
Computers & Operations Research 37 (2010) 649 -- 655

Contents lists available at ScienceDirect

Computers &Operations Research

journal homepage: www.e lsev ier .com/ locate /cor

Discrete time/cost trade-off problem: A decomposition-based solution algorithm
for the budget version

Öncü Haz�ra,b,∗, Mohamed Haouaric,d, Erdal Erelb
aIndustrial Engineering Department, Çankaya University, Ankara 06530, Turkey
bFaculty of Business Administration, Bilkent University, Ankara 06800, Turkey
cDepartment of Industrial and Systems Engineering, Faculty of Engineering, Ozyegin University, Istanbul, Turkey
dPrincess Fatimah Alnijris's Research Chair for AMT, College of Engineering, King Saud University, Saudi Arabia

A R T I C L E I N F O A B S T R A C T

Available online 21 June 2009

Keywords:
Project scheduling
Time/cost trade-off
Benders Decomposition

This paper investigates the budget variant of the discrete time/cost trade-off problem (DTCTP). This
multi-mode project scheduling problem requires assigning modes to the activities of a project so that
the total completion time is minimized and the budget and the precedence constraints are satisfied.
This problem is often encountered in practice as timely completion of the projects without exceeding
the budget is crucial. The contribution of this paper to the literatures is to describe an effective Benders
Decomposition-based exact algorithm to solve the DTCTP instances of realistic sizes. Although Benders
Decomposition often exhibits a very slow convergence, we have included several algorithmic features to
enhance the performance of the proposed tailored approach. Computational results attest to the efficacy
of the proposed algorithm, which can solve large-scale instances to optimality.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In project management, it is often possible to reduce the duration
of some of the activities and therefore expedite the project dura-
tion with additional costs. This time/cost trade-off has been widely
studied in the literatures. In this paper, we address a discrete ver-
sion of the problem, namely the discrete time/cost trade-off problem
(DTCTP).

Three versions of the DTCTP have been studied in the litera-
tures so far: the deadline problem (DTCTP-D), the budget problem
(DTCTP-B) and the efficiency problem (DTCTP-E). In DTCTP-D, given
a set of time/cost pairs (modes) and a project deadline, each activity
is assigned to one of the possible modes in such a way that the total
cost is minimized. Conversely, the budget problem minimizes the
project duration while not exceeding a given budget. On the other
hand, DTCTP-E is the problem of constructing efficient time/cost so-
lutions over the set of feasible project durations. This paper concen-
trates on the budget version. This problem is often encountered in
practice as timely completion of the projects without exceeding the

∗ Corresponding author at: Industrial Engineering Department, Çankaya Univer-
sity, Ankara 06530, Ankara, Turkey.

E-mail addresses: hazir@cankaya.edu.tr (O. Haz�r),
mohamed.haouari@ozyegin.edu.tr (M. Haouari), erel@bilkent.edu.tr (E. Erel).

0305-0548/$ - see front matter © 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cor.2009.06.009

budget is crucial. Furthermore, in many projects, majority of the
activities can be executed in various processing alternatives corre-
sponding to different technologies or different resource assignments.
Not surprisingly, the DTCTP has been shown to be strongly NP-hard
for general activity networks [1].

The literature on the DTCTP is rather sparse. De et al. [2] review
the problem and discuss some of the solution strategies. In order
to solve the budget problem exactly, Robinson [3] and Demeule-
meester et al. [4] proposed dynamic programming and branch and
bound, respectively. These two studies solve small project networks
with up to 45 activities. In our research, we aim to solve much larger
problem instances (having more than 100 activities) optimally. Due
to the computational complexity, Skutella [5] proposed an approx-
imate algorithm for the budget problem. For the deadline version,
we refer the readers to the studies of Hindelang and Muth [6], De-
meulemeester et al. [7] for exact algorithms, and to Akkan et al. [8],
and Vanhoucke and Debels [9] for approximate algorithms.

Formally, the DTCTP is defined as follows. A project is given with
a set of n activities along with a corresponding precedence graph
G = (N, A), where N is the set of nodes, and A ⊂ N×N is the set of
immediate precedence constraints on the activities. It is noteworthy
that G also includes two dummy “start” and “end” nodes indexed by
0 and n+1, respectively. Each activity j (j = 1, . . . ,n) can be performed
at one of the |Mj| modes, where Mj is the set of modes of activity
j. Furthermore, each mode m is characterized by a processing time
pjm and a cost cjm.

http://www.sciencedirect.com/science/journal/cor
http://www.elsevier.com/locate/cor
mailto:hazir@cankaya.edu.tr
mailto:mohamed.haouari@ozyegin.edu.tr
mailto:erel@bilkent.edu.tr

650 O. Haz�r et al. / Computers & Operations Research 37 (2010) 649 -- 655

Amixed integer linear programming formulation for the DTCTP-B
can be constructed by defining for each activity j (j = 1, . . . ,n) a con-
tinuous decision variable Cj which represents the completion time of
activity j. Also, we define a binary decision variable xjm (j = 1, . . . ,n
and m ∈ Mj) that is equal to 1 if mode m is chosen for activity j, and
0 otherwise. The resulting formulation is given as follows:

Minimize Cn+1 (1.0)

subject to
∑
m∈Mj

xjm = 1 ∀j ∈ N (1.1)

Cj − Ci −
∑
m∈Mj

pjmxjm �0 ∀(i, j) ∈ A (1.2)

∑
j∈N

∑
m∈Mj

cjmxjm �B (1.3)

Cj �0 ∀j ∈ N ∪ {0,n + 1} (1.4)

xjm ∈ {0, 1} ∀m ∈ Mj, ∀j ∈ N (1.5)

The objective function (1.0) is to minimize the project completion
time. Constraints (1.1) require that a uniquemode should be assigned
to each activity. Constraints (1.2) are the precedence constraints.
The knapsack constraint (1.3) requires that the budget, denoted with
parameter B, should not be exceeded.

In this paper, we propose a tailored Benders Decomposition ex-
act algorithm to solve the budget version of the deterministic DTCTP
of realistic sizes. Benders [10] introduced this decomposition algo-
rithm to solve specially structured large-scale linear and mixed inte-
ger programs. The basic idea is to decompose the problem into two
simpler subproblems: the first part, called the master problem (MP),
solves a relaxed version of the problem and generates trial values for
the integer variables and a lower bound for a minimization objec-
tive. The second problem, called the subproblem (SP), is the original
problem with the values of the integer variables temporarily fixed
by the MP. The dual of the SP inserts cuts into the master problem
and obtains an upper bound for a minimization objective. Up to now,
Benders Decomposition has been used to solve many combinatorial
optimization problems; specifically, successful applications of this
methodology on network design are numerous [11]. However, only
a few applications for project scheduling problems are reported in
the literatures and these are discussed below.

Maniezzo and Mingozzi [12] use a heuristic algorithm based
on Benders Decomposition to solve the Multi-Mode Resource Con-
strained Project Scheduling Problem (MRCPSP) approximately. In the
MRCPSP, each activity is assigned to one of the possible modes and
the starting time of each activity is determined so that the project
completion time is minimized while precedence and resource con-
straints are satisfied. It is easy to see that the DTCTP-B is a special case
of MRCPSP in which only a single nonrenewable resource (money)
is in use, whereas the general MRCPSP allows the use of both re-
newable and nonrenewable resources. Maniezzo and Mingozzi [12]
propose a mathematical formulation to the MRCPSP, relax some of
the constraints and solve the relaxed version with a heuristic proce-
dure based on Benders Decomposition. In their model, the MP cor-
responds to the assignment of one mode to each activity, while the
SP is a single mode RCPSP. They solve both the MP and SP approxi-
mately.

Erengüç et al. [13] use Benders Decomposition to solve the
time/cost trade-off problem with discounted cash flows, which is
indeed a combination of the DTCTP and the payment-scheduling
problem. Kuyumcu and Garcia-Diaz [14] solve the project compres-
sion problem with concave or convex piecewise linear cost-duration

functions. At this point, it is worth mentioning that all these latter
project scheduling applications were computationally assessed on
small to medium size problem instances.

Our research differs from the studies which use Benders De-
composition in project scheduling regarding both the problem ad-
dressed and the solution approach. DTCTP-B has not been solvedwith
Benders Decomposition. Furthermore, we propose some novel and
problem acceleration mechanisms and integrate into the algorithm.
Normally, Benders Decomposition is known to exhibit slow conver-
gence and acceleration mechanisms are required [15,16]. We speed-
up the solution process by using an enhanced algorithm, thus we
render it capable of solving problems of realistic sizes. In the follow-
ing sections, we present the details of the Benders Decomposition
algorithm and enhancements for the DTCTP-B.

2. Benders Decomposition

2.1. Benders reformulation

Model (1.0)–(1.5) could be rewritten as follows:

Min Cn+1(x) (2)

subject to (1.1), (1.3), and (1.5)where for each binary vector x,
we have

Cn+1(x) ≡ Min Cn+1 (3.0)

subject to

Cj − Ci −
∑
m∈Mj

pjmxjm �0 ∀(i, j) ∈ A (3.1)

Cj �0 ∀j ∈ N ∪ {0,n + 1} (3.2)

Using duality and defining wij as the dual variables associated
with the constraint set (3.1), we rewrite Cn+1(x) as

Cn+1(x) ≡ Max
∑
(i,j)∈A

⎛
⎝ ∑

m∈Mj

pjmxjm

⎞
⎠wij (4.0)

subject to
∑

j:(j,i)∈A
wji −

∑
j:(i,j)∈A

wik �0 ∀i ∈ N ∪ {0} (4.1)

∑
j:(j,n+1)∈A

wj,n+1 �1 (4.2)

wij �0 ∀(i, j) ∈ A (4.3)

Therefore, it appears that given a binary vector x that is feasible
(i.e. satisfying (1.1) and (1.3)), the computation of Cn+1(x) requires
solving a longest path in G between nodes 0 and n+1 with each edge
(i,j) ∈ A having a weight

∑
m∈Mj

pjmxjm. For the sake of brevity, the
formal proof is skipped.

Now, let ws for s = 1, . . . , S, be the extreme points of the polyhe-
dron defined by (4.1)–(4.3). Then, Cn+1(x) can be stated as

Cn+1(x) ≡ Maximum
s=1,. . .,S

∑
(i,j)∈A

⎛
⎝ ∑

m∈Mj

pjmxjm

⎞
⎠ws

ij (5)

or equivalently, Cn+1(x) is the value of the optimal solution of the
following LP:

Min z (6.0)

O. Haz�r et al. / Computers & Operations Research 37 (2010) 649 -- 655 651

subject to

z�
∑
(i,j)∈A

⎛
⎝ ∑

m∈Mj

pjmxjm

⎞
⎠ws

ij s = 1, . . . , S (6.1)

This yields the Benders reformulation of the problem defined by
(1.0)–(1.5) as follows.

Min z (7.0)

subject to

z�
∑
(i,j)∈A

∑
m∈Mj

ws
ijpjmxjm s = 1, . . . , S (7.1)

∑
j∈N

∑
m∈Mj

cjmxjm �B (7.2)

∑
m∈Mj

xjm = 1 ∀j ∈ N (7.3)

xjm ∈ {0, 1} ∀m ∈ Mj, ∀j ∈ N (7.4)

z�0 (7.5)

Note that, the constraint set (7.1) defines the paths of the net-
work. However, enumerating all the paths is burdensome, therefore
the paths are generated and the cuts (7.1) are appended as needed.
Hence, our model is solved using a relaxation approach. At each iter-
ation, feasibility is maintained and optimality cuts (7.1) are dynam-
ically appended as outlined in the algorithm below.

In this algorithm, we represent the set of feasible mode assign-
ments for the DTCTP-B by X0, and introduce an index t to the no-
tation to indicate the values at iteration t, such as xt , Xt , MPt , and
zt , refer to the solution, feasible set, relaxed master problem and
the length of the longest path at time t, respectively. Furthermore,
we will use the notation sk to denote the kth longest path, hence s1

will refer to a critical path. The following algorithm is an application
of Benders Decomposition, introduced originally by Benders [10], to
the DTCTP-B.

Benders Decomposition Algorithm for the DTCTP-B (basic version)

1. Start with an initial solution, x1 ∈ X0; set LB = − ∞ , UB = ∞ ,
t = 1.
Given xt , find out a critical path s1, with length, Cn+1(xt) =∑

(i,j)∈A
∑

m∈Mj
ws1

ij pjmx
t
jmSet UB = Min {UB, Cn+1(xt)}If (UB = LB)

Stop and report xt as an optimal solution.
Else

Xt = Xt−1 ∩ {x ∈ X0 : z�
∑

(i,j)∈A
∑

m∈Mj
ws1

ij pjmxjm}

2. Solve the relaxed master problem, MPt : zt = Min �Let xt be the
optimal solution.

3. Set LB = zt , t = t+1, xt = xt−1.
4. Return to Step 2.

However, Benders Decomposition is known to converge slowly,
so we propose some enhancements to accelerate the convergence
and to solve large-scale instances to optimality.

2.2. Algorithmic enhancements

The main features of the enhanced approach are the following:

i. Preprocessing is integrated to eliminate some of the modes.
ii. Multiple cuts are inserted at each iteration.

iii. Approximate solutions of the relaxed master problems and LP
relaxation are used to generate cuts.

iv. A local search improvement module is integrated to obtain a
better feasible solution (hence, a tighter upper bound). Additional
cuts are inserted from the improved solutions so that the global
lower bound improves.

v. A customized branch-and-cut algorithm that groups the variables
as special ordered sets (SOS) are developed to solve the MIP
iterations.

2.2.1. Preprocessing
We integrate a preprocessing technique that serves to reduce the

number of binary variables. At each iteration of Benders Algorithm,
MP solves a relaxed problem and generates a LB. We invoke the
preprocessing after each MP iteration. In the following theorem, we
show that some of the long modes with long processing times could
be redundant and hence could be eliminated.

Theorem. . Given any LB for the DTCTP-B, for any activity i if there
exists a mode m such that the length of the longest possible path that
passes through activity i is less than or equal to the LB, then there exists
an optimal solution such that activity i is performed either at mode m
or at a mode with longer duration.

Proof. Let luv(x) be the length of the longest path between node u
and v, and A(x,i) be the length of the longest path that does not pass
through activity i given the mode assignment, x ∈ X0.

The longest possible path that passes through activity i is ob-
served in the following mode assignment: Mode m is assigned to
activity i and the modes with longest durations are assigned to the
remaining activities. We will denote this assignment as x L hereafter.
Note that xL ∈ X0, otherwise as the modes with longest durations
have the least cost, mode m would never become feasible and could
be eliminated.

Let us assume that there exists an optimal solution x′ such that
xim ′ = 1, where m<m′; without loss of generality, for any i ∈ N,
m<m′ implies pim > pim ′ and cim < cim ′.

Given that, pim + l0i(x
L) + lin+1(x

L)� LB, (8)

we have,

pim′ + l0i(x
′) + lin + 1(x′)pim + l0i(x

L) + lin + 1(xL)� LB�Cn+1(x′) (9)

We keep all the mode assignments in x′ other than activity i and
assign mode m to activity and call this new assignment y, i.e. yim = 1
and yjm = xjm ∀ j ∈ Ni.

Since cim < cim ′, themode assignment remains feasible, i.e. y ∈ X0.
For this new assignment,

A(y, i) = A(x′, i)�Cn+1(x′) (10)

Cn+1(y) = Max{pim + l0i(y) + lin+1(y),A(y, i)} (11)

and

l0i(y) + lin+1(y) = l0i(x
′) + lin+1(x

′) (12)

Using (10) and (12) we have

pim + l0i(y) + lin + 1(y) = pim + l0i(x
′) + lin+1(x

′)�pim
+ l0i(x

L) + lin+1(x
L)� LB�Cn+1(x′),

hence due to (10) and (11), Cn+1(y) � Cn+1(x′).
Therefore, when (8) holds for any optimal solution such that

xim ′ = 1: m<m′, there exists an alternative optimal solution such
that xim ′′ = 1: m′′ = m or m′′ <m. Hence, all the modesm′ >m could
be eliminated. �

652 O. Haz�r et al. / Computers & Operations Research 37 (2010) 649 -- 655

2.2.2. Multiple cuts
In our algorithm, we propose to find the longest K paths and

insert multiple cuts at each iteration, instead of concentrating on the
critical path and adding a single cut. In doing so, we observed in our
computational study that the total number of iterations decreases
drastically. For this purpose, we use amodification of thewell-known
Yen's [17] K-shortest loopless paths (KSP) algorithm and insert K cuts.
As PERT networks are acyclic, critical path problems may be solved
as shortest path problems with cost parameters equal to the negative
of the activity durations.

In this strategy, the parameter K affects the computational effi-
ciency; total number of iterations decreases with larger K, whereas
total number of constraints increases. Considering this trade-off, we
performed pretests involving problems with different sizes and set
K to 30.

2.2.3. Approximate solutions
We solve the LP relaxation first and generate cuts from the frac-

tional solutions. Next, integrality constraints are added and the algo-
rithm is restarted [18]. Furthermore, not all of the master problems
are solved to optimality, i.e. feasibility cuts are generated from ap-
proximate solutions; the branch-and-bound algorithm is truncated.
The algorithm starts with an initial relative optimality tolerance level
� (in our implementation, we set � = 4%) and we use an adaptive
strategy which monitors the optimality gap, 100(UB−LB/LB). If the
optimality gap value is not improved for three consecutive itera-
tions, then the tolerance gap is halved (that is, we set � = �/2). This
works to improve the lower bound. Note that the truncated solu-
tion of the relaxed MP does not necessarily provide a lower bound,
however considering the tolerance level, if FR is the value of the �-
optimal solution, then it is easily realized that LB = FR/1+� is a valid
lower bound.

2.2.4. Local search
After solving the relaxedmaster problem,we invoke a local search

procedure that aims at producing an improved solution and there-
fore accelerating convergence. More precisely, starting from an initial
solution, the procedure generates and moves to neighbor solutions
with the following strategy: First using the initial solution, poten-
tially critical activities (PCA) are identified. The conventional measure
of an activity criticality is its total slack, which is the amount of time
by which the completion time of an activity can exceed its earliest
completion time without delaying the project completion time. In
the literatures, the activities that have zero slacks are defined to be
critical activities. We enlarge the set of critical activities and define
the activities that have total slacks less than 100�% of the activity du-
ration as potentially critical activities, i.e., PCA = {j: TSj/pj � �}. TSj
is the total slack of activity i. In our implementation, we set � = 0.15.
Having defined the PCA, we fix the modes of the activities which
do not belong to PCA, and solve a reduced instance that decides
on the modes of only potentially critical activities. As reduced in-
stances contain much fewer decision variables, it is possible to solve
them directly with a commercial general-purpose solver (in our im-
plementation, we used CPLEX 9.1). The exact algorithm is based on
the formulation given through Eqs. (1.0)–(1.5). However, in order to
speed-up the solution further, the branch and bound is stopped if
the problem is solved to within 2% of optimality, i.e., � = 2%. Local
search is reiterated until convergence.

As a supplementary strategy to improve the value of the lower
bound, we propose to generate additional cuts derived from the im-
proved solution obtained with the local search. Therefore, we could
generate K = K1+K2, cuts derived from the initial and improved so-
lutions. Having performed several pretests, we set K1 = 10, K2 = 20.

2.2.5. Branch and cut
In a classical branch-and-bound algorithm, for each node the LP

relaxation is solved, and a fractional variable (if there is one) on
which to branch is chosen. In order to solve the MP efficiently, we
branch on sets of variables instead of branching on individual vari-
ables. A set of variables, in which at most one variable in the set is al-
lowed to be nonzero, forms a “Special Ordered Set of Type 1” (SOS1).
In the DTCTP, the constraint set (1.1) represents an SOS1. Branching
strategies have large impacts on the size of the branch-and-bound
tree and the computation time. Branching on SOS1 instead of a sin-
gle variable has some advantages such that the tree becomes more
balanced [19].

We assign an order to the variables among SOS1 by using the
activity durations as weights. The variables are divided into two sets:
the first subset includes the variables that have weights greater than
the average weight, as calculated by using the solution of the relaxed
problem. The second subset consists of variables that have weights
less than the average value. Two branches are created by setting
the variables in each subset to zero. We develop the branching tree
using CPLEX and select the branching nodes using a best-estimate
search strategy, a strategy in which one chooses the node estimated
to have the best feasible integer solution obtainable.

Integrating all the proposed enhancements, we propose the
following modified Benders Decomposition Algorithm to solve the
DTCTP-B.

Benders Decomposition Algorithm for the DTCTP-B (Enhanced
Version)

1. Start with an initial solution, x1 ∈ X0; set LB = − ∞ , UB = ∞ ,
t = 1.
Given xt , find out a critical path s1, and its length, Cn+1(xt) =∑

(i,j)∈A
∑

m∈Mj
ws1

ij pjmx
t
jmSet UB = Min {UB, Cn+1(xt)}If (UB = LB)

Stop and report xt as the optimal solution.
Else
Xt = Xt−1 ∩ {x ∈ X0 : z�

∑
(i,j)∈A

∑
m∈Mj

wsk
ij pjmx

t
jm}, k = 1, . . . ,K1 and

set Improved = 0
2. Invoke Local Search. Let x̃tbe the solution obtained by the Local

Search.
If Cn+1(̃xt)<Cn+1(xt) then set Improved = 1, set xt = x̃tand return
to Step 3.

3. If Improved = 1 then
Set {UB = Min Cn+1(̃xt)}If (UB = LB)
Stop and report x̃tas the optimal solution.
Else
Xt = Xt−1 ∩ {x ∈ X0 : z�

∑
(i,j)∈A

∑
m∈Mj

wsk
ij pjmx

t
jm}, k = 1, . . . ,K2.

4. Solve the relaxed master problem, MPt: zt = Min {z: x ∈ Xt}. Let xt

be the solution.
5. Set LB = zt , t = t+1, xt = xt−1.
6. Invoke Preprocessing.
7. Return to Step 2

3. Experimentation and computational results

We performed computational experiments to measure the effi-
ciency of the algorithm under various problem settings. For exper-
imentation, we generate 240 problem instances, corresponding to
48 project settings with 5 replicates, from the project networks pro-
vided by Akkan et al. [8]. We use the test-bed 1, which includes large
sized projects having 85–136 activities.

Network structure of a project is defined mainly with two pa-
rameters: complexity index (CI) and the coefficient of network com-
plexity (CNC). CI is a measure developed by Bein et al. [20] to assess
how far the given network is from being series–parallel. It is defined
to be the minimum number of node reductions required to reduce

O. Haz�r et al. / Computers & Operations Research 37 (2010) 649 -- 655 653

Table 1
Experimental setting.

Parameters Level(s)

CI 13,14
CNC 5, 6, 7, 8
Modes U[2,10], U[11,20]
Budget parameter (�) 0.15
Cost function (CF) ccv, cvx, hyb

a given two terminal directed acyclic graph into a single-arc graph,
when used together with series and parallel reductions. Assessing
the distance of a given network from being series–parallel is impor-
tant for this study, because DTCTP with series–parallel graphs could
be solved quickly [4]. The second complexity measure, CNC is de-
veloped by Pascoe [21] and defined to be the ratio of the number of
arcs to the number of nodes.

The number of modes per activity is randomly generated with
discrete uniform distribution using intervals U[2,10] and U[11,20]. To
compute the budget parameter for each instance, first the minimum
possible project cost, Cmin (total cost with cheapest modes) and the
maximum possible project cost, Cmax (total cost with most expensive
modes), are calculated. Then, the budget is set as follows:

B0 = Cmin + �(Cmax − Cmin), where � = 0.15 (13)

Concave (ccv), convex (cvx), and neither concave nor convex cost
functions (hyb) are used to generate the cost figures. Table 1 sum-
marizes the parameters of the test bed.

In our experimentation, we categorize the instances with respect
to the number of modes and with respect to the CNC. These param-
eters define total processing alternatives and total number of activ-
ities; therefore, they set the binary decision variables and affect the
computational complexity.

First, we solve the 120 large projects with moderate number of
modes, with 85–136 activities and the number of modes lies in the
interval U[2,10]. Computational results of this set are reported in
Table 2. According to the results, 74.17% (89/120) of these instances
could be solved exactly in 10min, 95.83% (115/120) in an hour and
all the instances within 90min. In order to represent the complexity
of real life projects, our test instances are far beyond the problem
sizes reported by Demeulemeester et al. [4]. Problems with similar
sizes could be solved within only a few seconds with our algorithm.

Secondly, we solve 120 hard instances having a number of modes
lying in the interval U[11,20] So as to assess the efficiency of the pro-
posed algorithm, we also solve the MIP formulation given in 1.0–1.5
with optimization software CPLEX 9.1 and compare the results. A
maximal time limit of 3h is set for each exact procedure. We report
the computational results with respect to the coefficient of network
complexity (CNC), which is the ratio of the number of arcs to the
number of nodes. Tables 3 and 4 summarize the experimental results
for the instances with CNC = {5, 6} and CNC = {7, 8}, respectively.

In Table 3, we present the results of the Benders Decomposition-
based exact procedure and CPLEX implementation under the
columns labeled with “BENDERS DECOMPOSITION” and “CPLEX”,
respectively; the percentage of problem instances that the optimal
solution is found within the time limit and the average CPU time of
the problem instances for which an optimal solution is found with
Benders algorithm are reported under the columns “Ins Opt (%)”
and “CPU(s)”, respectively. CPLEX CPU time is assumed to be 3h for
instances that CPLEX could not solve within the time limit, hence
average CPLEX CPU times are underestimated. Additionally, we re-
port the percentage of eliminated modes, average and maximum
gaps (only the problem instances for which an optimal solution is
found within the time limit) of the Benders Decomposition-based

Table 2
Summary of computational results (# modes ∈ U[2,10]).

Cost function CI CNC LP Iter IP Iter Mode elim (%) Avg CPU(s) Max CPU(s)

CCV 13 5 17.80 4.40 15.47 30.66 95.20
6 22.60 4.80 14.92 413.47 1703.10
7 27.80 19.40 14.37 768.07 1317.19
8 30.20 16.80 10.82 1524.25 3879.23

14 5 11.40 4.00 17.82 30.93 129.55
6 15.40 8.60 12.64 126.90 452.62
7 25.20 15.80 12.66 1014.74 2054.28
8 27.40 19.80 12.00 1743.32 4051.49

CVX 13 5 16.60 6.20 15.22 42.68 97.22
6 23.00 12.20 12.87 435.04 1407.64
7 22.80 13.40 11.59 821.42 2430.85
8 28.00 22.20 10.04 1407.25 3010.26

14 5 11.80 5.60 13.36 23.81 50.68
6 15.60 7.20 8.87 110.87 439.84
7 23.60 15.80 9.42 987.32 2031.33
8 28.50 18.25 8.91 1867.62 4432.03

HYB 13 5 16.00 5.40 18.36 49.57 171.53
6 21.00 7.00 12.85 199.21 379.39
7 29.20 12.20 13.93 906.82 3518.43
8 26.40 14.60 11.04 850.52 1424.29

14 5 12.20 3.60 12.76 12.95 22.93
6 16.40 9.00 11.13 143.39 568.95
7 24.20 15.60 11.70 355.33 681.89
8 30.00 20.80 10.89 1191.06 4058.48

exact procedure under the columns “Mode Elim (%)”, “Avg Gap (%)”,
and “Max Gap (%)”. The gap corresponds to the relative difference
between the best lower and upper bounds.

Interestingly, we observe that a great majority of the instances
with CNC = 5, 6 (projects with 85–106 activities) could be solved
exactly within the time limits with our algorithm, i.e. 88.33% (53/60),
whereas 61.67% (37/60) for CPLEX. The seven unsolved instances
exhibit an average gap of only 0.91%. Moreover, when an instance is
solved by both, Benders Decomposition requires shorter CPU times.
On the other hand, when CNC = 7, 8; we found that the algorithm
fails to produce proven optimal solutions. However, the algorithm
generates solutions that are close to the optimal solution; the average
and maximum gaps between upper and lower bounds are 1.31% and
2.36%, respectively. Table 4 also illustrates the impact of integrating
the local search on the performance of the algorithms.

A remarkable result is that integrating the local search decreases
the gaps between upper and lower bounds significantly. We also in-
vestigated the overall effect of all the enhancements presented in
Section 2.2 and found out that the improvements are very drastic.
For example, one of the smallest instances (with CI = 13, CNC = 5,
n = 85) which Benders could solve in 58 s, classical approach re-
quired 2415 s.

We applied Fixed Effects ANOVA test to the results in order to
find out the variance effect of the experimental design factors to
CPU time (only for CNC = 5,6; for these cases a great majority of
the instances could be solved exactly within time limits) and to the
number of modes eliminated (for all instances). The treatment lev-
els are fixed for these following factors: CNC, CI, and type of cost
function (CF). Furthermore, the interactions between these factors
are investigated. Before the test is performed, the necessary assump-
tions for ANOVA are checked and Box–Cox transformation is utilized
to restore constant error variances and normality assumption. Test
results are reported in Tables 5 and 6.

We also illustrate the relationship between design factors to
CPU time and to the number of modes eliminated in Figs. 1 and 2,
respectively.

654 O. Haz�r et al. / Computers & Operations Research 37 (2010) 649 -- 655

Table 3
Summary of computational results (CNC ∈ {5, 6}; # modes ∈ U[11,20]).

Cost function CI CNC CPLEX BENDERS DECOMPOSITION

Ins opt (%) CPU(s) Ins opt (%) Mode elim (%) CPU(s) Avg gap (%) Max gap (%)

CCV 13 5 100.00 984.61 100.00 14.88 465.21 – –
6 60.00 3557.72 80.00 12.20 3020.66 1.87 1.87

14 5 100.00 96.86 100.00 11.53 138.71 – –
6 100.00 1334.25 100.00 9.48 706.17 – –

CVX 13 5 20.00 9281.64 100.00 9.24 1590.69 – –
6 0.00 – 0.00 7.04 – 0.72 1.00

14 5 80.00 6288.21 100.00 7.78 1498.94 – –
6 0.00 10800.00 80.00 5.21 4833.99 0.89 0.89

HYB 13 5 80.00 3680.55 100.00 14.47 283.88 – –
6 60.00 5691.62 100.00 10.77 619.09 – –

14 5 100.00 1409.49 100.00 10.46 244.71 – –
6 40.00 6663.28 100.00 7.31 1062.73 – –

Table 4
Summary of computational results (CNC ∈ {7,8}; # Modes ∈ U[11,20]).

Cost function CI CNC BENDERS DECOMPOSITION

Mode elim (%) Without local search With local search

Avg gap (%) Max gap (%) Avg gap (%) Max gap (%)

CCV 13 7 9.94 2.32 3.39 1.71 2.36
8 8.05 3.11 3.2 2.12 2.12

14 7 8.21 2.56 3.29 1.51 2.30
8 8.60 2.09 3.44 1.27 1.58

CVX 13 7 5.80 1.64 2.61 0.99 1.60
8 4.62 1.99 3.20 1.21 1.50

14 7 4.18 2.05 2.44 1.59 1.88
8 4.37 2.47 3.22 1.72 1.97

HYB 13 7 8.89 0.95 2.19 1.16 1.78
8 6.42 0.78 1.58 1.08 1.71

14 7 5.99 1.05 1.56 0.92 1.38
8 6.71 1.38 2.27 1.03 1.47

Table 5
Effect of factors on the CPU time: ANOVA test.

Source DF Sum of squares Mean square F p

CI 1 0.180 0.180 2.282 0.137
CNC 1 2.420 2.420 30.628 0.000
CF 2 3.611 1.805 22.848 0.000
CI∗CNC 1 0.060 0.060 0.758 0.388
CI∗CF 2 0.070 0.035 0.446 0.643
CNC∗CF 2 0.272 0.136 1.718 0.190
Error 50 3.952 0.079

Total 59 10.565 R2 = 0.626

Network complexity is mainly measured with two measures: CI
and CNC. We have not observed a significant effect of CI on computa-
tional effort in our experiments that is a result in line with Akkan et
al.'s [8] finding for approximate solutions of DTCTP-D. However, it is
easier to eliminate the modes of networks that have structures close
to being series–parallel; hence CI is significantly effective on the per-
formance of the preprocessingmethod. On the other hand, as CNC in-
creases, the number of binary variables increases as well. Hence, the

Table 6
Effect of factors on number of modes eliminated: ANOVA test.

Source DF Sum of squares Mean square F p

CI 1 105.319 105.319 34.183 0.000
CNC 3 429.082 143.027 46.422 0.000
CF 2 388.200 194.100 62.999 0.000
CI∗CNC 3 45.671 15.224 4.941 0.003
CI∗CF 2 7.618 3.809 1.236 0.295
CNC∗CF 6 11.164 1.861 0.604 0.727
Error 102 314.274 3.081

Total 119 1301.329 R2 = 0.759

larger the CNC, the larger is the problem complexity. Furthermore,
there exists an interaction between network complexity parameters.

The type of cost function is influential on both the computational
effort and also on the effectiveness of the preprocessing method. The
convex cost functions usually demand more computational effort
and this is mainly due to the fact that less of the modes could be
eliminated with preprocessing for these types of problem instances.
This is illustrated in Fig. 2.

O. Haz�r et al. / Computers & Operations Research 37 (2010) 649 -- 655 655

5000

4000

3000

2000

1000

C
P

U
 (s

)

13 14 5 6 ccv cvx hyb

Cl CNC Cost

Fig. 1. Effect of design factors on CPU time: main effects plot.

10.8

9.6

8.4

7.2

6.0
13 14 5 6 7 8 ccv cvx hyb

M
od

es
 E

lim
in

at
ed

 (%
)

Cl CNC Cost

Fig. 2. Effect of design factors on mode elimination: main effects plot.

4. Conclusions

The DTCTP is awell-known project scheduling problemwith prac-
tical implications. In this paper, we have mainly investigated the
budget version and have proposed an exact algorithm to solve the
problems of realistic sizes. The major contribution of this paper lies
in the decomposition approach and the developed branch-and-cut
procedure. We have included several features to accelerate the con-
vergence into the solution algorithm and in this way; we manage to
solve large instances, project networks with up to 136 activities to
optimality. The scheduling algorithm presented in this paper could
support project managers in scheduling large-scale projects with
limited budgets.

Computational experiments are performed to measure the effi-
ciency of the algorithm under various problem settings. The results
have been compared with the ones obtained with state-of-the-art
optimization software, CPLEX. We have experimentally shown that
the proposed enhanced approach consistently outperforms both the
basic Benders algorithm and a state-of-the-art commercial solver.

Mainly three factors are affecting the difficulty in solving a partic-
ular problem instance: the network structure, the number of modes
per activity and the tightness of the budget. The major advantage
of the proposed algorithm is that the optimal solutions can be ob-
tained for projects with complex network structures, large number

of modes and tight budgets. Moreover, near-optimal solutions could
be derived for the hardest large-scale instances.

It would be of interest to investigate the budget version of
the Multi-Mode Resource Constrained Project Scheduling Problem
(MRCPSP), in which both renewable and nonrenewable resources
are controlled simultaneously. We believe that the algorithms de-
veloped in this paper might prove as a useful base for investigating
this challenging problem.

Acknowledgements

Dr. Mohamed Haouari would like to thank Fatimah Alnijris' Re-
search Chair for Advanced Manufacturing Technology for the finan-
cial support provided for this research.

References

[1] De P, Dunne EJ, Ghosh JB, Wells CE. Complexity of the discrete time/cost trade-
off problem for project networks. Operations Research 1997;45:302–6.

[2] De P, Dunne EJ, Ghosh JB, Wells CE. The discrete time/cost trade-off problem
revisited. European Journal of Operational Research 1995;81:225–38.

[3] Robinson DR. A dynamic programming solution to the cost–time trade off for
CPM. Management Science 1975;22:158–66.

[4] Demeulemeester E, Herroelen W, Elmaghraby SE. Optimal procedures for the
discrete time/cost trade-off problem in project networks. European Journal of
Operational Research 1996;88:50–68.

[5] Skutella M. Approximation algorithms for the discrete time–cost trade-off
problem. Mathematics of Operations Research 1998;23:195–203.

[6] Hindelang TJ, Muth JF. Dynamic programming algorithm for decision CPM
networks. Operations Research 1979;27:225–41.

[7] Demeulemeester E, De Reyck B, Foubert B, Herroelen W, Vanhoucke M. New
computational results for the discrete time/cost trade-off problem in project
networks. Journal of the Operational Research Society 1998;49:1153–63.

[8] Akkan C, Drexl A, Kimms A. Network decomposition-based benchmark results
for the discrete time–cost trade-off problem. European Journal of Operational
Research 2005;165:339–58.

[9] Vanhoucke M, Debels D. The discrete time/cost trade-off problem under
various assumptions exact and heuristic procedures. Journal of Scheduling 2007;
10:311–26.

[10] Benders JF. Partitioning procedures for solving mixed variables programming
problems. Numerische Mathematic 1962;4:238–52.

[11] Costa AM. A survey on benders decomposition applied to fixed charge network
design problems. Computers and Operations Research 2005;32:1429–50.

[12] Maniezzo V, Mingozzi A. A Heuriic Ocedure for the multi-mode project
scheduling problem based on Bender's decomposition. In: Weglarz J, editor.
Project scheduling-—recent models, algorithms and applications. Boston:
Kluwer Academic Publishers; 1999. p. 179–96.

[13] Erenguc SS, Tufekci S, Zappe CJ. Solving time/cost trade-off problems with
discounted cash flows using generalized benders decomposition. Naval Research
Logistics Quarterly 1993;40:25–50.

[14] Kuyumcu A, Garcia-Diaz A. A decomposition approach to project compression
with concave activity cost functions. IIE Transactions 1994;26(6):63–73.

[15] Magnanti TL, Wong RT. Accelerating benders decomposition algorithmic
enhancement and model selection criteria. Operations Research 1981;29:
464–84.

[16] Rei W, Cordeau JF, Gendreau M, Soriano P. Accelerating benders decomposition
by local branching. INFORMS Journal on Computing 2007;19:534–41.

[17] Yen JY. Finding the K shortest loopless paths in a network. Management Science
1971;17:712–6.

[18] McDaniel D, Devine M. A modified Benders' partitioning algorithm for mixed
integer programming. Management Science 1977;24:312–79.

[19] Linderoth J, Savelsbergh MWP. A computational study of search strategies for
mixed integer programming. INFORMS Journal on Computing 1999;11:173–87.

[20] Bein WW, Kamburowski J, Stallmann MFM. Optimal reduction of two-terminal
directed acyclic graphs. SIAM Journal on Computing 1992;21:1112–29.

[21] Pascoe TL. Allocation of resources–CPM. Revue Française de Recherche
Opérationelle 1966;38:31–8.

	Discrete time/cost trade-off problem: A decomposition-based solution algorithmfor the budget version
	Introduction
	Benders Decomposition
	Benders reformulation
	Algorithmic enhancements
	Preprocessing
	Multiple cuts
	Approximate solutions
	Local search
	Branch and cut

	Experimentation and computational results
	Conclusions
	Acknowledgements
	References

