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A system for removing shell pieces from hazelnut kernels using impact vibration analysis was developed
in which nuts are dropped onto a steel plate and the vibration signals are captured and analyzed. The
mel-cepstral feature parameters, line spectral frequency values, and Fourier-domain Lebesgue features
were extracted from the vibration signals. The best experimental results were obtained using the mel-
cepstral feature parameters. The feature parameters were classified using a support vector machine
(SVM), which was trained a priori using a manually classified dataset. An average recognition rate of
98.2% was achieved. An important feature of the method is that it is easily trainable, enabling it to be
applicable to other nuts, including walnuts and pistachio nuts. In addition, the system can be imple-
mented in real time.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Dried nuts are commonly used in processed food industry. The
presence of shell fragments and pieces inside foods containing
dried nuts are undesirable and can pose a safety concern. In this
article, a system for removing shell pieces from hazelnut kernels
using impact vibration analysis is described.

Hazelnuts (Fig. 1) are softer and less dense than the shell pieces,
so vibration signals, or acoustic emissions, produced by the
moment of the impact with a steel plate are different between
hazelnuts and the shell pieces, as shown in Fig. 2. As a result, it
is possible to design a system for removing shell fragments and
pieces from hazelnuts by analyzing the impact signals. Impact
sound and vibration analysis systems have been widely used in
practice Haff and Pearson (2007), Yorulmaz et al. (2012, 2011),
Pearson et al. (2007b), Cetin et al. (2004), Onaran et al. (2005),
Pearson et al. (2005, 2007a), Cataltepe et al. (2005, 2004b,a), Cetin
et al. (2005), Ince et al. (2008), Buerano et al. (2012), Omid et al.
(2010), Chen et al. (2011) and Michihiro and Takahisa (2012). Haff
and Pearson developed a sorting system to separate pistachio
kernels from in-shell nuts using vibration analysis of a small steel
plate after a shell or nut piece impacted it Haff and Pearson (2007).
For this system, at the lowest throughput rate, classification accu-
racies were 96% for in-shell nuts and 99% for kernels. For through-
put rates between 10 and 40 nuts/s, correct classification ranged
from 84% to 90% for in-shell nuts. For kernels, the accuracy was
95% at 10 and 20 nuts/s and 89% at 40 nuts/s. The authors based
the classification on the cumulative histogram of the signal gradi-
ents and did not use the other feature extraction methods, such as
those used in acoustic signal processing.

Hazelnut kernels do not stick to the shell in dried hazelnuts.
When a hazelnut is cracked the kernel comes out as a separate en-
tity. However large shell pieces may cause problems. They cannot
be sieved because some shell pieces may be as large as a kernel. In
this article a vibration acoustics based system that is capable of
separating large shell pieces from kernels is described.
2. Materials and methods

2.1. Description of system hardware and experiment

A vibratory feeder (FT00, FMC Corp. Homer City, PA) forces the
hazelnuts in a single file from a hopper onto an 90-cm-long slide
made from stainless steel sheet metal. The slide, inclined at 60�
above the horizontal, terminated above a steel plate, onto which
the hazelnuts impacted. The steel plate has dimensions of
8 � 8 � 2 cm. Schematic of sorting system is shown in Fig. 3. A
vibration sensor (GS-20DX, Geophone, Geospace Technologies) is
mounted onto the steel plate. A laser is used to detect the sliding
hazelnuts in the system. When the shell fragments of the hazelnuts
pass from the end of the chute, the laser light is blocked, initiating
data collection from the vibration sensor. The analog signal is dig-
itized by using chipKIT Uno32. The sensor signal is sampled at
4 KHz for 2048 samples.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compag.2013.11.010&domain=pdf
http://dx.doi.org/10.1016/j.compag.2013.11.010
mailto:sevimli@ee.bilkent.edu.tr
http://dx.doi.org/10.1016/j.compag.2013.11.010
http://www.sciencedirect.com/science/journal/01681699
http://www.elsevier.com/locate/compag


Fig. 1. Hazelnut and shell fragments.

Fig. 2. Vibration signal example for hazelnuts and shell pieces.
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Vibration impact signals were collected for 130 hazelnuts and
152 shell pieces from the Akcakoca region of Turkey. After data col-
lection, the vibration signals are processed off-line. The average of
the sampled signals is removed by mean-centering before calculat-
ing the feature vectors. The cumulative histogram of gradients
used by Pearson and Haff, the mel-cepstrum, the line spectrum fre-
quencies, the frequency amplitude bins, and the Lebesgue features
are computed as described in Sections 2.1, 2.2, 2.3, 2.4, 2.5 and 2.6,
respectively. After all of the features are extracted, classification is
Fig. 3. Schematic of sorting system.
performed using a support vector machine (SVM), as described in
Section 2.7.

2.2. Cumulative histogram of gradients (CHOG)

Haff and Pearson (2007) used cumulative histogram of gradi-
ents as a feature vector to separate pistachio kernels from in-shell
nuts.

Let x½n� be the zero mean vibration signal and xm represent a
normalized version of x, calculated as follows:

xm½n� ¼ x½n�=maxðjxjÞ ð1Þ

Then, the gradient g[n] is calculated as follows:

g½n� ¼ xm½n� 1� � xm½nþ 1�j j ð2Þ

Then, a histogram of this gradient signal is calculated. In Haff and
Pearson (2007), the authors observed that most of these gradient
signals do not contain any values larger than 0.5; to reduce the
number of bins of the histogram, they clamped gradient signals
with a threshold of 0.5 as follows:

gc½n� ¼ minðg½n�;0:5Þ ð3Þ

Then, the histogram h½n� of gc½n� is calculated. The bins of this histo-
gram covers the range from 0 to 0.5. Finally, a cumulative histogram
of gradients b½k� is calculated as follows:

b½k� ¼
Xk

j¼0

h½j�; k ¼ 0;1; . . . ;K ð4Þ

where K is the number of feature parameters. The vector b½k� is used
to train a SVM with two classes. The first class consists of the vibra-
tion signals of the shell pieces, and the second class contains the
hazelnut signals.

2.3. Mel-Cepstrum

The mel-cepstrum or mel-frequency cepstral coefficient (MFCC)
vector is the most widely used feature vector in speech and sound
recognition. Cetin et al. (2004) also used the mel-cepstrum to clas-
sify the impact sounds of open and closed shell pistachio nuts. Let
X½k� represent the N-point discrete Fourier transform (DFT) of x½k�.

X½k� ¼
XN�1

n¼0

x½n�e�j2pkn
N ; k ¼ 0;1; . . . ;N � 1 ð5Þ
Fig. 4. Filter Bank with Mel-scale.



Table 1
Frequency boundaries of mel-cepstral filters (R = 15).

Filter ID Lower bound (hz) Upper bound (hz)

1 0 130
2 63 203
3 130 282
4 203 368
5 282 462
6 368 564
7 462 676
8 564 796
9 676 928

10 796 1071
11 928 1227
12 1071 1397
13 1227 1581
14 1397 1782
15 1581 2000

Table 2
Frequency boundaries of mel-cepstral filters (R = 20).

Filter ID Lower bound (hz) Upper bound (hz)

1 0 97
2 47 150
3 97 206
4 150 266
5 206 330
6 266 399
7 330 472
8 399 549
9 472 632

10 549 720
11 632 815
12 720 915
13 815 1022
14 915 1136
15 1022 1258
16 1136 1388
17 1258 1527
18 1388 1674
19 1527 1832
20 1674 2000

Fig. 5. Spectrum of an average vibration signal and the corresponding LSF
parameters. Red lines show LSF parameter’s location. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)
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The DFT is weighted using a bank of filters, as shown in Fig. 4, where
the filter bandwidth increases with frequency. The Fourier-domain
filter outputs are calculated as follows:

EmelðlÞ ¼
1
Al

XUl

k¼Ll

V l½k�X½k�j j2; l ¼ 0;1; . . . ;R� 1 ð6Þ

where Ll and Ul are the frequency band edge values of the lth filter.
In this article, several MFCC vectors were computed using R = 15,
20, 30, and 100 band filter banks. The frequency boundaries for
15 and 20 band filters are given in Tables 1 and 2, respectively. Al

is the normalization factor:

Al ¼
XUl

k¼Ll

V l½k�j j2; l ¼ 0;1; . . . ;R� 1 ð7Þ

The filter output, Emel for each band is calculated as follows:

EmelðlÞ ¼
1
Al

XUl

k¼Ll

V l½k� X½k�j j; l ¼ 0;1; . . . ;R� 1 ð8Þ

Finally, the MFCC vector coefficients are calculated as follows;

c½m� ¼ 1
R

XR�1

l¼0

logðEmelðlÞÞ cos
2p
R

lm
� �

; m ¼ 0;1; . . . ;R� 1 ð9Þ
where R is the number of weighted filters in the above equation.
There are 15, 20, 30, 50 and 100 weighted filters in our tests. The
purpose of using discrete cosine transform (DCT) in Eq. (9) is to de-
crease the correlation between the filter energy output coefficients.
The MFCC coefficients decay as the index parameter m increases.
Therefore, it may not be necessary to compute all of the R coeffi-
cients. MFCC (L,R) indicates that the first L out of R coefficients
are used in the classification.

As indicated in Section 3, the best experimental results are ob-
tained using the MFCC coefficients.

2.4. Line spectrum frequency (LSF) Coefficients

We compared the MFCC feature parameters to various other
feature parameters used in speech and signal processing. The LSF
parameters are one of the sound feature vectors used in speech
recognition and analysis (Erzin et al., 1995). In this study, LSFs
are also used to extract features from the vibration signals.

Let AðzÞ ¼
Pp

k¼1akz�k be the polynomial that is extracted from
the vibration sensor signals by linear predictive coding (LPC)
(Rabiner and Schafer, 1979). From this polynomial, two polynomi-
als of degree pþ 1 are generated:

PðzÞ ¼ AðzÞ þ z�ðpþ1ÞAðz�1Þ ð10Þ

QðzÞ ¼ AðzÞ � z�ðpþ1ÞAðz�1Þ ð11Þ

The LSF parameters wi are defined as roots of polynomials PðzÞ
and QðzÞ. The LSF parameters are located on the unit circle, and
they approach each other whenever the signal spectrum has high
values. Therefore, the LSF parameters represent the shape of the
spectrum. In Fig. 5, a vibration signal spectrum and the
corresponding LSF parameters are shown. In speech processing,
10-20 LSF parameters are used. In our case, the best results are
obtained for 15 LSFs. However, the results indicate that the LSF
representation is inferior to the MFCC representation discussed
in Section 2.3.

2.5. Frequency amplitude bins (FAB)

We also attempted to represent the vibration signals using Fou-
rier domain information.

Fourier transform coefficients and subband energies were used
to represent the impact vibration signals. The frequency spectrum
was divided into bands in a logarithmic manner, as was performed



Table 3
Frequency boundaries of mel-cepstral filters (R = 100).

Filter ID Lower bound (hz) Upper bound (hz)

1 0 20
2 10 30
3 20 39
4 30 49
5 39 59
6 49 70
7 59 80
8 70 90
9 80 101

10 90 112
11 101 123
12 112 134
13 123 145
14 134 156
15 145 168
16 156 180
17 168 191
18 180 203
19 191 215
20 203 228
21 215 240
22 228 253
23 240 266
24 253 279
25 266 292
26 279 305
27 292 319
28 305 332
29 319 346
30 332 360

Table 4
Recognition success rates (sample length is 2048).

Feature vector Shell piece (%) Hazelnut (%) Average (%)

CHOG (15/15) 68.0 80.8 74.4
CHOG (20/20) 74.8 85.6 80.2
MFCC (15/15/4000) 97.2 98.4 97.8
MFCC (20/20/4000) 96.4 99.2 97.8
MFCC (10/30/4000) 95.6 99.2 97.4
MFCC (15/30/4000) 96.4 99.2 97.8
MFCC (10/50/4000) 95.6 99.2 97.4
MFCC (15/50/4000) 96.8 98.8 97.8
MFCC (10/100/4000) 96.4 99.2 97.8
MFCC (15/100/4000) 97.2 99.2 98.2
MFCC (20/100/4000) 96.8 99.2 98.0
MFCC (30/100/4000) 95.2 99.2 97.2
LSF (10/15) 86.4 100.0 93.2
LSF (15/15) 87.2 98.8 93.0
LSF (15/20) 86.8 98.4 92.6
LSF (20/20) 87.2 98.0 92.6
FABmel (15/15/4000) 96.8 93.2 95.0
FABmel (20/20/4000) 96.8 93.2 95.0
FABmel (10/30/4000) 97.6 95.2 96.4
FABmel (15/30/4000) 95.6 95.2 95.4
FABmel (10/50/4000) 98.4 96.0 97.2
FABmel (15/50/4000) 97.6 95.2 96.4
FABmel (10/100/4000) 98.4 95.6 97.0
FABmel (15/100/4000) 98.0 95.6 96.8
FABmel (20/100/4000) 98.4 95.6 97.0
FABmel (30/100/4000) 97.6 95.2 96.4
FABuni (10/15) 96.0 93.2 94.6
FABuni (15/15) 97.6 93.2 95.4
FABuni (15/20) 96.0 93.2 94.6
FABuni (20/20) 97.2 92.8 95.0
LEBESGUE (15/15/5000) 91.6 79.2 85.4
LEBESGUE (20/20/5000) 92.0 80.4 86.2
LEBESGUE (15/15/10000) 90.4 80.4 85.4
LEBESGUE (20/20/10000) 90.8 80.8 85.8
LEBESGUE (15/15/15000) 90.8 80.8 85.8
LEBESGUE (20/20/15000) 90.0 81.2 85.6
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with the mel-cepstrum coefficients. Most of the energy of the
sound and vibration signals is typically located at the low-
frequency bands. For this reason, the mel-cepstrum coefficients
emphasize the low-frequency bands. As such, the frequency
amplitude bins matched the filters used in Section 2.2. The fre-
quency spectrum was divided into 15, 20, and 30 frequency bins
with the respective boundaries indicated in Tables 1 and 2.
FABmel represents the results of the non-uniform mel frequency
division results.

The FABmel coefficients are computed using Eq. (8). The subband
frequency values are given in Table 3. The subband frequency val-
ues produce inferior results compared to the mel-cepstrum
coefficients.

In addition to using non-uniform frequency bands as used in
mel-cepstrum, uniform frequency division was also performed
where the bandwidth of each bin is equal and correspond to 4000

2 � 15

and 4000
2 � 20 respectively. The results of uniform frequency band divi-

sion are represented as FABuni in Tables 4 and 5. FABuniðX=YÞ indi-
cates that the first X frequency bands out of Y frequency bands
are used for training and testing.

2.6. Lebesgue Fourier features

The feature vectors comprising non-uniform frequency division
based on the amplitude levels were also extracted. These features
are called Lebesgue features because the Lebesgue integral is based
on the division of the vertical axis. In this approach, the integral
function of the Fourier transform magnitude is computed and di-
vided into bins according to the amplitude levels, as shown in
Figs. 6 and 7. Lebesgue 5000 (10,000) indicates that the integral
of the Fourier transform magnitude is divided into bins below
the amplitude level of 5000 (10,000).

2.7. Classification

An SVM using a radial basis function, and a linear kernel was
used for the classification process. The radial basis function was
used with different gamma parameters. The best performances in
1024 and 2048 sampled datasets are 98.0%, 97.0%, and 96.2% for
gamma values 1, 2, and 10, respectively. Kernel parameters are
not required for the linear kernel because it uses the Euclidean
norm. The number of support vectors is 260 for RBF and 255 for
the linear kernel, respectively. The SVM software of Libsvm (Chang
Fig. 6. Lebesgue Fourier features of a nut: Frequency values w1; . . . ;w15 are used to
form a feature vector.



Fig. 7. Lebesgue Fourier Features of a shell piece: Frequency values w1; . . . ;w15 are
used to form a feature vector.

Table 5
Recognition success rates (sample length is 1024).

Feature vector Shell piece (%) Hazelnut (%) Average (%)

CHOG (15/15) 85.2 87.2 86.2
CHOG (20/20) 88.4 89.2 88.8
MFCC (15/15) 96.0 97.2 96.6
MFCC (20/20) 96.0 97.6 96.8
MFCC (10/30) 95.2 98.8 97.0
MFCC (15/30) 96.8 98.0 97.4
MFCC (10/50) 95.2 98.8 97.0
MFCC (15/50) 96.0 98.0 97.0
MFCC (10/100) 95.6 98.8 97.2
MFCC (15/100) 96.0 98.0 97.0
MFCC (20/100) 96.0 97.2 96.6
MFCC (30/100) 95.6 96.4 96.0
LSF (10/15) 83.2 99.2 91.2
LSF (15/15) 85.2 100.0 92.6
LSF (15/20) 86.8 100.0 93.4
LSF (20/20) 86.8 99.6 93.2
FABmel (15/15) 96.0 92.8 94.4
FABmel (20/20) 96.0 92.4 94.2
FABmel (10/30) 96.8 94.8 95.8
FABmel (15/30) 95.2 94.8 95.0
FABmel (10/50) 98.0 95.6 96.8
FABmel (15/50) 97.2 94.8 96.0
FABmel (10/100) 97.6 93.6 95.6
FABmel (15/100) 97.2 95.6 96.4
FABmel (20/100) 98.0 96.0 97.0
FABmel (30/100) 97.2 94.4 95.8
FABuni (10/15) 96.4 92.0 94.2
FABuni (15/15) 96.0 91.6 93.8
FABuni (15/20) 95.6 92.0 93.8
FABuni (20/20) 96.0 90.8 93.4
LEBESGUE (15/15/5000) 85.2 84.0 84.6
LEBESGUE (20/20/5000) 84.4 82.8 83.6
LEBESGUE (15/15/10000) 84.8 84.0 84.4
LEBESGUE (20/20/10000) 84.4 83.6 84.0
LEBESGUE (15/15/15000) 86.0 82.8 84.4
LEBESGUE (20/20/15000) 84.4 83.6 84.0
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and Lin, 2011) was used in the experimental studies. The experi-
mental results were obtained using vibration recordings of 500
nuts and 500 shell pieces. Some shell pieces and hazelnuts were
used several times because shape of some pieces and hazelnuts
were not similar to the other ones. This might cause the false
detection on the vibration sensor. The SVM was trained using
250 nuts and 250 shell recordings, and the recognition results were
obtained using the remaining data.
3. Results and conclusions

Table 4 compares the various feature extraction schemes de-
scribed in Section 2. The best performance was obtained using
the mel-cepstral features: 97.2% of the shell pieces and 99.2% of
the hazelnuts are correctly classified using the SVM with the linear
kernel. This performance corresponds to an average recognition
rate of 98.2% when 2048 data samples are used. The recognition
rate decreases to 97.4% when all 1024 samples are used as shown
in Table 5.

The system can be implemented in real time. The computa-
tional cost of implementing the system is rather low because a
1024- or 2048-point FFT operation is performed only when a nut
or a shell piece triggers an alarm. This reduces the computational
cost and it is a measure against the unusual vibrations in the envi-
ronment. If the system computed the FFT of the vibration signal all
the time, this would be a burden on the processor. Whenever the
laser triggers the system we are sure that the dominant signal is
due to a kernel or a shell piece. Extracted MFCC features are fed
to a SVM for classification. The inverse DCT calculation and SVM
operation are also not computationally intensive.

When 1024 samples are used, it is possible to process more nuts
compared to when 2048 samples are used. It is possible to classify
4 nuts/s when 1024 samples are used in this system.
4. Conclusion

The ability to remove shell pieces from hazelnut kernels using
impact vibration signals was experimentally verified. MFCCs
describing the impact vibration signals produce the best classifica-
tion accuracy in a SVM-based classification engine. MFCCs are the
most widely used speech and sound representation parameters.
The MFCCs can successfully represent vibration signals as well.

The system is easily trainable; therefore, it can be used to re-
move shell pieces from other nut kernels, including pistachio nuts
and walnuts.
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