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In this paper, a PD controller design for haptic systems under delayed feedback is considered. More

precisely, a complete stability analysis of a haptic system where local dynamics are described by some

second-order mechanical dynamics is presented. Next, using two optimization techniques (H1 and

stability, margin optimization) an optimal choice for the controller gains is proposed. The derived

results are tested on a three degree-of-freedom real-time experimental platform to illustrate the

theoretical results.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

During the last decade, virtual environments have become very
popular and are largely used in many domains as, for example,
prototyping (see, for instance, Fig. 1(a) for an appropriate example
of prototyping using haptic interfaces and virtual environment
Sreng, Lécuyer, Mégard, & Andriot, 2006), training for different
devices and assistance in completing difficult tasks (see Fig. 1(b) for
some virtual environment used for task assistance/supervision
David, Measson, Bidard, Rotinat-Libersa, & Russotto, 2007;
Gosselin et al., 2010).

Understanding the interaction between humans and robots is
at the origin of developing several control schemes for teleopera-
tion systems. Roughly speaking, teleoperation extends, at some
level, the human capacity in manipulating objects remotely by
providing the corresponding operator with similar conditions as
those encountered at the remote location (see, for instance, the
surveys by Hokayem & Spong, 2006; Sheridan, 1993). Among the
recent applications, one may cite telesurgery and space telerobo-
tics (see, e.g., Aziminejad, Tavakoli, Patel, & Moallem, 2008 and
the references therein), both involving long distance
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e.andriot@cea.fr (C. Andriot).
communication between master and slave devices. Furthermore,
in both cases, haptic feedback proved its potential in improving
corresponding task performance. In this context, time-delays

appear as natural components of the closed-loop schemes in
order to describe some of the dynamics induced by the commu-
nication channels with strong impact on (asymptotic) stability

and transparency (see, e.g., Gil, Sanchez, Hulin, Preusche &
Hirzinger, 2007).1 It is worth mentioning that, in haptic systems,
excepting the communication channel, time-delays may appear
also as intrinsic components of the processing time for the virtual
reality environment. Indeed, in free motion, the delay effect can be
felt by the viscosity phenomenon (high force feedback felt at the
haptic interface end) and such a property is completely lost in the
case of a ‘‘hard’’-contact with the environment.

In the open literature, there exists several control methods
used in teleoperation and further adapted for haptics. In this
sense, the following methods are mentioned: Proportional-
Derivative (PD) with local dissipation (Lee & Spong, 2006), PD
with passivity observer (Artigas, Vilanova, Preusche, & Hirzinger,
2006; Ryu, Kwon, & Hannaford, 2002a,b), PD with passive set-
point modulation (Lee & Huang, 2008), wave scattering transform
(Niemeyer, 1996; Niemeyer & Slotine, 2004) and Smith predictor
(Cheong, Niculescu, & Kim, 2009). Comparative studies of these
methods in the case of teleoperation systems as well as of haptic
1 By transparency is understood the capability as well as the impression of

operating directly on a remote environment independently of the presence of

master and slave units (Lawrence, 1993; Yokokohji & Yoshikawa, 1994).
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Fig. 1. Examples of virtual environments applications. (a) Virtual prototyping. (b) Virtual assistance/supervision.
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systems can be found in the literature, as for example,
(Rodriguez-Seda, Lee, & Spong, 2009) or (Liacu et al., 2012;
Sankaranarayanan & Hannaford, 2008), respectively. For instance,
Rodriguez-Seda et al. (2009) compares existing algorithms for
motion and force control of some bilateral teleoperation schemes
with a particular attention paid to Internets-based teleoperation.
Next, Sankaranarayanan and Hannaford (2008) focuses on the
performances analysis of a peer-to-peer haptic collaborative
system including two users manipulating same object simulta-
neously. Finally, Liacu et al. (2012) presents a comparative study
of some of existing control architectures for haptic systems
subject to communication delays.

In the sequel, the closed-loop stability analysis of some class of
practical bilateral haptic systems coupled with a virtual environ-
ment by using a standard proportional-derivative (PD) control
law is addressed. The time-delays in the communication channels
are assumed to be constant and, as it will be seen, only the
overall time-delay (the sum of the forward and backward time-
delays) needs to be known. There exists an abundant literature on
PID control for time-delay systems (see for instance, O’Dwyer,
2000; Silva, Datta, & Bhattacharrya, 2005 and the references
therein) and most of the existing methods are computationally
involved.

The methods proposed in the paper are original, in our opinion,
and they exploit the particular structure of the closed-loop quasi-
polynomials. The derived stability conditions are necessary and

sufficient and, to the best of the authors’ knowledge, such a
characterization is new. Furthermore it allows a simple construction
of the corresponding stability regions in the controller parameter-
space. Next, as a byproduct of the analysis, the computation of the
optimal controller gains by using two particular frequency-domain
techniques (H1-based design and fragility2 analysis) is proposed. To
the best of the authors’ knowledge, the optimization of the con-
trollers’ gains represents a novelty making the contribution original.
Finally, the derived control law are validated on some illustrative
example involving a virtual spherical mass moving in an appropriate
3D virtual scene and the study is performed by considering a
complete scenario from free to some restricted motions.

The remaining paper is organized as follows: in Section 2, a
general haptic system scheme including communication channels
is introduced. Next, Section 3 is devoted to the stability analysis in
closed-loop in the presence of PD or PD-like control laws. In
particular, the approach proposed allows recovering a stability
condition derived in Nuno, Ortega, Barabanov, and Basanez
(2008) by using a different methodology. Section 4 focuses on
2 Here, by fragility, it is simply understood the deterioration of closed-loop

stability due to small variations of the controller parameters (see, for instance,

Alfaro, 2007; Keel & Bhattacharyya, 1997; Makila, Keel, & Bhattacharyya, 1998 for

further details on such topics).
an appropriate optimal choice for the controller parameters by
using the (frequency-domain) approaches mentioned above. The
experimental validation of the proposed methodology is dis-
cussed in Section 5 on a simple three degree of freedom haptic
system. Finally, some concluding remarks end the paper.
2. System description

In Fig. 2, a general scheme of a haptic system is presented. The
ideal haptic system should satisfy simultaneously the following
conditions:
�
 first, the position tracking error has to be as small as possible
between the haptic interface and the virtual object,

�
 second, the system has to have a high degree of transparency,

i.e. in the ‘‘free’’ motion case, the force feedback felt at the
haptic interface end must be as small as possible and in the
case of a ‘‘hard’’-contact, a stiff response is desired.

Next, Fig. 3 presents the general control scheme of a haptic
interface and a virtual environment including control feedback.

The starting point is represented by the classical dynamic
(nonlinear) equations of motion for two robots in the haptics
framework. More precisely, the corresponding dynamics write as

Mhðx1Þ €x1ðtÞþC1ðx1, _x1Þ _x1 ¼�F1ðtÞþFhðtÞ, ð1Þ

Mvðx2Þ €x2ðtÞþC2ðx2, _x2Þ _x2 ¼ F2ðtÞ�FeðtÞ, ð2Þ

where x1,x2 are the haptic interface/virtual object position, Fh,Fe

are the human/environmental forces, F1,F2 are the force control
signals, Mh,Mv are the symmetric and positive-definite inertia
matrices, and C1,C2 are the Coriolis matrices of the haptic inter-
face and virtual object systems, respectively. The central idea of
the control scheme is to use two similar PD controllers, one for
controlling the haptic interface and another for the (correspond-
ing) virtual object. In such a configuration, the controllers’
equations are then given as follows:

F1ðtÞ ¼ Kd1
ð _x1ðtÞ� _x2ðt�t2ÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
delayed D-action

þKp1
ðx1ðtÞ�x2ðt�t2ÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

delayed P-action

, ð3Þ

F2ðtÞ ¼ Kd2
ð� _x2ðtÞþ _x1ðt�t1ÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

delayed D-action

þKp2
ð�x2ðtÞþx1ðt�t1ÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
delayed P-action

, ð4Þ

where t1,t2 are the forward and backward finite constant time-
delays and Kp1

, Kd1
, Kp2

, Kd2
are the PD control gains correspond-

ing to the haptic and virtual controller respectively, see Fig. 4.
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Fig. 2. General scheme of a haptic system.

Fig. 3. General PD control scheme for haptic systems.

Fig. 4. Bilateral haptic system.
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3. Stability analysis

3.1. PD control

From Fig. 4, the equations describing the system response can
be written as follows:

X1ðsÞ ¼ P1ðsÞðFhðsÞ�C1ðsÞðX1ðsÞ�e�t2sX2ðsÞÞÞ, ð5Þ

X2ðsÞ ¼ P2ðsÞð�FeðsÞþC2ðsÞð�X2ðsÞþe�t1sX1ðsÞÞÞ, ð6Þ

where Xi(s) denotes the Laplace transform of the time signal xi(t),
i¼1, 2; similarly for Fh(s) and Fe(s); here, t140 and t240 denote
the corresponding (forward and backward) time-delays. Transfer
functions Pi(s) and Ci(s) are taken as follows (position available for
measurement and PD structure for the control law):

P1ðsÞ ¼ P2ðsÞ ¼
1

sðmsþbÞ
¼ : PðsÞ, ð7Þ

Kp1
¼ Kp2

¼ : Kp, Kd1
¼ Kd2

¼ : Kd, ð8Þ

C1ðsÞ ¼ C2ðsÞ ¼ KpþKds¼ : CðsÞ: ð9Þ

It is worth mentioning that the robots are modeled as linear
systems since the haptic interface does not present any particular
behaviors that are not covered by the linear model, and the virtual
robot is represented by an ideal case.

As far as the internal stability analysis is concerned, the above
system is equivalent to a system where the controller is of PI type
(of the form KdþKp=s), and the process (measured) variable is
represented by the velocity, i.e., process given by: ðmsþbÞ�1.

By rearranging (5) and (6) above, one obtains:

1þP1ðsÞC1ðsÞ �P1ðsÞC1ðsÞe
�t2s

�P2ðsÞC2ðsÞe
�t1s 1þP2ðsÞC2ðsÞ

" #
X1ðsÞ

X2ðsÞ

" #

¼
P1ðsÞFhðsÞ

�P2ðsÞFeðsÞ

" #
: ð10Þ
Therefore, with the process (plant) and controller definitions
(7)–(9), the characteristic equation of the feedback system in
closed-loop can be written as follows:

ð1þPðsÞCðsÞÞ2�ðPðsÞCðsÞÞ2e�ðt1þt2Þs ¼ 0, ð11Þ

which is simply equivalent to

w1ðsÞw2ðsÞ ¼ 0, ð12Þ

where

w1ðsÞ :¼ ð1þPðsÞCðsÞþPðsÞCðsÞe�tsÞ,

w2ðsÞ ¼ : ð1þPðsÞCðsÞ�PðsÞCðsÞe�tsÞ,

and t :¼ ðt1þt2Þ=2.

Remark 1. An analysis of equations of the form (12) has been
given in Shayer and Campbell (2000) for some particular class of
first-order quasipolynomials encountered in neural network
models, without any attempt to consider the general case.
Different approaches for the closed-loop stability analysis can
be found in Morarescu, Mendez-Barrios, Niculescu and Gu (2011),
Liacu, Mendez-Barrios, Niculescu, and Olaru (2010), Saeki (2007),
Michiels and Niculescu (2007) and the references therein. In this
paper, a different analytical approach is considered. Such an
approach makes use of the gain and phase margins estimation
in order to perform the stability analysis of such a feedback
system.

The following result is obtained (see Appendix A for the proof)

Theorem 1. The bilateral haptic system is asymptotically stable

independent of the delay values (t1, t2) if the controller gains satisfy

the condition

KdZ
m

b
Kp: ð13Þ

Furthermore, when Kd=Kpom=b, there exists two cases:
(a)
 If 0omKp�bKdob2=2, then the feedback system is stable

independent of the delay values (t1, t2).

(b)
 If mKp�bKd4b2=2, then the closed-loop system is stable if and

only if

mKp�bKdo
b2

2
ð1þo2

0Þ, ð14Þ

where o040 is the solution of the equation:

p�2 tan�1ðxÞ�tan�1 bKd
mKp

x
� �� �

x
¼
ðt1þt2Þb

2m
: ð15Þ
From the conditions of Theorem 1, the allowable range of
mKp=b2 and Kd=b for all b=m40 can be explicitly determined. The
corresponding stability region is shown for three different time-
delay values in Fig. 5 (and for some different large time-delay
values in Fig. 6).

3.2. PD-like control

In Nuno et al. (2008), the authors proposed a PD-like controller,
having the block scheme presented in Fig. 7.

More precisely, only the position error will be used in order
to guarantee the passivity of the system. With this assumption,
Eqs. (3) and (4) are rewritten as follows:

F1ðtÞ ¼ Kd1
_x1ðtÞ|fflfflfflfflffl{zfflfflfflfflffl}

D-action

þKp1
ðx1ðtÞ�x2ðt�t2ÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

delayed P-action

, ð16Þ



Fig. 6. Allowable region of controller parameters for stability of the bilateral haptic

system.

Fig. 7. Bilateral haptic system using a PD-like controller.

Fig. 5. Allowable region of controller parameters for stability of the bilateral

haptic system.
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F2ðtÞ ¼�Kd2
_x2ðtÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

D-action

þKp1
ð�x2ðtÞþx1ðt�t1ÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
delayed P-action

, ð17Þ

Next, by considering (7)–(9), Eqs. (5) and (6) become

X1ðsÞ ¼ P1ðsÞðFhðsÞ�C1ðsÞX1ðsÞ�Kp1
e�t2sX2ðsÞÞ, ð18Þ

X2ðsÞ ¼ P2ðsÞð�FeðsÞ�C2ðsÞX2ðsÞþKp2
e�t1sX1ðsÞÞ: ð19Þ
Rearranging (18) and (19), it follows:

1þP1ðsÞC1ðsÞ �Kp1
P1ðsÞe

�t2s

�P2ðsÞKp2
e�t1s 1þP2ðsÞC2ðsÞ

" #
X1ðsÞ

X2ðsÞ

" #

¼
P1ðsÞFhðsÞ

�P2ðsÞFeðsÞ

" #
: ð20Þ

Therefore, with the definitions (7)–(9), the new characteristic
equation of the feedback system becomes

ð1þPðsÞCðsÞÞ2�K2
pPðsÞ2e�ðt1þt2Þs ¼ 0, ð21Þ

which is equivalent to

1þPðsÞCðsÞ7KpPðsÞe�ts ¼ 1 þKpsPðsÞ
Kd

Kp
þ

1

s
7

e�ts

s

� �
¼ 0: ð22Þ

Since ðKpsPðsÞÞ is positive real, in order to guarantee the
stability, it is needed to ensure that

Re
Kd

Kp
þ

17e�ts

s

� �
40 8sACþ :

Knowing that

Re
Kd

Kp
þ

1þe�jto

jo

� �
¼

Kd

Kp
�

sinðtoÞ
o

Z
Kd

Kp
�t

and

1�e�tjo

jo

				 				rt 8oARþ ,

the stability is guaranteed if the following condition holds:

Kd

Kp
4t3Kd4Kpt: ð23Þ

The result obtained in Nuno et al. (2008), by using a different
argument

Kd1
Kd2

4Kp1
Kp2

t1t2

is exactly the same with (23), under the assumption (8) and
t1 ¼ t2 ¼ t.
4. Optimal gains

In this section, optimal gains Kp and Kd (H1-base, non-fragility)
are presented and discussed, for the PD control configuration
studied in Section 3.1.

4.1. H1-based design

Let us define the position tracking error

eðtÞ :¼ x1ðtÞ�x2ðtÞ: ð24Þ

From (10), it is computed

EðsÞ ¼
PðsÞ

1þPðsÞCðsÞþPðsÞCðsÞe�ts
ðFhðsÞþFeðsÞÞ: ð25Þ

While trying to make the error small, one may be forced to
use ‘‘high’’ command signals which may lead to actuator
saturation. Since large control signals are not desirable, it is
also wanted to ‘‘penalize’’ the control. Again, from (10), the
output of the controller, F2ðtÞ, on the virtual side can be
computed as

F2ðsÞ ¼ CðsÞðe�tsX1ðsÞ�X2ðsÞÞ

¼
ðCðsÞe�tsþð1þPðsÞCðsÞ�PðsÞCðsÞe�2tsÞÞPðsÞðFhðsÞþFeðsÞÞ

ð1þPðsÞCðsÞþPðsÞCðsÞe�tsÞð1þPðsÞCðsÞ�PðsÞCðsÞe�tsÞ
:

In particular, when Fe¼0
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EðsÞ

F2ðsÞ

" #
¼

TðsÞ

1þTðsÞe�ts

� � 1=CðsÞ
e�ts

1þPðsÞCðsÞð1�e�tsÞ

" #
FhðsÞ, ð26Þ

where TðsÞ ¼ PðsÞCðsÞð1þPðsÞCðsÞÞ�1. Therefore, optimal gains from
the H1 control point of view are the ones which solve the problem

min
Kp ,Kd

PðsÞ

1þPðsÞCðsÞð1þe�tsÞ

r
CðsÞ

ð1þPðsÞCðsÞð1�e�tsÞÞ

" #











1

, ð27Þ

where r is a design parameter which represents the ‘‘trade-off’’
between small tracking error e and small control action F2. Depend-
ing on the values of r, the optimal Kp and Kd are obtained, for each
fixed m¼1, b¼0.1 and t¼ 0:05, as shown in Table 1.

It is easy to see that for large values of r (emphasizing tracking
performance, i.e., trying to make JeJ2 small compared to JF2J2)
H1 optimal gains are in the order of KpA ½240,310� and
KdA ½40,55�. The next subsection includes a comparison between
this set of values and another set of gains obtained from a
different optimality criterion.

4.2. Stability margin optimization

Introduce now: a :¼ ðbKdÞ=ðmKpÞ and assume that ao1. Let op

be the smallest o40 satisfying

tan�1ðaoÞ ¼ tan�1ðoÞ�ho
2
¼�p,

where h¼ ððt1þt2ÞbÞ=ð2mÞ.
As mentioned in the proof of Theorem 1 (see Appendix A), one

of the stability conditions is

b2

mKp

 !
1þo2

p

2ð1�aÞ

 !
41: ð28Þ
Table 1
H1 optimal gains for different r.

b2r 0.01 0.1 1 10 50 100

Kp 0.8 17.1 85.0 246 305 310

Kd 8.8 10.2 15.2 43 55 51

Table 2

Optimal gains and GM1 for different r2, when t¼ 0:05, m¼1, and r1 ¼ b2
¼ 0:01.

r2 10 20 30 40 50 60 80 100

Kp 94 207 301 389 425 436 446 453

Kd 2.4 6.3 12.7 34.3 82 127 207 291

GM1 1.33 2.9 4.2 5.5 6.0 6.1 6.16 6.2

Fig. 8. System is stable for to0:0876, marginally stable for t¼ 0
Note that oooop so, defining

GM1 :¼
b2

mKp

 !
1þo2

o

2ð1�aÞ

� �
, ð29Þ

then GM141 implies (28). So, one will try to make GM1 as large
as possible. On the other hand, for large bandwidth in the
system (fast response) it is required that oc is as large as
possible, i.e.

o2
c þ1¼

mKp

b2
2ð1�aÞ, ð30Þ

should be as large as possible. But this conflicts with GM1

should be large condition. So, blending these two conflicting
objectives and trying to

maximize min r1ðo
2
c þ1Þ,

1

r1

GM1

� �
, ð31Þ

where r1 assigns a relative weight for each component of the
problem. The solution of this problem gives

mKp

b2
¼

1

r1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þo2

o

p
2ð1�aÞ : ð32Þ

Under this choice, it follows:

GM1 ¼ r1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þo2

o

q
: ð33Þ

Note that the right hand sides of (32) and (33) are functions of a
once r1 and h¼ tb=m are fixed.

Now, ðmKp=b2
Þ is the controller gain, and to avoid actuator

saturations, this gain should not be too high. So, one can define a
new cost function which tries to make GM1 large and Kp small, the
objective here is to minimize the following cost function by
appropriately chosen Kp:

Cost :
r2

r1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þo2

o

p þ
b2

mr2

1

r1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þo2

o

p
2ð1�aÞ

 !
, ð34Þ

where r2 assigns relative weights for GM1 and Kp. Note that r1

does not play a role in the solution of (34). Once r2 and h¼ tb=m

are fixed, the cost function defined in (34) depends on a only.
Minimizing the cost function gives optimal a, then this gives oo

and Kp via (32); and once Kp is known, Kd ¼ amKp=b can be found.
Table 3
Allowable perturbations of delay for H1 optimal gain parameters when m¼1 and

b¼0.1.

Kp 17.1 85.0 246 305 310 400

Kd 10.2 15.2 43 55 51 40

tmax 0.458 0.181 0.120 0.110 0.108 0.087

:0876 and unstable for t40:0876 when Kp¼400 and Kd¼40.
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Table 2 shows the optimal gains for varying r2 when r1 ¼ b2
¼

0:01, m¼1 and h¼ tb=m¼ 0:005 are fixed.
Table 2 shows that GM1 increases with increasing r2, but for

r2Z50 additional gain in GM1 is very small. Therefore, a
meaningful choice would be KpA ½390,410� and KdA ½35,45�.
Compared to the H1 optimal gains corresponding to relatively
large r values, the above Kp values are about 1.3–1.5 times
higher, whereas Kd values are 1.14–1.25 times lower. For the
experimental tests, the values Kp¼400 and Kd¼40 are used and
results are reported in the next section. These correspond to
r2 � 42 in the above table. For the H1 optimal gains one may
select Kp¼275 and Kd¼45; the stability margins are expected to be
larger in this case, but the response will be slower. For relatively
small r values in the H1 optimal design, i.e. Kp¼85 and Kd¼15
(e.g. for b2r¼ 1) in which case the emphasis on tracking perfor-
mance is diminished compared to larger r values. In the next
section, experimental results for the above mentioned parameters
are illustrated.
5. Robustness analysis

5.1. Delay perturbations

Smallest time delay which destabilizes the feedback system
for a given set of controller and plant parameters can be
calculated using Theorem 1. This can be seen as the largest
tolerable delay. Time-domain simulation in Fig. 8 illustrates the
results found in Table 3 (Fig. 9).

5.2. Parametric plant perturbations

Introducing

CðsÞ :¼ C1ðsÞ ¼ C2ðsÞ, L1ðsÞ :¼ P1ðsÞCðsÞ, L2ðsÞ :¼ P2ðsÞCðsÞ, ð35Þ

leads to the characteristic equation of the form

1þL1ðsÞþL2ðsÞþL1ðsÞL2ðsÞ�L1ðsÞL2ðsÞe
�2ts ¼ 0: ð36Þ
Fig. 9. Allowable plant parameters for m2 ¼
After some algebraic manipulations, the characteristic equation
can be written as

1

P1ðsÞs
¼m1sþb1 ¼

ð1þL2ðsÞ�L2ðsÞe
�2tsÞC

�ð1þL2ðsÞÞ
¼ : HðsÞ: ð37Þ

Parameters pairs mn

1 and bn

1 may be found for marginally stable
characteristic equation (37) as in Morarescu, Niculescu, and Gu
(2010).

mn

1 ¼
ImðHðjoÞÞ

o , bn

1 ¼ ReðHðjoÞÞ8o: ð38Þ

Fig. 9 shows the allowable parameter region determined from
(38), as well as time domain responses for two different choices of
the parameters.

5.3. Robustness against unmodeled dynamics

The plant model used can be slightly different than the real
model due to uncertainties such as unmodeled dynamics and
approximation of the parameters. To avoid undesirable effects of
these uncertainties, the controller gains used should stabilize all
possible plants. Defining one of the plants as

P1ðsÞ ¼ PðsÞþDðsÞ, ð39Þ

the robust stability test may be applied. Characteristic equation of
the perturbed system is

ð1þPðsÞCðsÞÞð1þðPðsÞþDÞCðsÞÞ�ðPðsÞþDÞPðsÞCðsÞ2e�2ts ¼ 0: ð40Þ

After some algebraic manipulations, characteristic equation
becomes the characteristic equation of nominal plant multiplied
by a function with perturbed terms.

ð1þPðsÞCðsÞÞð1þTðsÞe�tsÞð1þGðsÞf tðsÞÞ 1þ½

þDm
TðsÞ

1þTðsÞe�ts

� �
1þGðsÞf 2tðsÞ

1þGðsÞf tðsÞ

� ��
, ð41Þ

where

DmðsÞ :¼
P1ðsÞ�PðsÞ

PðsÞ
f tðsÞ ¼

1�e�ts

s
: ð42Þ
1, b2 ¼ 0:1, Kp¼400, Kd¼40, t¼ 0:085.
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In (41), the transfer functions T(s) and G(s) are as (see also
Appendix A)

GðsÞ ¼
KpþKds

msþb
, TðsÞ ¼

KpþKds

sðmsþbÞþKpþKds
, ð43Þ

and Dm is called multiplicative perturbation. In ‘‘Optimal Gains’’
section, controller parameters are provided for which the nominal

feedback system is stable and performance criteria is satisfied. For
robust stability, these parameters should also satisfy following
inequality:

DmðsÞ
TðsÞ

1þTðsÞe�ts

� �
1þGðsÞf 2tðsÞ

1þGðsÞf tðsÞ

� �



 




1

:¼ JDmðsÞRðsÞJ1o1: ð44Þ

By using Eq. (44), the allowable magnitude of perturbation can
be derived

9DmðjoÞ9o
1

9RðjoÞ9
: ð45Þ

Fig. 10 shows that the only frequency range where tolerable
uncertainty bound is less than 100% is between 20 rad/s and
50 rad/s (where tolerable uncertainty bound is between 50% and
100%); any unmodeled lightly damped flexible modes in this
Fig. 11. m¼1, b¼0.1, t¼ 0

Fig. 10. m¼1, b¼0.1, t¼ 0:05, Kp¼400, Kd¼40.
frequency range may destabilize the feedback system, otherwise
the system is quite robust to unmodeled dynamics.

To illustrate this result, the system is perturbed with

WðsÞ ¼
o2

n

s2þ2zonsþo2
n

, ð46Þ

which represents an unmodeled flexible mode of the system. The
perturbed plant is defined as follows:

P1ðsÞ ¼ PðsÞþPðsÞWðsÞ: ð47Þ
Corresponding simulation results with different z and on are

shown in Fig. 11.
6. Experimental results

6.1. Experimental setup

In order to guarantee a full control of the communication
time-delays and processing time, all the control algorithms (for
haptic interface/virtual object) and virtual environment simula-
tions will be run on the same computer.

The haptic interface, Fig. 12a and b, consists of three direct-drive
motor and three optical quadrature encoder with 1000 pts/rev (with
a gear ratio of 1/10). The controllers and the virtual simulation are
running in real time mode (on RTAI Linux) with a sampling time of
1 ms. Fig. 12c illustrates the virtual scene and the virtual object.

The virtual object is modeled to be some spherical mass (equal
to the haptic interface mass) (Mh¼Mv). The environmental force
(Fex , Fey , Fez ) resulting in case of an impact with the virtual
environment is defined by the following equation:

Fe ¼ KwallðPv�PwallÞþBwall
_Pv, ð48Þ

with

Fe ¼

Fex

Fey

Fez

0B@
1CA, Pv ¼

xv

yv

zv

0B@
1CA, Pwall ¼

xwall

ywall

zwall

0B@
1CA,
:05, Kp¼400, Kd¼40.



Fig. 13. Free motion for Kp¼85 and Kd¼15.

Fig. 12. Haptic system. (a) Haptic interface. (b.) Robot geometry. (c) Virtual scene.
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where Kwall ¼ 20 000 and Bwall ¼ 10 represent the stiffness and the
damping used to compute the virtual force environment, Pwall is
the virtual wall position (x,y,z) and Pv, _Pv are the virtual object
position and velocity, respectively.

The testing scenarios are the same for each experimental
category:
�
 free motion (random motions on each axis)

�
 restricted motion (wall contact on each axis).
6.2. Results

The haptic systems must be analyzed in two distinct situa-
tions: free and restricted motion, respectively. A constant time-
delay t1 ¼ t2 ¼ 50 ms will be considered for all the experiments.
In Fig. 13, it is presented the free motion case for

Kp ¼ 85, Kd ¼ 15,

as discussed in Table 1.
The obtained results are ‘‘good’’, in the sense that the curves

corresponding to the haptic interface and virtual object are
almost identical, which shows a low tracking error. The system
appears to be stable in closed-loop and robust to perturbations
and the force feedback is small, i.e. the viscosity effect is low.

Next, in Fig. 14, using the same gains, the results for the
restricted motion case are presented.

As expected, the tracking error is important and the contact
effect felt by the end user is low, because the tuning strategy is
contradictory. More precisely, for ‘‘good’’ results in free motion,
small gains are desired (exactly what was obtained), but in
restricted motion, in order to have a small tracking error and a
stiff response, high gains are explicitly needed.



Fig. 14. Restricted motion for Kp¼85 and Kd¼15.
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In order to decrease the tracking error and to provide a more
accurate contact feeling in restricted motion case, the following
values will be used (as presented in Table 1):

Kp ¼ 250, Kd ¼ 45:

Figs. 15 and 16 presents the results in free and restricted
motion for the new values of the PD gains.

In free motion, it can be observed that there is a slightly
degradation with respect to the previous example in terms of
force feedback, i.e. the force is more important. The viscosity
effect is still low, the manipulation can be made in a pleasant way
without feeling a disturbing force. From the perspective of
tracking error, the performances are good, as the curves demon-
strate, similar to the previous case. In restricted motion, there is
an important amelioration compared to the previous case, but
still the performances are not the desired ones. More precisely,
the impact moment is not sufficiently stiff in order to provide to
the end user an accurate contact feeling. The overall performances
of this example are better than the previous one.

Further on, Figs. 17 and 18 present the results in free and
restricted motion for

Kp ¼ 400, Kd ¼ 40,

as proposed in Section 4.2.
In free motion, the viscosity effect is more important and it

appears to be less pleasant to manipulate than the previous case,
but in restricted motion the tracking error is considerably lower
and the response is stiffer. As the curves illustrate, in free motion
the tracking error is low, i.e. the performances are good as in the
previous cases.

As expected, for good results in free motion, small gains are
required and for restricted motion, high gains are desired. Any
‘‘trade-off’’ made in one sense or another will result in some
overall performance degradation.

In order to validate the theoretical result obtained here on
stability, the gains were pushed over the limit of stability and in
Fig. 19 is presented an unstable behavior of the system.

More precisely, for Kd¼40, the maximum allowable Kp is about
1000. Considering the model uncertainties, the system’s frictions
and the operator’s hand the system is still stable at this value.
Another reason is that it is difficult to obtain high frequencies and
the haptic interface input. Starting from Kp¼1100 the system
becomes unstable.
7. Conclusions

In this paper, a complete stability analysis for a bilateral haptic
system coupled to a virtual environment and affected by time-
delays is presented.

First, appropriate necessary and sufficient condition have been
derived to guarantee the closed-loop stability. Such conditions are
analytical and allow an easy characterization of the stability
regions in the controller parameter-space. Next, using optimiza-
tion techniques and based on the stability limits, optimal con-
trollers from the tracking error point of view are proposed. More
precisely, the PD gains are tuned according to a maximum
allowed tracking error. Furthermore, a robustness analysis is
performed in order to highlight the limitations in terms of
maximum time-delay, parametric plant perturbations and unmo-
deled dynamics.

To obtain good performance from the transparency point of
view in free and restricted motion, using the same PD gains, a
compromise must be made in order to guarantee minimal



Fig. 16. Restricted motion for Kp¼250 and Kd¼45.

Fig. 15. Free motion for Kp¼250 and Kd¼45.
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Fig. 18. Restricted motion for Kp¼400 and Kd¼40.

Fig. 17. Free motion for Kp¼400 and Kd¼40.
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Fig. 19. Unstable behavior for Kp¼1100 and Kd¼40.
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performance in both cases. The proposed controllers have been
tested and validated on a 3 degree-of-freedom haptic system in
free and restricted motions. Another solution is to use a gain
scheduling approach in order to switch from small to high gains
depending on the case. A special attention is needed for this
approach since both controllers must be updated, and since the
system is affected by time-delays, there is a ‘‘critical’’ moment
when the gains will be different at each side, moment that can
induce unwanted effects and behaviors. The stability analysis in
this case would fall into the framework of switched time-delays
systems and stability can be guaranteed for a sufficiently large
dwell time, see for example C- alıs-kan, Özbay, and Niculescu
(2011), Yan and Özbay (2008), Yan, Özbay, and S-ansal (2011)
and their references.
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Appendix A. Reduction of the stability conditions

Since ð1þPCÞ�1 is a stable transfer function, from (12) it is
worth mentioning that the feedback system is stable if and only if
the following two equations do not have zeros in Cþ ¼

fs : ReðsÞZ0g:

1þGðsÞ
1�e�ts

s

� �
¼ 0, where GðsÞ ¼

KpþKds

msþb
, ðA:1Þ

1þTðsÞe�ts ¼ 0, where TðsÞ ¼
KpþKds

sðmsþbÞþKpþKds
: ðA:2Þ

Now define

K :¼
Kp

b
, tc :¼

Kd

Kp
, tp :¼

m

b
,

then G(s) and T(s) can be re-written as

GðsÞ ¼ K
1þtcs

1þtps
, ðA:3Þ

TðsÞ ¼
Kð1þtcsÞ

tps2þð1þtcKÞsþK
: ðA:4Þ

Further, a frequency normalization can be made

bs ¼ tps, ðA:5Þ

and introduce new definitions

L :¼
1

Ktp
¼

b2

mKp
, a :¼ tc

tp
¼

bKd

mKp
, h :¼

t
tp
¼
ðt1þt2Þb

2m
, ðA:6Þ

so that the characteristic Eqs. (A.1) and (A.2) can be re-written
as

1þ
1

L

ð1þabsÞ
ð1þbsÞ 1�e�hbsbs

 !
¼ 0, ðA:7Þ
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1þ
ð1þabsÞ

ðLbs2
þðLþaÞbsþ1Þ

e�hbs ¼ 0: ðA:8Þ

The next step is to find the controller parameters L and a (which
define Kp and Kd), as functions of h, that place all the roots of
(7) and (8) in C-. In what follows without any lack of generality
only the case where Kp and Kd are positive, i.e., L40 and a40 is
considered. It is worth mentioning that, in practice, such a
situation occurs most of the cases.

Analysis of stability conditions of transfer functions (A.7) and
(A.8) are based on Nyquist Stability Criterion. Let us consider (A.7)
first. Since 9e�jho9¼ 1 for all oAR, the phase of ð1�e�jhoÞ is
between þp=2 and �p=2 for all o40 and

lim
or0þ

+ð1�e�jhoÞ ¼ þ
p
2
: ðA:9Þ

Therefore,

0r+f ðjoÞr�p, 8oAR, where f ðbsÞ :¼ 1�e�hbsbs : ðA:10Þ

This means that if a41, the phase of ð1þ jaoÞ=ð1þ joÞf ðjoÞ is
always strictly greater than ð�pÞ for all oZ0. Thus, all the roots
of (A.7) are in C- when a41, independent of L and h. Further-
more, when a¼ 1 Eq. (A.7) reduces to

1þ
1

L
f ðbsÞ ¼ 0: ðA:11Þ

Note that whenever +f ðjoÞ ¼�p, 9f ðjoÞ9¼ 0 holds. This fact,
together with (A.10), implies that when a¼ 1 all the roots of
(A.7) are in C-, independent of L and h. In conclusion, the
analysis of (A.7) becomes interesting only if ao1. In this case,
all the roots of (A.7) are in C- if and only if the following
condition is met:

L4
1þ jaop

1þ jop

				 				9f ðjopÞ9, ðA:12Þ

where op is the smallest o40 satisfying

tan�1ðaoÞ�tan�1ðoÞ�ho
2
¼�p: ðA:13Þ

The condition (A.12) gives an allowable region in the (a,L)-
plane for all the roots of (A.7) to be in C- when ao1. Since,

f ðjoÞ ¼ 1�e�joh

jo
¼

sinðohÞ

o
�j
ð1�cosðohÞÞ

o

the following identity used in (A.13) can be derived as follows:

+f ðjoÞ ¼ tan�1 cosðohÞ�1

sinðohÞ

� �
¼�

ho
2
8oA 0,

2p
h


 �
,

by using half-angle formulas, followed by simplification using
the trigonometric identity cos2ðoh=2Þ ¼ 1�sin2

ðoh=2Þ.
Eq. (A.13) can be re-arranged for ao1 as

p�ðtan�1ðopÞ�tan�1ðaopÞÞ ¼
hop

2
: ðA:14Þ

It is a simple exercise to show that

9f ðjopÞ9¼
sinðhop=2Þ

op=2
¼

2ð1�aÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�aÞ2o2

pþð1þao2
pÞ

2
q :

Using this identity, after algebraic manipulations and for ao1,
(A.12) is now equivalent to

L4
2ð1�aÞ
o2

pþ1
, ðA:15Þ

where op is determined from (A.14).
Now consider (A.8). The cross-over frequency oc 40 where

1þ jaoc

1�Lo2
c þ jðLþaÞoc

				 				¼ 1,

can be found as the feasible root of

L2o2
c o2

c þ1�
2ð1�aÞ

L

� �
¼ 0:

Clearly, this has a non-zero real solution if an only if the following
condition holds:

2ð1�aÞ4L, ðA:16Þ

in which case

oc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1�aÞ

L
�1

r
: ðA:17Þ

This means that if (A.16) is not satisfied, then 9TðjoÞ9 is a
uniformly decreasing function with Tð0Þ ¼ 1¼ JTJ1 which, by
the small gain theorem, implies that all the roots of (A.8) are in
C- independent of h. Since op is a positive real number, the
condition (A.15) also holds irregardless of delay value h when
(A.16) is not satisfied. To complete the analysis, now assume
(A.16) is satisfied and oc is as defined by (A.17). In this case, by
the Nyquist criterion, all the roots of (A.8) are in C- if and only if

tan�1ðaocÞ�a tan 2 ðLþaÞoc ,1�Lo2
c

� �
�hoc 4�p, ðA:18Þ

where a tan 2ðy,xÞ ¼ Pr argðxþ iyÞ ¼ Argðxþ iyÞ.
To recapitulate, with the parameter definitions of (A.6), the

feedback system described by (10) is stable independent of h

if aZ1. When ao1, system is stable independent of h if
L42ð1�aÞ40 and is stable depending on h if 2ð1�aÞ4L40.
For every fixed h40 the region of delay-dependent stabilizing
fða,LÞ : 2ð1�aÞ4L40g is determined from the intersection of the
conditions (A.12) and (A.18).

Since (A.17) implies

L¼
2ð1�aÞ
1þo2

c

,

for ao0 and 2ð1�aÞ4L, the condition (A.15) can be re-written as

op4oc: ðA:19Þ

Let us now re-consider (A.18). Using the notation L¼ 2ð1�aÞ=
ð1þo2

c Þ, then, after simple algebraic manipulations, it is easy to see
that

tan�1ðaocÞ�a tan 2½ðLþaÞoc ,1�Lo2
c �

¼ �tan�1 2ð1�aÞocð1þao2
c Þ

ð1þao2
c Þ

2
�ð2ð1�aÞocÞ

2

 !

¼�2 tan�1 ð1�aÞoc

ð1þao2
c Þ

� �
¼�2 tan�1ðocÞ�tan�1ðaocÞ

� �
:

Thus the condition (A.18) is equivalent to

p�2ðtan�1ðocÞ�tan�1ðaocÞÞ

oc
4h: ðA:20Þ

Recall from (A.19) and (A.14) that oc is restricted to satisfy op4oc ,
where op is defined from

2ðp�ðtan�1ðopÞ�tan�1ðaopÞÞÞ

op
¼ h: ðA:21Þ

Resuming, the system is stable independent of delay h if aZ1;
or if ao1 and L42ð1�aÞ. Furthermore, the analysis for the case
ao1 and 2ð1�aÞ4L40 reduces to the following. Define

gcðxÞ ¼
p�2ðtan�1ðxÞ�tan�1ðaxÞÞ

x
, ðA:22Þ
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gpðxÞ ¼
2ðp�ðtan�1ðxÞ�tan�1ðaxÞÞÞ

x
: ðA:23Þ

Clearly, gp and gc are uniformly decreasing functions and
gpðxÞ4gcðxÞ for all x40. So, if op is defined as the solution
of the equation gpðxÞ ¼ h and oo as the solution of the equation
gcðxÞ ¼ h, then oooop and hence, for ao1 and 2ð1�aÞ4L40,
the feedback system shown in Fig. 4 is stable if and only if
oc ooo, which is equivalent to:

L4
2ð1�aÞ
1þo2

o

, where oo40 is the solution of gcðxÞ ¼ h: ðA:24Þ
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