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Abstract

The quadratic assignment problem (QAP) is one of the hardest combinatorial optimization problems known.
Exact solution attempts proposed for instances of size larger than 15 have been generally unsuccessful even though
successful implementations have been reported on some test problems from the QAPLIB up to size 36. In this study,
we focus on the Koopmans–Beckmann formulation and exploit the structure of the flow and distance matrices
based on a flow-based linearization technique that we propose. We present two new IP formulations based on
the flow-based linearization technique that require fewer variables and yield stronger lower bounds than existing
formulations. We strengthen the formulations with valid inequalities and report computational experience with
a branch-and-cut algorithm. The proposed method performs quite well on QAPLIB instances for which certain
metrics (indices) that we proposed that are related to the degree of difficulty of solving the problem are relatively
high (�0.3). Many of the well-known instances up to size 25 from the QAPLIB (e.g. nug24, chr25a) are in this
class and solved in a matter of days on a single PC using the proposed algorithm.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The Quadratic Assignment Problem (QAP) is the problem of assigning a set of n objects to an-
other set of n objects so as to minimize the sum of the costs associated with pairs of assignments.
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QAP is NP-Hard [1] and among the most difficult NP-Hard problems. In fact, QAP is NP-Hard in the
strong sense [1] meaning that finding an ∈-approximate solution in polynomial time implies P = NP. It is
also known that QAP is PLS-Complete [2], meaning that an exponential number of iterations is required in
the worst case to find a local minimum for a certain type of neighborhood of solutions. Even though faster
computers, specialized data structures, and algorithmic improvements have led to significant progress in
solvable sizes of many NP-Hard problems (e.g. the Traveling Salesman, Vehicle Routing, Set Covering,
Uncapacitated Facility Location, etc.), the QAP has been defiantly resisting all solution attempts beyond
the size of n > 15 when the cost data is arbitrary. The largest solved instance of the QAP to date is of
size 36 [3,4] while the largest solved size of, for example, the Traveling Salesman Problem has close
to 25000 cities [5]. Most successful applications to date are limited to parallel implementations, which
harness high amounts of computing power.

The computational status of the QAP poses a challenge: What new perspectives do we need to solve
larger sizes of the QAP without having to rely on the high computing power of parallel processing? This
paper takes up the challenge and presents a new modeling perspective on the QAP that leads to an effective
branch-and-cut technique. The effectiveness of the proposed method is determined on the basis of six
indices, which we also propose. These indices measure various features that are related to the degree of
difficulty of solving the problem.

2. Problem definition

The problem is initially defined by Koopmans and Beckmann [6] in the context of assigning n facilities
(machines) to n locations. Let fij be the annual flow between facilities i and j and dkl be the distance
between locations k and l. Each facility will be assigned to exactly one location, and each location gets
assigned exactly one facility. Let a = (a(1), a(2), . . . , a(n)) be an assignment (a permutation of the
integers {1, . . . , n}) with a(i) denoting the index of the location to which facility i is assigned. Define A

to be the set of all such assignments. The QAP can be posed as

min
a∈A

∑
i,j

fij da(i)a(j). (1)

We refer to (1) as the factorable or Koopmans–Beckmann form of the QAP. In the general form, we
take the cost of assigning facility i to location k and of facility j to location l as Cijkl so that the problem
becomes

min
a∈A

∑
i,j

Cia(i)ja(j). (2)

If a nonzero cost Ĉik is incurred for assigning facility i to location k, then the linear term
∑

i Ĉia(i)

is added to the objective function. One can re-define the costs Cijkl (or fij dkl) to be Cijkl + Ĉik +
Ĉj l to convert the problem to the pure quadratic form. Linear cost terms have been dropped in later
formulations.
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There are n! assignments, which makes direct enumeration computationally prohibitive for n > 14.
The general form requires the specification of n4 cost elements, while the factorable form requires two
n × n matrices F = [fij ] and D = [dkl], reducing the data requirement to O(n2).

Let xik be equal to 1 if facility i is assigned to location k, and 0 otherwise. An integer programming
formulation of the factorable form is:

min
n∑

i,j,k,l=1

fij dklxikxjl (3)

s.t.
n∑

k=1

xik = 1, ∀i = 1 . . . n (4)

n∑
i=1

xik = 1, ∀k = 1 . . . n (5)

xik ∈ {0, 1}, ∀i, k = 1 . . . n (6)

Nonlinearity in the objective function is removed by linearizing the cost function. Even though many
linearizations have been proposed for various special cases, two methods for linearizing the cost function
have dominated the literature. In 1963, Lawler defined the variables yikj l = xikxjl so as to represent
the interaction between two assignment decisions [7]. This interpretation was used by other authors to
devise linearizations [8,9]. Later, Kaufmann and Broeckx defined the variables wik =xik

∑
j,l fij dklxjl to

represent by wik the contribution of each assignment variable xik to the overall cost [10]. The linearization
by Kaufmann and Broeckx is more compact in terms of the number of variables and constraints (O(n2)),
but the lower bounds generated by the corresponding relaxation of the IP are too weak to be of use.
However, if Lawler’s method is used, the number of variables increases toO(n4). In this case, lower bounds
generated by the relaxation are much stronger, but the number of variables quickly exceeds computational
reach as the problem size grows. Notably, high levels of degeneracy have been observed in Lawler’s
linearization [11]. Current integer programming models based on foregoing or other linearizations have
not been able to cope with instances of size larger than 15 [12,11].

In the next section, we propose a new linearization based on a flow interpretation of the problem. Our
branch-and-cut method, based on the proposed linearization, solves problems of size up to 30 in a CPU
time of a few days on a single PC.

3. Flow-based linearized models

Note that the quadratic cost coefficients fij dkl represent the cost incurred when fij units of commodity
are transported between locations that are dkl units away. One may perceive the amount of flow between
two facilities as a decision of its own. Even though these flow decisions may appear to be redundant, since
they are determined as soon as the assignments are made, they are the real source of the transportation
cost. To incorporate these decisions into a formulation, each facility may be perceived as a source of the
commodity that it produces and sends over the network. The flow-based linear model is motivated by this
observation and is a multicommodity flow formulation:
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Let yijk be the amount of flow of commodity (facility) k from location i to location j .

(IP1)

min
n∑

i,j,k=1

dij yijk

s.t.
n∑

j=1

yijk =
(

n∑
l=1

fkl

)
xki, ∀i, k = 1 . . . n (7)

n∑
i=1

yijk =
n∑

l=1

fklxlj , ∀j, k = 1 . . . n (8)

n∑
j=1

xij = 1, ∀i = 1 . . . n (9)

n∑
i=1

xij = 1, ∀j = 1 . . . n (10)

xij ∈ {0, 1}, ∀i, j = 1 . . . n (11)
yijk �0, ∀i, j, k = 1 . . . n (12)
yijk � max

l=1...n
fkl, ∀i, j, k = 1 . . . n. (13)

Theorem 1. Let x be a feasible solution to an instance of the QAP defined by matrices F and D with
objective value zQAP(x). Then, there exists a unique vector y such that (x, y) is feasible to IP 1 with
objective value zIP1(x, y) = zQAP(x).

Proof. With x being feasible to the QAP, constraints (9)–(11) of IP1 are satisfied. For each k ∈ {1, . . . , n},
let a(k) be the location index i for which xki = 1. Similarly, for each location j , let a−1(j) be the facility
index l for which xlj = 1. Since xki = 0 ∀ i �= a(k), (7) and (12) imply that yijk = 0 ∀ i �= a(k) and
k ∈ {1, . . . , n}. Consequently, the left side of (8) gives ya(k)jk (because all terms except for i = a(k) are
zero), while the right side of (8) gives fka−1(j) (because all terms except for l = a−1(j) are zero). Hence,
y is uniquely determined by the equations

ya(k)jk = fka−1(j)∀j, k ∈ {1, . . . , n}
and

yijk = 0 ∀ i �= a(k) and j, k ∈ {1, . . . , n}.
Solution y constructed in this way satisfies (12) and (13). It also satisfies (8) by construction. The only

remaining possibility to be checked is constraint (7). If i �= a(k), then (7) gives zero on both sides. If
i =a(k), the left side of (7) is

∑n
j=1ya(k)jk while the right side is Fk ≡ ∑n

l=1fkl . Since ya(k)jk =fka−1(j)

by construction, the left side is
∑n

j=1fka−1(j), which is the same as Fk . This proves the uniqueness and
feasibility of (x, y) to IP1 for each feasible x to QAP.
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To prove zIP1(x, y)=zQAP(x), observe that fkldij xkixlj =0, unless k=a−1(i) and l =a−1(j), in which
case it is fa−1(i)a−1(j)dij . Since the objective value of IP1 gives

∑n
i,j=1dijfa−1(i)a−1(j), it is the same as∑n

i,j,k,l=1fkldij xkixlj . �

In the foregoing formulation, assigning a facility (commodity) to a location may be interpreted as
placing a supply of that commodity and demands for other commodities at that location. The formulation
does not differentiate between the flows of commodities in terms of transportation costs. Based on this
observation, a single commodity network flow model is constructed as follows.

Let yij be the amount of flow from location i to location j ,

Mk = max
l,m∈[1,...,n]

l �=k

flm − fkm,

Fout
k =

n∑
l=1

fkl, and

F in
k =

n∑
l=1

flk .

(IP2)

min
n∑

i,j=1

dij yij

s.t.
n∑

j=1

yij =
n∑

k=1

F out
k xki, ∀i = 1 . . . n (14)

n∑
j=1

yji =
n∑

k=1

F in
k xki, ∀i = 1 . . . n (15)

yij �
n∑

l=1
l �=k

fklxlj + Mk(1 − xki), ∀i, j, k = 1 . . . n (16)

yij � min
k,l=1...n

fkl, ∀i, j = 1 . . . n (17)

yij � max
k,l=1...n

fkl, ∀i, j = 1 . . . n (18)

and (9), (10), (11).

Theorem 2. Let x be a feasible solution to an instance of the QAP. Then, there exists a unique y such
that (x, y) is feasible to IP2 with objective function value zIP2(x, y) = zQAP(x).

Proof. With x being feasible to the QAP, constraints (9)–(11) of IP2 are satisfied. With a−1(i) denoting
the facility index k for which xki = 1, (14) and (15) give, respectively, that

∑n
j=1yij =∑n

k=1F
out
a−1(i)

and∑n
j=1yji = ∑n

k=1F
in
a−1(i)

for i = 1, . . . , n. Constraint (16) sets the exact upper bound of each flow as
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yij �fa−1(i)a−1(j). This upper bound must be satisfied as an equality, otherwise constraints (14) and (15)
are violated. This proves the uniqueness and feasibility of (x, y) to IP2 for each feasible x to QAP.

To prove zIP2(x, y)= zQAP(x), observe that yij = fa−1(i)a−1(j), implying that the objective value of IP2
is
∑n

i,j=1dijfa−1(i)a−1(j) which is the same as
∑n

i,j,k,l=1fkldij xkixlj . �

IP1 has O(n3) variables and O(n2) constraints, whereas IP2 has O(n2) variables and O(n3) constraints.
Both formulations are valid for arbitrary distance data.

In both formulations, the assignment variables x force the y variables to assume uniquely determined
values from the flow matrix. Using a similar approach, in which the x values induce distance values on the
variable set y, conjugate formulations for which the roles of D and F are interchanged may be constructed.
The conjugate formulations will be referred to as IP1′ and IP2′ in the rest of the paper.

4. Valid inequalities

In this section, we elaborate on IP2′ which is the single commodity formulation of the QAP with
variables representing induced distances between facilities, and present some valid inequalities. To avoid
confusion with the variables representing induced flows between locations, we write t instead of y. That
is, in obtaining IP2′ from IP2, we write tij in place of yij and use dkl in place of fkl . Note also that F out

k

and F in
k are replaced by Dout

k =∑n
l=1dkl and Din

k =∑n
l=1dlk , respectively.

4.1. Triangle inequalities

We now restrict attention to distance matrices D that are symmetric and triangulated. That is, we
assume dij = dji∀i, j = 1, . . . , n and that dij �dik + dkj , ∀i, j, k. In IP2′, the induced distances will
be a permutation of the original distances. Consequently, the triangle inequalities are still valid when
expressed in terms of the t variables representing the induced distances.

Theorem 3. For an instance of the QAP whose distance matrix obeys the triangle inequalities, the
inequalities tij � tik + tkj , ∀i, j, k, i �= j �= k are valid for IP2′.

Proof. Let (x, t) be any feasible solution to IP2′ and consider an arbitrary triplet of distinct facility indices
i, j , k. Let a, b, c be the location indices for which xia = xjb = xkc = 1. Then tij = dab, tik = dac,
and tkj = dcb. Since the original distance matrix satisfies the triangle inequalities, we have dab �dac+dcb,
which implies that tij � tik+tkj . �

Another interpretation of the triangle inequality is max
i,j=1...n

i �=j

dij − dik − dkj �0, ∀k = 1 . . . n. Let Tk =

max
i,j=1...n

i �=j

dij − dik − dkj , ∀k = 1 . . . n. A more general form of triangle inequalities is defined using Tk as

follows.

Theorem 4. The inequalities tij − tik − tkj �
∑n

l=1Tlxkl, ∀i, j, k, i �= j �= k are valid for IP2′.
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Proof. Let (x, t) be any feasible solution to IP2′, and consider an arbitrary triplet of distinct facility indices
i, j , k. Let a, b, c be the location indices, for which xia = xjb = xkc = 1. Then tij = dab, tik = dac, and
tkj = dcb. Since the original distance matrix satisfies the inequality dab − dac − dcb �Tc (by definition of
Tc), we can conclude that tij − tik − tkj �

∑n
l=1Tlxkl . �

Note that violated triangular inequalities can be identified in O(n3) time by simply checking all the
inequalities. Violation of the generalized form of triangle inequalities can be identified by computing and
storing

∑n
l=1Tlxkl for each k in O(n2) time and then checking all the inequalities in a time bound of

O(n3) and a space requirement of O(n).

4.2. Upper bound inequalities

Let I = {1, . . . , n} and Ii = I\{i}∀i ∈ I . For j ∈ {1, . . . , n − 1}, define TDij = max
L⊂Ii|L|=j

∑
l∈Ldil . With

this definition, TDij gives the sum of the largest j distances from location i.

Theorem 5. The inequalities
∑

j∈J tij �
∑n

k=1TDk|J |xik, ∀i, J are valid for IP2′, where J ⊆ Ii .

Proof. Assume the contrary. Then, there exists a feasible solution (x∗, t∗) to IP2′, for which there exists
a facility i and a set J ⊆ Ii , such that

∑
j∈J t∗ij >

∑n
k=1TDk|J |x∗

ik . Let x∗
ik′ = 1, and let L bethe set of

locations assigned to the set of facilities J . Note that |J | = |L|. Then
∑

j∈J t∗ij = ∑
l∈Ldk′l �TDk′|J |,

contradicting the assumed violation. �

Violated lower bound inequalities can be identified by sorting and storing t∗ij values for all i (O(n2 log n)),

computing and storing
∑n

k=1TDk|J |x∗
ik for all i and |J |(O(n3)), and comparing the sum of minimum

|J |t∗ij values with
∑n

k=1TDk|J |x∗
ik for all i and |J |(O(n2)), at a total cost of O(n3) time and O(n2) space.

4.3. Constructed inequalities

The valid inequalities we have given so far have exploited certain properties of the distance matrix. We
now switch attention to arbitrary distance (and flow) matrices. Suppose that we want to construct a valid
inequality of the form

tij �
n∑

k=1

�kxik +
n∑

k=1

�kxjk, ∀i, j , (19)

where �k , �k are constants to be determined.

Theorem 6. If �k and �k obey the constraints �i + �j �dij , ∀i, j : i �= j , then the constraint set

tij �
n∑

k=1
�kxik +

n∑
k=1

�kxjk, ∀i, j is valid for IP2′.

Proof. Assume the contrary. Then, �k and �k obey the constraints �i + �j �dij , ∀i, j : i �= j , but there
exists a solution (x∗, t∗) of IP2′ such that t∗ij >

∑n
k=1�kx

∗
ik +∑n

k=1�kx
∗
jk for some i and j , where i �= j .
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Let x∗
ik = 1 and x∗

j l = 1, where k �= l. Then t∗ij = dkl >
∑n

k=1�kx
∗
ik +∑n

k=1�kx
∗
jk = �k + �l �dkl , which

is a contradiction. �

For a given fractional solution (x∗, t∗) to IP2′, a most violated valid inequality can be computed by
solving the following linear program.

(LP1)

z∗
LP1 = max t∗ij −

n∑
k=1

�kx
∗
ik −

n∑
k=1

�kx
∗
jk

s.t. �i + �j �dij , ∀i, j : i �= j .

All violated inequalities of the form (19) can be identified by solving LP1 2
(

n
2

)
times, with varying

objective function coefficients. A violated inequality is found if z∗
LP1 > 0. LP1 consists of 2n variables

and 2
(

n
2

)
constraints, and provides an upper bound on the distance between two facilities. The idea may

be generalized to impose bounds on the sum of distances between m facilities, where 2
(

n
m

)
instances of

similar linear programs with mn variables and m! ( n
m

)
constraints must be solved. In our implementation,

we have resorted to a heuristic way of identification to avoid solving exponentially many linear programs.
Details of the heuristic are given below.

For m=2, we solve a single instance of LP1 for each facility i, with −x∗
ik as the cost coefficient for �k ,

and −(1 − x∗
ik)/(n− 1) as the cost coefficient for �k . Cost coefficients of � describe an imaginary facility

which is partially assigned to every possible location in a way that does not contradict facility i. The
optimum solution (�∗, �∗) of this particular instance, in a sense, gives the best linearization for the current
assignment of locations to facility i. We apply this valid inequality to facility pairs (i, j) ∀j �= i. Valid
inequalities constructed in this way require solving n instances of LP1

(
instead of m! (n

2

))
. Violated valid

inequalities of this type can be identified by computing and storing
∑n

k=1�kx
∗
ik for each i and

∑n
k=1�kx

∗
jk

for j �= i (O(n2)), and comparing t∗ij with
∑n

k=1�kx
∗
ik +∑n

k=1�kx
∗
jk (O(n3)), resulting in a time bound

of O(n3) and a space requirement of O(n).
Note that, to decrease the computational burden of solving linear programs, one may assume equal-

ity of variables with the same subscript (i.e. �k = �k∀k), which decreases the number of variables by
1/m and the number of constraints by 1/(m!). The resulting valid inequalities constructed by solving
these reduced linear programs are slightly weaker. For m = 3, we solve a single linear program with
this assumption, and with all objective function coefficients being equal to −1/n. This way, we compute
a single set of coefficients that give the best possible linearization for the case when assignment vari-
ables are equally divided. Inequalities constructed in this way can be identified by computing and storing∑n

k=1�kx
∗
ik for all i (O(n2)), and comparing the sum of distances between every three facility (a, b, c)

(i.e. t∗ab + t∗ba + t∗ac + t∗ca + t∗bc + t∗cb) with
∑n

k=1�kx
∗
ak +∑n

k=1�kx
∗
bk +∑n

k=1�kx
∗
cik (O(n3)), resulting in

a time bound of O(n3) and a space requirement of O(n). For m > 3, construction and identification pro-
cesses become computationally prohibitive. Hence, we have disregarded valid inequalities corresponding
to m > 3.

The valid inequalities presented in this section impose upper bounds on linear combinations of the
decision variables. Variants of valid inequalities, in which the same combinations are bounded below, can
be similarly constructed. As a final note, we note that, in terms of improving the optimum LP relaxation
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value, the most effective one among the proposed valid inequalities we have presented is the one that uses
the triangle inequalities.

5. Computational progress in solving the QAP

Before we present our computational results with the flow-based linearization, we give a historical
sketch of the computational status of the QAP.A collection of instances and respective solutions, QAPLIB
[13], is available online to benchmark efficiency of solution methods. Although many different classes
of instances exist in the QAPLIB, the computational improvement for the QAP may best be explained
by the progress in solving the notoriously difficult instances of Nugent et al. [14]. These are the most
commonly used instances for testing computational efficiency. The original set consists of eight instances
of sizes 5, 6, 7, 8, 12, 15, 20, and 30. Distance matrices for sizes 5 and 7 represent almost rectangular
grid graphs. For sizes 6, 8, 12, 15, 20, and 30, the distance matrix represents grids of 2*3, 2*4, 3*4, 3*5,
4*5, and 5*6, respectively. Later, instances of sizes 14, 16, 17, 18, 21, 22, 24, and 25 were added to the
original set by Clausen and Perregaard [15] by deleting certain rows and columns of flow and distance
matrices of larger instances. Likewise, Anstreicher et al. [16] constructed instances of sizes 27 and 28 in
the same way.

Nugent et al. [14] solved instances nug05, nug06, nug07, and nug08 to optimality using complete
enumeration. Burkard and Stratmann [17] solved nug12 in 29.325 s on a CDC-CYBER76 machine and
Burkard and Derigs [18] solved nug15 using a branch-and-bound code in 2947.32 s on a CDC-CYBER76.
Clausen and Perregaard [15] were able to solve instances up to size 20 for the first time in 1994. Their
results are published in 1997. Their method, a parallel branch-and-bound algorithm using Gilmore–Lawler
lower bound, required 811,440 CPU seconds and traversed 360,148,026 nodes to prove optimality of the
incumbent for nug20. Bruengger et al. [19] were the first ones to solve nug21 and nug22 in 1996. In the
same year, Clausen et al. [20] reportedly solved nug24. Marzetta and Brüngger managed to solve nug25
in 1999 [21]. Finally, Anstreicher et al. [16] were able to solve nug27, nug28, and nug30 to optimality in
the year 2000. The last three instances required the equivalent of 0.18, 0.88, and 6.94 CPU years of time
on a HP9000 C3000 workstation, respectively.

This set of instances is not fully representative of the overall computational state of the art for the QAP.
As of this writing, the largest instances reportedly solved are ste36a, ste36b, and ste36c that are of size
36. These instances were proposed by Steinberg in 1961 [22]. Brixius and Anstreicher [3] solved ste36a
in 2001 with a serial implementation of a branch-and-bound algorithm that uses the Gilmore–Lawler
bound, whereas ste36b and ste36c are solved by Nyström [4] in 2001 using distributed computing. Solv-
ing ste36a required 180 h on a PIII 800 Mhz PC with a serial implementation, while ste36b and ste36c
took approximately 60 days and 200 days of CPU time, respectively. However, instances proposed by
Burkard and Offermann in 1977 [23] of size 26 have remained unsolved until recently, at which time they
were solved by the method of Hahn et al. [24] (March 2004). There are still instances of size 30 waiting
to be solved in the QAPLIB. As a final note, we emphasize the fact that the largest instances solved to
date are solved by means of parallel implementations that rely on high amounts of computing power.

The instances rouxx and taixx have flow and distance matrices that are randomly generated, exhibit no
discernible patterns, and are the hardest instances in the QAPLIB. For example, solving tai25a required
393.5 days on one 420 MHz CPU of a HPJ5000 workstation by an algorithm using Gilmore–Lawler type
of bounds that exploits the binary structure of pairwise assignment matrix [24].
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6. Computational results

We have implemented a depth-first branch-and-cut algorithm using IP2′ and the valid inequalities
presented in Section 4. Flow diagram of the algorithm is given in Fig. 1.

For instances with symmetric distance matrices, we have made use of the facts dij = dji ∀ i, j and
dii = 0 ∀i that imply tij = tj i∀i, j , and tii = 0 ∀i, to decrease the number of t variables by more than one
half. Recall that tij represents the induced distance between facilities i and j . The nonlinear representation
of tij in terms of the assignment variables is tij =∑n

k,l=1dklxikxjl . If we were able to completely linearize
the objective function, the equality above would hold for all i, j for the solution of the LP relaxation of IP2′.
When that is not the case, we can compute the violation of t∗ij as v∗

ij =t∗ij −∑n
k,l=1dklx

∗
ikx

∗
j l . Notice that vij

approximates the error of linearization, and that the error becomes more severe as |vij | increases. Similarly,
the error of the distance between facilities i and j becomes more important as the amount of flow between
the facilities deviates from the average flow. We compute the value aij =|vij | ∗ (|fij − avg(F)|+ avg(F))

for all i, j , where avg(F) denotes the average flow, as an indicator of the importance of linearization.
All distances from and to facility i are completely linearized, as soon as facility i is assigned to some
location. Consequently, we select as our branching rule an unassigned facility i with the largest sum of∑n

j=1aij .We use row branching where child problems are formed by assigning an unassigned facility to
all unassigned locations [16].

For instances representing symmetric grid graphs, namely nugxx and scrxx, we have implemented a
symmetry test proposed by Mautor and Roucairol [25], which aims to reduce the number of subproblems
at each node of the branch-and-cut tree by identifying sets of symmetric locations and branching on a
single element from each set. Even though the symmetry test of Mautor and Roucairol is not generally
valid for all distance matrices, it is known to be valid for grid graphs with Manhattan metric. This class
includes instances nugxx and scrxx. The test proved to be very useful, effectively decreasing the CPU
time to one quarter of the original or less.

For computational testing of our algorithm, we used problem instances available from the QAPLIB.
We have attempted to solve all sets of problems with the exception of the two sets of data supplied
by Eschermann and Wunderlich [26], and Li and Pardalos [27]. The former set of data involves a high
level of symmetry in both flow and distance matrices, which renders branching efforts fruitless, and is
unsuitable for computational testing. The latter set consists of asymmetric instances with known optimal
solutions. This set of problems is not used in the literature for computational testing, hence we leave
it out due to lack of a basis of comparison with other methods. In addition to the instances from the
QAPLIB, we have created five new instances of sizes 22, 24, 26, 28, and 30, referred to as erd22, erd24,
erd26, erd28, and erd30, respectively, in exactly the same way as the instances hadxx are created. We
have used GRASP [28] with 10,000 restarts as the startup heuristic. In 89% of the instances, GRASP
found the optimum solution. For the cases when the initial incumbent was not optimal, the gap between
the optimal solution and the incumbent was at most 2.3%. Application of GRASP did not take more than
a few minutes for any of the instances, so we report only the CPU times for the branch-and-cut algorithm.
CPLEX 8.11 LP solver was used for optimizing the resulting linear programs. The runs were conducted
on a single PC (1133 Mhz Dell PowerEdge with 256 MB RAM). Memory requirement was not more than
15 MB for even the largest instances. The constraint (16) was removed from the formulation and added to
the valid inequality pool, to benefit from a smaller (O(n)) static constraint set. As empirical proof of the
strength of the valid inequalities we have proposed we give, in Table 1 , the number of cuts added at the
root node and the effect on the optimum relaxation value. The separated values in columns 2, 3, and 4 are



G. Erdoğan, B. Tansel / Computers & Operations Research 34 (2007) 1085–1106 1095

INITIALIZATION
Use GRASP to compute an incumbent solution  

Form the valid inequality templates 
Form the root node using the LP relaxation and add to Nodelist

ADD CUTS 
Use the separation algorithms outlined in Section IV to identify violated  
valid inequalities and add them to the constraints of the LP relaxation

If at least one inequality is added, go to SOLVE LP  
Else, go to INTEGRALITY CHECK 

INTEGRALITY CHECK 
If the current solution is integral, update the incumbent value, 

prune the node and go to SELECT NODE
Else, go to BRANCHING

BRANCHING
Select an unassigned facility to branch on, say i.   

For every unassigned location, say location k, add a new node to the 
Nodelist formed by adding the branching constraint xik = 1 to the LP of

the current node. Prune the node and go to SELECT NODE

EXIT 
Current incumbent is the 

optimal solution

SELECT NODE 
If Nodelist is empty, go to EXIT  

Else, choose and remove the newest node from the Nodelist 
and go to SOLVE LP 

SOLVE LP 
Solve the LP corresponding to the chosen node

If the LP is infeasible or the optimum solution value exceeds 
the incumbent value, prune the node and go to SELECT NODE 

Else, go to ADD CUTS 

Fig. 1. Flow diagram for the proposed branch-and-cut algorithm.
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Table 1
Effect of valid inequalities on lower bound

Data Number Initial Final Optimum Initial Final Data
File of cuts relaxation relaxation solution gap (%) gap (%) type

added value value value

bur26a 737 5321819.20 5333986.45 5426670.00 1.93 1.71 General
bur26b 784 3725027.10 3748891.39 3817852.00 2.43 1.81 General
bur26c 741 5320676.00 5333544.83 5426795.00 1.96 1.72 General
bur26d 790 3725693.80 3747069.19 3821225.00 2.50 1.94 General
bur26e 687 5310894.40 5318727.83 5386879.00 1.41 1.27 General
bur26f 774 3713578.20 3732885.17 3782044.00 1.81 1.30 General
bur26g 677 9991175.90 10010200.17 10117172.00 1.25 1.06 General
bur26h 793 6994747.10 7030401.88 7098658.00 1.46 0.96 General

chr12a 53 8448.70 8840.10 9552.00 11.55 7.45 General
chr12b 57 7298.40 8966.50 9742.00 25.08 7.96 General
chr12c 46 9784.40 9909.80 11156.00 12.29 11.17 General
chr15a 85 7607.70 8084.00 9896.00 23.12 18.31 General
chr15b 93 5063.20 6127.20 7990.00 36.63 23.31 General
chr15c 70 8823.00 9129.70 9504.00 7.17 3.94 General
chr18a 104 9014.60 9611.70 11098.00 18.77 13.39 General
chr18b 0 1534.00 1534.00 1534.00 0.00 0.00 General
chr20a 216 2156.00 2156.00 2192.00 1.64 1.64 General
chr20b 134 2236.90 2241.70 2298.00 2.66 2.45 General
chr20c 159 9134.40 12029.50 14142.00 35.41 14.94 General
chr22a 177 5952.90 6021.70 6156.00 3.30 2.18 General
chr22b 159 6018.70 6066.50 6194.00 2.83 2.06 General
chr25a 174 3136.70 3328.10 3796.00 17.37 12.33 General

els19 234 6090771.50 15822114.20 17212548.00 64.61 8.08 General

erd22 369 7780.30 8556.90 8608.00 9.62 0.59 PartialGrid
erd24 429 9486.60 10511.80 10596.00 10.47 0.79 Partial Grid
erd26 439 10859.00 12102.00 12222.00 11.15 0.98 Partial Grid
erd28 486 13661.70 15185.80 15334.00 10.91 0.97 Partial Grid
erd30 554 17188.20 19070.00 19238.00 10.65 0.87 Partial Grid

had12 104 1568.00 1640.30 1652.00 5.08 0.71 Partial Grid
had14 137 2536.40 2710.50 2724.00 6.89 0.50 Partial Grid
had16 193 3392.70 3690.70 3720.00 8.80 0.79 Partial Grid
had18 230 4853.60 5287.00 5358.00 9.41 1.33 Partial Grid
had20 284 6290.20 6852.80 6922.00 9.13 1.00 Partial Grid

nug12 133 457.50 548.70 578.00 20.85 5.07 Grid
nug14 166 815.80 966.90 1014.00 19.55 4.64 Grid
nug15 168 910.10 1099.40 1150.00 20.86 4.40 Grid
nug16a 192 1257.00 1534.90 1610.00 21.93 4.66 Grid
nug16b 164 914.00 1195.00 1240.00 26.29 3.63 Grid
nug17 222 1293.70 1627.70 1732.00 25.31 6.02 Grid
nug18 241 1436.60 1808.20 1930.00 25.56 6.31 Grid



G. Erdoğan, B. Tansel / Computers & Operations Research 34 (2007) 1085–1106 1097

Table 1 (continued)

nug20 268 1851.70 2416.70 2570.00 27.95 5.96 Grid
nug21 346 1673.50 2270.90 2438.00 31.36 6.85 Grid
nug22 319 2256.80 3395.20 3596.00 37.24 5.58 Grid
nug24 418 2255.50 3272.90 3488.00 35.34 6.17 Grid
nug25 443 2504.00 3498.30 3744.00 33.12 6.56 Grid
nug27 447 3326.30 4896.34 5236.00 36.47 6.49 Grid
nug28 604 3168.10 4815.96 5166.00 38.67 6.78 Grid
nug30 615 3745.20 5693.97 6124.00 38.84 7.02 Grid

rou12 121 161123.80 211372.80 235528.00 31.59 10.26 General
rou15 211 222087.20 307352.50 354210.00 37.30 13.23 General

scr12 114 26152.00 30793.60 31410.00 16.74 1.96 Grid
scr15 221 39898.20 50222.50 51140.00 21.98 1.79 Grid
scr20 329 75420.00 98995.80 110030.00 31.46 10.03 Grid

tai12a 123 158216.70 207774.30 224416.00 29.50 7.42 General
tai12b 105 11426178.00 36789487.70 39464925.00 71.05 6.78 General
tai15a 205 244239.70 340869.50 388214.00 37.09 12.20 General
tai15b 187 50094649.20 51485572.30 51765268.00 3.23 0.54 General

the objective values corresponding, respectively, to the initial relaxation, final relaxation, and the optimal
solution of IP2′.

In some cases, especially when the optimality gap of the initial relaxation is large, the valid inequalities
are tremendously effective. For example, for els19 the gap is reduced from 64.61% to 8.08%, and for
tai12b, the gap is reduced from 71.05% to 6.78%. In cases when the optimality gap is smaller, varying
effects of 0.1–20% is observed.When the distance matrix represents a grid (namely for the instances erdxx,
hadxx, nugxx, and scrxx) the effect is stronger. We note that no more than a few hundred inequalities are
required even for the largest instances, after removing redundant inequalities.

Details of the branch-and-cut applied to the same problems are given in Table 2 .
We solved all instances of chrxx, including chr25a, in less than 1 h of CPU time. For this set of instances

only, we have used IP2 instead of IP2′, since these instances have a special flow matrix that represents a
tree, which can be exploited. All instances of hadxx, for which the distance matrix represents a partial grid
network (a subgraph of a grid), are solved within 3 min of CPU time. The instance els19, which consists
of real world data and exhibits a distance pattern that is quite close to being planar, is solved in about
1 min of CPU time. The instances nugxx, especially nug20 and nug24 proved to be harder. For example,
nug20 took about 4 h of CPU time and nug24 took approximately 58 h of CPU time. Notably, computing
time requirement decreased for instances nug20, nug21, and nug22 as the size of the problem increased.
This is mainly because of the decreasing level of symmetry in 4*5, 3*7, and 2*11 grids. The instances
scrxx were solved relatively easily due to the erratic structure of the flow matrix, which is sparse and
helps us to branch efficiently. The instances rouxx and taixx, being randomly generated and exhibiting
no discernible patterns, are the hardest of all. We solved rou15 in close to 2 h of CPU time and tai15a
in about 4.5 h of CPU time, while sizes of n > 15 exceed computational reach for these two classes of
instances.
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Table 2
Problems solved to optimality by branch-and-cut

Data Problem Number CPU Initial Optimum Data
file size of nodes time (s) incumbent value solution value type

bur26e 26 59761 81731.28 5386879.00 5386879.00 General
bur26f 26 10439 25154.93 3782044.00 3782044.00 General
bur26g 26 118782 98666.64 10117172.00 10117172.00 General
bur26h 26 4618 10709.26 7098658.00 7098658.00 General

chr12a 12 34 0.96 9552.00 9552.00 General
chr12b 12 12 0.35 9742.00 9742.00 General
chr12c 12 89 2.25 11156.00 11156.00 General
chr15a 15 321 15.98 9896.00 9896.00 General
chr15b 15 165 9.19 7990.00 7990.00 General
chr15c 15 15 1.57 9504.00 9504.00 General
chr18a 18 196 18.91 11098.00 11098.00 General
chr18b 18 0 0.01 1534.00 1534.00 General
chr20a 20 1152 264.32 2192.00 2192.00 General
chr20b 20 1198 259.53 2352.00 2298.00 General
chr20c 20 469 96.77 14142.00 14142.00 General
chr22a 22 2141 394.57 6266.00 6156.00 General
chr22b 22 3340 617.37 6314.00 6194.00 General
chr25a 25 9885 2941.85 4250.00 3796.00 General

els19 19 161 66.29 17212548.00 17212548.00 General

erd22 22 393 199.75 8608.00 8608.00 Partial Grid
erd24 24 3634 1946.51 10596.00 10596.00 Partial Grid
erd26 26 19759 14978.78 12222.00 12222.00 Partial Grid
erd28 28 74923 83504.84 15334.00 15334.00 Partial Grid
erd30 30 90444 127158.06 19238.00 19238.00 Partial Grid

had12 12 12 0.85 1652.00 1652.00 Partial Grid
had14 14 27 1.83 2724.00 2724.00 Partial Grid
had16 16 76 10.06 3720.00 3720.00 Partial Grid
had18 18 717 110.44 5358.00 5358.00 Partial Grid
had20 20 743 156.32 6922.00 6922.00 Partial Grid

nug12 12 43 3.17 578.00 578.00 Grid
nug14 14 747 49.82 1014.00 1014.00 Grid
nug15 15 315 27.45 1150.00 1150.00 Grid
nug16a 16 1856 185.45 1610.00 1610.00 Grid
nug16b 16 334 43.20 1240.00 1240.00 Grid
nug17 17 7652 1020.04 1732.00 1732.00 Grid
nug18 18 20353 3551.20 1930.00 1930.00 Grid
nug20 20 50862 13859.07 2570.00 2570.00 Grid
nug21 21 18537 6019.89 2438.00 2438.00 Grid
nug22 22 10370 3314.30 3596.00 3596.00 Grid
nug24 24 322443 208288.91 3488.00 3488.00 Grid
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Table 2 (continued)

rou12 12 392 46.98 235528.00 235528.00 General
rou15 15 23469 7248.02 354210.00 354210.00 General

scr12 12 22 1.38 31410.00 31410.00 Grid
scr15 15 23 5.95 51140.00 51140.00 Grid
scr20 20 5161 1467.80 110030.00 110030.00 Grid

tai12a 12 132 15.74 224416.00 224416.00 General
tai12b 12 157 6.82 39464925.00 39464925.00 General
tai15a 15 56406 16490.41 388214.00 388214.00 General
tai15b 15 402 116.65 51765268.00 51765268.00 General

Table 3
Suboptimally solved problems

Data file Gap depth: 0(%) Depth: 1(%) Depth: 2(%) Depth: 3(%) CPU time (s)

bur26a 1.71 1.37 1.18 0.91 75711.46
bur26b 1.81 1.49 1.18 0.76 74572.85
bur26c 1.72 1.47 1.26 1.02 132849.90
bur26d 1.94 1.61 1.08 0.75 59443.98

nug25 6.56 6.22 5.56 4.20 16267.40
nug27 6.49 5.85 4.68 3.90 43729.22
nug28 6.78 6.37 5.50 4.42 66432.41
nug30 7.02 6.82 6.15 5.04 130163.14

The instances erdxx were solved quite easily with respect to their size. The largest of them, erd30, took
about one and a half days to complete. The computational success mainly depends on the structure of
the distance and flow matrices; the former is the shortest distance matrix of a partial grid, and the latter
is uniformly drawn from the interval [1 . . . n]. This structure, in turn, yields a strong lower bound and
results in a small branch-and-cut tree.

There are also instances, not reported in Table 2, that are attempted but not solved to optimality. For
example, branch-and-cut trees of the instances bur26a-d and nug25–30 could not be entirely fathomed.
For these problems, we have imposed a depth limit of three and fathomed the reduced trees to collect
further data about the strength of the lower bound at the lower nodes of the tree. Instances bur26a-d were
not solved despite the fact that instances bur26e-h, which have the same distance matrix but different
flow matrices, were solved relatively easily. This suggests that our branching rule performs better for
instances bur26e-h, since the branching rule is the only part that depends on the flow matrix. Instances
nug25-30 do not yield good lower bounds even in the lower branches due to the high level of symmetry
in the distance matrix. These instances simply require more computing power. The data for suboptimally
solved problems are summarized in Table 3.

Even though the instances nugxx are considered to be a benchmark, drastic improvements in computing
hardware and inherent differences between sequential and parallel implementations increase the difficulty
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Table 4
Comparison of scaled CPU times (in minutes) for instances nugxx

Data file Erdoğan and Tansel Brixius and Anstreicher

nug16b 0.80 0.90
nug18 66.15 69.20
nug20 258.15 145.80
nug21 112.13 212.30
nug22 61.74 134.30
nug24 3879.89 5829.90

of comparison. For example, nug20 required 811440.0 CPU seconds of a state of the art computer in
1994, when it was solved for the first time by Clausen and Perregaard [15]. Our method requires 13859.07
CPU seconds for the same instance on a PC, but it should be noted that the computing technology has
doubled the speed of computation a few times in the past decade. To date, most successful study in terms
of dealing with the instances nugxx is that of Anstreicher, Brixius, Goux, and Linderoth [16], which
is a parallel branch-and-bound implementation that uses the bound presented in the study by Brixius
and Anstreicher [29]. Since our implementation is sequential, we compare our results with the results
presented in the latter paper. The authors report solution times for the instances nug16b, nug18, nug20,
nug21, nug22, and nug24 as CPU minutes of a HP9000 C3000 workstation, whereas our solution times
are for a single PC (1133 Mhz Dell PowerEdge with 256 MB RAM). The CPU’s under consideration are
different in terms of architecture and speed. For an accurate comparison, we have used the results of a
benchmarking study of Guest [30] to scale the run times. Relative to the benchmark system, our system
is cited to have 19% CPU performance for floating point operations, whereas HP9000 C3000 is cited to
have 17% performance. Hence, we have multiplied our CPU times by 19/17 to have a scaled comparison.

Table 4 gives the comparison of the two studies in terms of CPU time requirements. While Brixius and
Anstreicher can solve nug20 with greater efficiency, our method performs better for the larger instances
nug21, nug22, and nug24. Note that the CPU time requirement of our method is no more than 65% of
the method of Brixius and Anstreicher for these instances. Such benchmarking studies generally produce
approximations that are in at most 30% error (Anstreicher [31]). If we allow a liberal error margin of 30%
for the results of the benchmarking study, Table 4 gives us reason to claim that our method can compete
with the state-of-the-art methods in the literature.

To have a better understanding of the performance of the branch-and-cut algorithm, we have disabled
the GRASP heuristic for a few instances that seem to be representative of their corresponding problem
sets, and analyzed the change in CPU time and number of nodes traversed. The results are given in
Table 5.

As expected, CPU times are longer when the initial upper bound value is set to infinity as compared
to the case where the initial upper bound is supplied by the GRASP heuristic. However, characteristics
of each instance dictate the order and quality of the integral solutions found by the branch-and-cut
algorithm. Hence, the results are somewhat erratic, even among the members of the same instance set.
For example, while chr15a suffers a 29% increase in CPU time and 19% increase in the number of nodes
traversed, CPU time required by the instance chr20a increases more than four times and the number of
nodes traversed increases more than six times when the initial upper bound is set to infinity. In contrast,
scr20 performs much better than scr15, resulting in 50% increase in CPU time versus a 179% increase.
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Table 5
Run rimes with different initial upper bound values

Data file ub: infinity ub:GRASP

Number of nodes CPU time (s) Number of nodes CPU time (s)

chr12a 67 1.69 34 0.96
had12 45 1.77 12 0.85
nug12 53 3.39 43 3.17
rou12 1066 99.13 392 46.98
scr12 82 3.34 22 1.38

chr15a 381 20.61 321 15.98
had16 166 19.45 76 10.06
nug15 647 51.41 315 27.45
rou15 35803 10618.13 23469 7248.02
scr15 184 16.59 23 5.95

chr20a 7197 1253.72 1152 264.32
had20 12877 2660.57 743 156.32
nug20 86399 21874.33 50862 13859.07
scr20 8163 2202.93 5161 1467.80

We emphasize the fact that the algorithm we have presented is designed to prove optimality rather than
to find good solutions and depends heavily on the quality of the initial solution. In fact, the quality of
the initial solutions supplied by the GRASP heuristic encouraged us to use the depth-first node selection
rule. A more robust branch-and-cut algorithm may be implemented by switching the node selection rule
to breadth-first or best-first.

To better understand the cases in which our algorithm performs best, we have computed the flow
dominance and distance dominance of the instances we have attempted to solve. We have also included
some metrics (indices) that we have devised. Namely, we have computed the ratio of number of solutions
for which the valid inequalities are binding to the total number of solutions. The results are given in
Table 6.

The column labeled “Distance Upper Bound Index” denotes the ratio of the number of strict inequalities
to the total number of inequalities in the optimum solution of LP1, when solved to optimality with objective
function coefficients of −1/n. This index value is a measure of the strength of the constructed inequalities
for m = 2, and can be easily computed by solving a single instance of LP1. Recall that the constructed
inequalities for m = 3 consist of a single set of coefficients that is applied to all facility triplets. Consider
any three facilities and all possible location assignments to these facilities, and count the cases for which
the constructed inequalities are strict. The column labeled “Triangle Sum Upper Bound Index” denotes
the ratio of this count to the total number of assignments

((
n
3

))
. In other words, this index value measures

the strength of the constructed valid inequalities for m=3. This index can be computed by solving a single
linear program with n variables and

(
n
3

)
constraints, and executing the counting process (O(n3)). Finally,

the column labeled “Triangle Diff. Upper Bound Index” denotes the ratio of the number of location
triplets for which the triangle inequalities are strict to the total number of triplets. Computation of this
index requires O(n3) time. The rest of the columns consist of the indices for the lower bound counterparts
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Table 6
Indices computed for the instances

Data Flow Distance Distance Lower Distance Upper Triangle Sum Triangle Sum Triangle Diff. Triangle Diff.
file Dominance Dominance Bound Index Bound Index Lower Bound Upper Bound Lower Bound Upper Bound

Index Index Index Index

bur26a 274.744 15.074 0.197 0.614 0.232 0.074 0.087 0.093
bur26b 274.744 15.901 0.262 0.614 0.302 0.068 0.259 0.093
bur26c 228.227 15.074 0.245 0.614 0.232 0.074 0.087 0.093
bur26d 228.227 15.901 0.226 0.614 0.302 0.068 0.259 0.093
bur26e 253.807 15.074 0.191 0.629 0.232 0.074 0.087 0.093
bur26f 253.807 15.901 0.235 0.726 0.302 0.068 0.259 0.093
bur26g 279.687 15.074 0.215 0.614 0.232 0.074 0.087 0.093
bur26h 279.687 15.901 0.257 0.614 0.302 0.068 0.259 0.093

chr12a 63.206 307.980 0.182 0.833 0.564 0.155 0.071 0.018
chr12b 63.206 307.980 0.485 0.833 0.605 0.055 0.092 0.018
chr12c 63.206 307.980 0.250 0.833 0.545 0.064 0.042 0.018
chr15a 69.735 326.951 0.262 0.867 0.635 0.053 0.051 0.011
chr15b 69.735 326.951 0.433 0.867 0.651 0.095 0.073 0.012
chr15c 69.735 326.951 0.143 0.867 0.629 0.037 0.027 0.012
chr18a 63.098 350.595 0.248 0.889 0.692 0.088 0.046 0.007
chr18b 56.863 356.319 0.176 0.889 0.686 0.032 0.019 0.007
chr20a 59.385 345.940 0.197 0.900 0.723 0.040 0.038 0.006
chr20b 59.385 345.940 0.124 0.900 0.716 0.036 0.015 0.006
chr20c 65.630 345.940 0.447 0.900 0.736 0.335 0.059 0.006
chr22a 66.887 420.620 0.273 0.909 0.747 0.057 0.045 0.005
chr22b 66.887 420.620 0.199 0.909 0.742 0.034 0.024 0.005
chr25a 57.925 423.928 0.267 0.920 0.776 0.098 0.041 0.006

els19 530.281 52.030 0.164 0.129 0.022 0.029 0.007 0.014

erd22 45.955 64.209 0.541 0.216 0.038 0.362 0.009 0.267
erd24 46.502 63.699 0.554 0.217 0.033 0.313 0.017 0.270
erd26 45.756 61.711 0.502 0.209 0.030 0.291 0.010 0.253
erd28 44.751 62.042 0.545 0.196 0.021 0.290 0.015 0.254
erd30 44.053 63.933 0.547 0.182 0.023 0.284 0.008 0.260

had12 50.679 63.130 0.682 0.364 0.109 0.418 0.018 0.333
had14 49.456 66.622 0.560 0.297 0.071 0.451 0.013 0.328
had16 48.403 64.829 0.542 0.292 0.050 0.454 0.014 0.300
had18 47.132 63.681 0.542 0.255 0.048 0.397 0.012 0.272
had20 45.957 64.243 0.553 0.221 0.042 0.385 0.006 0.277

nug12 116.580 56.891 0.576 0.424 0.155 0.382 0.055 0.255
nug14 103.566 56.749 0.582 0.374 0.113 0.352 0.043 0.244
nug15 106.476 56.582 0.562 0.362 0.101 0.255 0.040 0.245
nug16a 100.737 57.334 0.542 0.325 0.086 0.325 0.020 0.257
nug16b 115.595 54.772 0.500 0.342 0.093 0.371 0.019 0.238
nug17 104.827 56.259 0.522 0.324 0.078 0.344 0.021 0.236
nug18 104.211 54.935 0.529 0.301 0.072 0.348 0.019 0.229
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Table 6 (continued)

nug20 103.646 54.102 0.489 0.284 0.061 0.309 0.014 0.228
nug21 117.061 57.385 0.514 0.267 0.053 0.264 0.018 0.235
nug22 114.216 64.086 0.459 0.216 0.038 0.291 0.010 0.262
nug24 112.783 54.130 0.457 0.243 0.043 0.261 0.008 0.221
nug25 110.763 53.033 0.480 0.240 0.041 0.257 0.010 0.217
nug27 111.402 58.614 0.487 0.211 0.032 0.194 0.010 0.229
nug28 112.999 54.499 0.450 0.212 0.032 0.260 0.007 0.217
nug30 112.417 52.725 0.448 0.202 0.029 0.227 0.006 0.210

rou12 67.053 71.538 0.182 0.182 0.055 0.055 0.018 0.018
rou15 68.739 69.073 0.148 0.143 0.033 0.035 0.011 0.011
rou20 65.569 64.352 0.105 0.105 0.018 0.018 0.006 0.006

scr12 256.487 56.891 0.576 0.424 0.155 0.382 0.055 0.255
scr15 247.750 54.921 0.533 0.371 0.103 0.404 0.040 0.236
scr20 254.333 54.102 0.489 0.284 0.061 0.309 0.014 0.228

tai12a 74.765 69.307 0.182 0.174 0.055 0.055 0.021 0.018
tai12b 299.606 79.211 0.212 0.189 0.055 0.082 0.024 0.045
tai15a 70.563 63.777 0.152 0.143 0.035 0.033 0.012 0.013
tai15b 312.935 262.313 0.324 0.176 0.035 0.068 0.015 0.092

of the same valid inequalities. Note that, a higher value means a stronger effect, but the values across the
columns are not comparable, since the corresponding valid inequalities differ in strength.

Notice that for the instances chrxx, the values of Distance Upper Bound Index and Triangle Sum
Lower Bound Index are very high, justifying the ease of solution for these instances. For the instances
erdxx and hadxx, the values of the indices for Distance Lower Bound, Triangle Sum Upper Bound, and
Triangle Difference Upper Bound are notably high. Although the same indices are remarkably high for
the instances nugxx and scrxx, the symmetry factor comes into play and increases the level of difficulty.
Instances burxx exhibit high values for Distance Upper Bound Index and Triangle Sum Lower Bound
Index. Consequently, the lower bounds generated at the root node are close to the optimum solution value.
Instances rouxx and taixx do not exhibit any high values for any of the indices, and hence, are the hardest
of all.

The flow and distance dominance values do not mean much without the rest of the data. For example, the
instances chrxx exhibit large distance dominance values, the instances scrxx exhibit large flow dominance
values, and finally the instances erdxx exhibit low values for both and distance dominance.All three sets of
instances have been solved with reasonable efficiency, so the dominance values seem irrelevant. However,
further analysis of the instances scr12, scr15, and scr20 and nug12, nug15, and nug20 that have the same
distance matrices reveals that the scrxx instances are solved with greater efficiency. The only apparent
reason for this is the higher flow dominance value of these instances. Likewise the instance els19, which
does not yield high values for any of the indices but has the highest flow dominance value, is solved
efficiently. We find it appropriate to conclude that a higher value of flow dominance helps our branching
strategy to find the decisions that are more important than the others.
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We can conclude that our method performs best when one or more of the following occur:

(1) A value of 0.5 or higher for at least one of Distance Upper Bound and Distance Lower Bound Indices.
(2) A value of 0.3 or higher for at least one of Triangle Sum Upper Bound and Triangle Sum Lower

Bound Indices.
(3) A value of 0.3 or higher for at least one of Triangle Diff. Upper Bound and Triangle Diff. Lower

Bound Indices.
(4) A flow dominance value of 200 or more.

7. Conclusion

We developed a new perspective of modeling the QAP based on a flow interpretation of the problem.
To date, decisions about the flows induced between locations (or the distances induced between facilities)
were ignored, because they were dominated by the assignment decisions. This dominance is to be expected,
as the flows (distances) are immediately determined when the assignment decisions are made. However,
by incorporating these subdecisions explicitly into our models, we are able to exploit any underlying
structure available in the data. The particular feature that we focused on is the triangle inequalities in
the distance matrix. The formulations offer insights and further motivate us to question the paradigms of
modeling up to now.

In operations research, the common approach is to model the problem on hand in a way that is as
independent from the problem instance as possible. Modelers often tend to dump the data into the objective
function and focus on solving a well-defined, static constraint matrix. In the case of the QAP, this paradigm
has been unfruitful beyond certain sizes, due to the large number of variables required. In our opinion,
to be able to solve the QAP exactly, one needs to incorporate the data into the model, and uncover the
pattern beneath the data. In the case where one of the matrices is a distance matrix, which obeys triangle
inequalities, the pattern is apparent. In cases with randomly created data matrices, the problem becomes
much harder to solve.

An unforeseen consequence of incorporating the data into the constraint matrix is the need to solve
auxiliary problems in order to identify valid inequalities. To be more precise, for the TSP, for example,
one can logically identify the subtour elimination constraints. However, in our case, we need to solve LPs
to identify or to construct valid inequalities. Thus, we can claim that with a constraint matrix dependent
on the problem instance at hand, the act of building more information into the model becomes a problem
of its own.

We have tried to analyze the behavior of the algorithm we have presented using different metrics
we have devised, as well as metrics from the literature. We have observed that our algorithm performs
best when one or more of the proposed metrics is significantly high. Using the formulations and valid
inequalities we have presented, we have been able to solve an instance of size 30 that exhibits high values
for the metrics we have presented. In contrast, we have failed to solve instances from the randomly created
sets of problems that are of size larger than 15.

We have focused on identifying all violated valid inequalities, for the sake of a better analysis. It is our
belief that with high-performance heuristics to identify violated valid inequalities, and access to higher
amounts of computing power, the proposed models may be used to solve larger problem instances.
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