topology except the three lost links.

After computing the localization errors of these algo-
rithms according to various metrics, we create Table 1. In
this table, for each metric discussed in the paper, we list
the localization algorithms in ascending order of error per-
formance by that metric (the first algorithm listed is the
best performing one). As the table shows, there are signif-
icant differences in the order of algorithms for various
metrics. For instance, Euclidean metric evaluates DV-Hop
as the algorithm with minimum error and Smooth as the
algorithm with maximum error. Contrary to this, Cosine
metric suggests the DV-Hop as the algorithm with maxi-
mum error and Smooth as the one with minimum error.
Similarly, Tanimoto, RED and Spring metrics suggest
Smooth as the algorithm with minimum error. Looking at
Fig. 9(b) and Fig. 12(b), it is straightforward for this case
to conclude that Smooth algorithm provides a better esti-
mation of the actual network topology than, for example,
DV-Hop algorithm.

On the other hand, looking at Fig. 9(a) and Fig. 12(a), it
is clear that the DV-Hop algorithm provides better esti-
mates for individual node positions when overall topology
is not much a concern. Hence, if we are looking for an algo-
rithm to estimate node locations to be used as part of, for
example, a geographic routing algorithm, we should
choose Smooth as the localization algorithm. However, if
the location estimates are required for a sniper-localiza-
tion-like application [28], then we should better use DV-
Hop algorithm, since for such applications estimating the
individual node locations as good as possible rather than
estimating the overall topology is more important.

To sum up, according to the location error characteris-
tics of an application, we need to choose the metric which
is more appropriate to evaluate possible alternative locali-
zation algorithms. Here, we use a small and visually inter-
pretable WSN topology and consider only four localization
algorithms. Since we consider only a few localization algo-
rithms, we encounter only a limited number of possible
cases. For instance, none of algorithms we used results in
a rotated topology, therefore, Cosine, Tanimoto and Spring
distances show similar behavior as shown in Table 1. How-
ever, with some other algorithms that would result in ro-
tated topologies, we would expect more significant
differences in the values of these metrics, considering the
simulation results shown in Fig. 3.

7. Lessons learned

There are various applications of wireless sensor net-
works some of which require precise location information,
e.g., sniper localization [28], while some other applications
may only need relatively accurate location information,
e.g., ZebraNet [4] where behaviors of animals are observed.
Environmental monitoring applications have a wide range
of accuracy requirements. For instance, remote sensing sa-
tellite data is a commonly used tool for environmental
engineers. One of the problems with the use of remotely
sensed data is the calibration requirement for interpreting
the measurements. For example, a precisely matching
coordinate at the time of the observation is required to
make sense of collected data. Ground based sensors are
usually deployed for this purpose. Given manageable levels



Fig. 12. Smooth Algorithm’s performance is visually represented and numerically evaluated by each metric.

Table 1
Four sample localization algorithms are ordered according to their perfor-
mances with respect to various metrics studied in the paper. The first
algorithm in an order is the best performing one according to that metric.

Metric Order of Algorithms

Euclidean DV-Hop DV-Distance QUAD Smooth
Manhattan DV-Hop DV-Distance QUAD Smooth
Cosine Smooth DV-Distance QUAD DV-Hop
Tanimoto Smooth DV-Distance DV-Hop QUAD
RED Smooth DV-Hop DV-Distance QUAD
CVD DV-Distance DV-Hop QUAD Smooth
Extremes DV-Distance QUAD DV-Hop Smooth
Spring A Smooth DV-Hop QUAD DV-Distance
Spring B Smooth DV-Hop QUAD DV-Distance
Spring C Smooth DV-Hop QUAD DV-Distance
Spring D Smooth DV-Hop DV-Distance QUAD

Table 2
Metric suggestions for localization algorithms based on the location error
response characteristics of the application (i.e. application’s sensitivity to
location errors) for which the localization algorithms are considered. For
example, some applications may not be affected negatively from shift
errors, but may be affected negatively from rotational errors. Localization
algorithms that will be considered for such an application can be better
compared with a metric that is shift-insensitive but rotation-sensitive. A
localization algorithm that provides low value on the selected metric may
be a good candidate.

Application’s sensitivity for location errors Suggested metrics

Shift-sensitive AND rotation-sensitive Spring A, Spring B
Shift-sensitive AND rotation-insensitive Euclidean, CVD
Shift-insensitive AND rotation-sensitive Spring C, Cosine
Shift-insensitive AND rotation-insensitive Spring D
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of location errors, it may be possible to align an estimated
topology reported by ground-based sensor nodes with the
region pictured with the remote sensing satellite image to
allow such a calibration. Relative distances play a major
role for such calibration such that an alignment is possible.

The impact of errors in location information mostly de-
pends how the applications use the location data. There-
fore, while selecting a metric to evaluate some alternative
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localization algorithms and their errors, characteristics of
the location information required by an application should
be considered as well. Note that, the maximization or min-
imization of a metric value is not significant by itself. The
behavior of the metric response against the types of
changes in the estimated network topology with respect
to the original topology is also important. Therefore, we
aggregate the simulation results and analyze them to clas-
sify the metric’s behavior in a sensitivity table. For the
topology change scenarios we simulated, we create groups
of metrics responses we have learned from simulations,
such as shift sensitive ones. We favor exponential over lin-
ear and linear over logarithmic response behavior by giving
assigning weights from high to low. Then we obtain the
Table 2 by performing appropriate set operations. For
instance, we decide about shift and rotate sensitive metrics
by intersection of shift sensitive group and rotation
sensitive group with highest weight. As a result of this,
for example, we decide to use Spring A and Spring B dis-
tance which have exponential sensitivity for shift type
changes and linear sensitivity for rotation type changes.

For a planned wireless sensor network application, we
suggest first identifying and listing the characteristics of
the required location data based on its sensitivity to shift
and rotation errors. For this purpose, we categorize errors
according to a reference coordinate in the deployment
plane. Then, appropriate metric can be chosen by looking
up the Table 2, in which we suggest metrics according to
application requirements on location data errors of algo-
rithms. Subsequently, candidate algorithms may be simu-
lated, and their performance is evaluated by the chosen
distance metric. Finally, the localization algorithm which
is the most appropriate for the planned application is ready
to be picked up.

8. Conclusions

A number of algorithms have been proposed for the
localization problem in wireless sensor networks. Yet, the
evaluation of these algorithms traditionally depends on
fairly simplistic metrics based on the original and the esti-
mated coordinates of each node in isolation to the rest of
the network. In this paper, we first discussed the implica-
tions of errors considering the expectations of end users.
We then discussed that there is a need for new metrics that
will consider the relative positioning of each node with re-
spect to other nodes for accurate data analysis. We then
studied and proposed alternative distance metrics to eval-
uate localization algorithms. We studied various metrics
using some basic topology change (error) scenarios to pro-
vide an understanding of how the metrics respond to var-
ious type of errors and what can be the implications of
these responses to end user applications. We also dis-
cussed the advantages of one metric with respect to other
ones for some specific applications. We provide a case
study, in which we evaluate some localization algorithms
from literature using various metrics, to show the applica-
bility of our approach. At the end, we suggest a metric
selection methodology that is summarized into a table
and that can consider the localization requirements of
applications.
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