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Abstract

We propose a simple and a quite efficient separation procedure to identify cover inequalities for the multidimen-
sional knapsack problem. It is based on the solution of a conventional integer programming model. Solving this kind
of integer programs is usually considered expensive and the proposed method may have been overlooked because
of this assumption. The results of our experiments with a small set of randomly generated problems and problems
taken from the literature indicate that the method may be a reasonable alternative to the one currently in use.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In this paper, we propose an exact separation procedure to identify cover inequalities for the multidi-
mensional knapsack problem (mKP)

max
∑

i∈N

cixi (1)

s.t.
∑

i∈N

aij xi �bj , j ∈ M , (2)

xi ∈ {0, 1}, i ∈ N , (3)
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where aij , bi and ci are nonnegative integers. The reader is referred to Chapter 9 of Kellerer et al. [1]
for a recent survey on the problem. Before presenting the procedure which is a straightforward extension
of the well-known separation procedure for the unidimensional knapsack problem, we provide a brief
background on the cover inequalities for the knapsack problem and the related separation problem in the
next section. In Section 3, we present the proposed separation procedure for the mKP. Computational
results of the proposed procedure on a set of test problems are given in Section 4. Remarks and conclusions
are in Section 5.

2. Cover inequalities and the separation problem

Cover inequalities are one of the most important components of the branch-and-cut algorithms designed
to solve 0–1 integer programming problems. The separation problem for cover inequalities in the context
of 0–1 integer programming was introduced by Crowder et al. [2]. Recent studies by Gu et al. [3,4]
provide extensive discussions of available strategic choices for using cover inequalities in the branch-
and-cut process for 0–1 programming. We provide below a brief review of the separation problem for the
unidimensional knapsack problem.

Consider the polyhedron K={x ∈ B|N | : ∑
i∈N aixi �b} associated with the unidimensional knapsack

problem. The index set C ⊆ N of variables for which
∑

i∈C ai > b holds is called a cover. A cover that
loses this property when any one of the indices in it is excluded is called a minimal cover. A minimal
cover induces a so-called cover inequality that is valid for the polyhedron K and is given as follows:

∑

i∈C

xi � |C| − 1. (4)

Let X∗ = {x∗
1 , x∗

2 , . . .} ∈ [0, 1]n be an arbitrary feasible solution to
∑

i∈N aixi �b, where ai’s are non-
negative integers. Deciding whether X∗ satisfies all of the possible cover inequalities of K is known as the
cover separation problem (CSP). The CSP can be formulated as the following 0–1 integer linear program:

z = min
∑

i∈N

(1 − x∗
i )zi (5)

s.t.
∑

i∈N

aizi �b + 1 (6)

zi ∈ {0, 1}, i ∈ N . (7)

If z < 1, then the set C = {i : zi = 1} induces a cover inequality of the form (4), where zi is an optimal
solution to the CSP. Otherwise, X∗ satisfies all the possible cover inequalities.

Most studies on this subject indicate that the exact solution of the separation problem is costly in
practice and usually resort to a greedy type algorithm to obtain approximate solutions. For more details,
the reader may refer to Wolsey [5] and Nemhauser and Wolsey [6]. Recently, Kellerer et al. [1] presented
computational results on solving the separation problem.
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3. An exact separation procedure for mKP

We now extend the previously discussed separation procedure given for the unidimensional knapsack
problem to the mKP. In this case, each constraint j ∈ M of the mKP is associated a set of cover
inequalities denoted by Cj . Given a fractional solution X∗={x∗

1 , x∗
2 , . . .} to the mKP (usually the solution

to the corresponding LP-relaxation), we refer to the problem of identifying whether X∗ violates a cover
inequality in

⋃
j∈M Cj or concluding that it satisfies all the possible ones as the generalized cover

separation problem (GCSP). We formulate the GCSP by the following 0–1 integer linear programming
formulation:

z = min
∑

i∈Nf

(1 − x∗
i )zi (8)

s.t.
∑

i∈Nf

aij zi �b′
j + 1 − R(1 − yj ), j ∈ M (9)

∑

j∈M

yj �1 (10)

zi ∈ {0, 1}, i ∈ Nf , (11)

yj ∈ {0, 1}, j ∈ M , (12)

where b′
j = bj − ∑

i∈N1 aij with N1 = {i : x∗
i = 1} and Nf = {i : 0 < x∗

i < 1}. The parameter R used
in constraint (9) is a sufficiently large constant (which may be chosen as R = maxj∈M bj + 1). In this
formulation, the additional binary variable yj is used to check the violation of cover inequalities in the
set Cj .

Given an optimal solution Z = {z1, z2, . . .} with value z < 1 to the integer linear programming for-
mulation, the set C = N1 ∪ {i : zi = 1} induces a violated cover inequality given by (4). Note that we
only include in the formulation variables i ∈ Nf , since one can easily fix zi = 1 for i ∈ N1 and zi = 0
for i ∈ N\{N1 ∪ Nf }. This also reduces the size of the binary variables in the formulation, thereby
facilitating its solvability.

The separation procedure consists of identifying the cover inequality via the GCSP that is violated by
the fractional solution X∗ and appending it to the formulation. The augmented formulation is resolved
and cuts are appended in a similar and an iterative manner until no violated cover inequalities are found.
We refer to this procedure as generalized cover separation (GCS).

As it has been already pointed out, the 0–1 programming model above is very straightforward, and it
is a simple exercise to extend the unidimensional knapsack version to this generalized case. However,
the computational experimentation results presented in the next section clearly demonstrates that, with
currently available mathematical programming software, there are benefits to reap in using it for solving
the separation problem.

4. Computational results

In this section, we describe our computational experience with the proposed procedure on test problems.
The generalized cover separation procedure proposed for the mKP has been implemented in C and all
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Table 1
Statistics for a sample of 50 randomly generated instances

m × n Avg. cover Max. cover Tavg CPLEX

GR GCS GR GCS GR GCS TC nC

5 × 20 2.20 7.20 5 13 0.02 0.03 0.01 5/5
10 × 20 1.20 9.60 2 22 0.04 0.03 0.01 5/5
25 × 100 2.80 5.60 5 8 0.10 0.10 0.28 5/5
50 × 100 1.40 6.20 4 12 0.21 0.14 0.89 5/5
125 × 500 1.80 9.20 4 26 2.61 1.44 93.67 5/5
250 × 500 1.80 2.80 3 5 5.16 3.23 505.24 5/5
250 × 1000 2.00 4.20 4 8 11.75 6.64 3353.80 5/5
500 × 1000 2.00 4.00 4 6 23.58 13.09 3326.60 4/5
500 × 2000 1.20 4.80 5 8 82.26 28.17 8512.40 2/5
1000 × 2000 1.60 7.20 4 15 145.01 57.88 6785.40 2/5

the tests are performed on a Sun UltraSPARC 12 × 400 MHz with 3 GB RAM, using CPLEX 9.0 as the
optimization package.

We compare the proposed method with a simple and a straightforward separation procedure in which
violated covers are identified using a greedy algorithm (henceforth denoted by GR). To the best of
the authors’ knowledge, there are no other heuristic procedures previously proposed to separate cover
inequalities for the mKP. At every iteration of the algorithm, we try to identify a violated cover inequality
for each constraint j ∈ M . More specifically, for each constraint j ∈ M , the variables of the mKP are
put in increasing order of the ratios (1 − x∗

i )/aij and the variable with the smallest ratio is set equal
to 1 while keeping the rest at zero. Then, constraint j is checked as to whether this solution causes a
violation. If there is a violation, then a cover inequality for this constraint is identified consisting of this
single variable. Otherwise, the variable with the second lowest ratio is raised to 1, and the process is
repeated until a violating solution is found for constraint j. Among all the cover inequalities identified
as a result of scanning all |M| constraints, the one with the maximum violation is appended to the LP-
relaxation of the problem and the resulting problem is solved to optimality. This concludes a single
iteration. The procedure continues in an iterative manner until no violated cover inequalities are found.
For each constraint, the GR has a time complexity of O(|N | log |N |) to sort the variables and O(log |N |)
for the binary search. Therefore, as a result of scanning all the constraints, the GR has an overall time
complexity of O(|M||N | log |N |) + O(|M| log |N |) to identify a single violated cover inequality at each
iteration.

The performance of the algorithm was tested on both randomly generated instances and instances
taken from the literature. For the former group, a batch of 50 multidimensional 0–1 integer programming
problems were generated pseudo-randomly with the following specifications: the number of constraints
(m) range between 5 and 1000. That of variables (n) range between 20 and 2000. There are 10 different
combinations of these dimension parameters as may be seen in the first column of Table 1. For each
combination, linear relaxations of five pseudo-randomly generated problems are solved. All objective
function coefficients and constraint coefficients have values uniformly distributed between 0 and 100. The
right-hand side constants are computed using the formula bi = 10np1 + 0.5p2

∑n
j=1 aij , ∀i = 1, . . . , m.
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Table 2
Statistics for the OR-Library instances

Instance m × n Avg. cover Max. cover Tavg CPLEX

GR GCS GR GCS GR GCS TC nC

mknapcb1 5 × 100 2.20 5.77 5 14 0.05 0.06 20.58 30/30
mknapcb2 5 × 250 2.33 4.33 6 8 0.11 0.10 532.69 30/30
mknapcb3 5 × 500 2.30 5.10 6 12 0.22 0.17 6702.10 17/30
mknapcb4 10 × 100 0.40 1.70 2 7 0.20 0.13 164.47 30/30
mknapcb5 10 × 250 0.57 1.13 2 3 0.34 0.23 10 506.07 2/30
mknapcb6 10 × 500 0.33 1.20 1 3 1.10 0.36 10 848.13 0/30

Here, p1 and p2 are pseudo-random variates uniformly distributed between 0 and 1. This formula was
chosen to provide variability in tightness among constraints, and avoid the possibility of having a constraint
with right-hand side equal to zero.

It may seem counter-intuitive to solve a rather complex integer programming formulation to separate
valid inequalities for a seemingly simpler formulation of the mKP. Therefore, in order to investigate
whether the separation problem is easier to solve than the original multidimensional knapsack problem,
we have used state-of-the-art optimization software CPLEX 9.0 to solve the instances considered here
using the formulation defined by (1)–(3). A time limit of 3 h (10 800 s) is imposed on CPLEX.

The results of the computational experiments on random instances are presented in Table 1. In this
table, the two columns under the heading Avg. cover present the average number of cover inequalities
found by GR and GCS, respectively. Each entry in these columns is calculated over five instances. The
next two columns present the maximum number of cover inequalities found by the two procedures.
The two columns under the heading Tavg indicate the unit time required by the corresponding algorithm
(in seconds) to identify a violated cover inequality per cover and to solve the LP-relaxation, which is
calculated by dividing the total solution time to the total number of cover inequalities found. The last
two columns, TC and nC , show the average time required to solve the instances and the number of
problems that could be solved to optimality out of the total number of problems within the 3 h time limit,
respectively.

As Table 1 shows, the number of cover inequalities identified by GCS is clearly superior to that of GR.
We additionally note that the GCS identified a total of 304 violated cover inequalities over all instances,
whereas GR produced 90 of these. That is, GR missed about 70% of the violated cover inequalities
produced by GCS. In addition, the unit time required by the GCS becomes superior to that of GR as the
instances grow bigger in size. Thus, we can conclude that the GCS is quite efficient considering the size
of the problems handled and the gain acquired in terms of the number of cover inequalities produced.
The last two columns indicate that the time spent for cover generation is only a small fraction of the time
required by CPLEX. This implies that the GCS is not computationally expensive as compared to CPLEX.

The performance of both algorithms on instances taken from the OR-Library [7] is given in Table 2.
The first column of the table presents the name of the group of instances, where each group contains
30 problems. The average number of covers and the reported solution times are calculated as the av-
erage of 30 problems for each instance group. The remaining columns of this table are same as those
of Table 1.
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For the problems presented in Table 2, we also note that GCS identified a total of 577 violated cover
inequalities over all instances whereas GR produced 244 of these, indicating that GR missed about 58%
of the violated cover inequalities produced by GCS. Similar to the previous result, the last two columns
of Table 2 indicate that the separation problem is indeed much more easier to solve than the mKP. In
fact, as instances grow larger in size, the results demonstrate that CPLEX was not able to find the integer
optimal solution for most of the problems.

5. Conclusions

In this paper, we have proposed a separation procedure for the multidimensional knapsack problem
that is based on solving a single 0–1 integer programming formulation at each iteration. The procedure
proves to be simple and quite efficient whilst the implementation can be done quite easily, requiring no
specialized algorithm. In addition, the computational results indicate that the proposed algorithm may be
a viable alternative in separating cover inequalities for the multidimensional knapsack problem.
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