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Advanced manufacturing technologies, such as CNC machines, require significant investments, but also

offer new capabilities to the manufacturers. One of the important capabilities of a CNC machine is the

controllable processing times. By using this capability, the due date requirements of customers can be

satisfied much more effectively. Processing times of the jobs on a CNC machine can be easily controlled

via machining conditions such that they can be increased or decreased at the expense of tooling cost.

Since scheduling decisions are very sensitive to the processing times, we solve the process planning and

scheduling problems simultaneously. In this study, we consider the problem of scheduling a set of jobs

on a single CNC machine to minimize the sum of total weighted tardiness, tooling and machining costs.

We formulated the joint problem, which is NP-hard since the total weighted tardiness problem (with

fixed processing times) is strongly NP-hard alone, as a nonlinear mixed integer program. We proposed a

DP-based heuristic to solve the problem for a given sequence and designed a local search algorithm that

uses it as a base heuristic.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Buyer–manufacturer relationship plays an important role in
business. Buyers desire reliable delivery times for meeting their
own schedules. From the perspective of the manufacturers, each
buyer has a different priority. All of these require manufacturers
to consider weighted tardiness problem in their scheduling
decisions. If manufacturers have a flexible manufacturing system,
in addition to its other capabilities, they also gain a capability to
be more competitive in meeting customer due dates. This
capability is to be able to control processing times, which is a
readily available feature on modern computer numerical con-
trolled (CNC) machines.

This study deals with scheduling a set of jobs on a single CNC
machine to minimize the total weighted tardiness, 1J

P
wiTi.

When we analyze the single machine total weighted tardiness
problem, there are two important parameters, namely the
processing time vector, p, and due date vector, d. In the literature,
the p vector is treated as a hard constraint, i.e., we are not allowed
to change it. On the other hand, the d vector is considered as a soft
constraint that means we are allowed to deviate from the desired
due dates but a certain cost penalty is incurred for these
deviations. In this study, one of the most important objectives is
to show that the processing times can be treated as decision
ll rights reserved.

k).
variables as well and their cost impact can be measured in terms
of the corresponding machining and tooling costs.

Processing times on a CNC machine are controlled by
machining conditions. We can increase or decrease the processing
time of a job by changing the machining conditions. However,
there is an additional tooling cost which is incurred when we
increase the cutting speed and/or feed rate. In the current
literature, process planning and scheduling problems are solved
sequentially. After calculating locally optimal process parameters
that minimize the manufacturing cost, processing times are then
passed to the scheduling level. In reality, however, the time it
takes to process each part can be controlled (albeit at higher cost).
Since it is well known that scheduling problems are very sensitive
to processing times, a controllable processing time brings
additional solution flexibility in finding solutions to the schedul-
ing problem.

Processing time control and its impact on sequencing decisions
and operational performance have been receiving an increasing
attention in the scheduling literature. Most of the studies on
scheduling with controllable processing times assume that the
processing time is a linear function of the amount of resource
allocated to the processing of the job as summarized in the recent
survey of Shabtay and Steiner [11]. Since the analysis of linear
cost functions is tractable, most of the current literature on
controllable processing time problems focus on such functions
(e.g. Vickson [14], Cheng et al. [3], Tseng et al. [13]). However,
using linear cost functions does not reflect the law of diminishing
returns. There are some papers, similar to our study, that relax the
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linearity assumption by using either a specific or a general type of
convex decreasing resource consumption function. Al-Ahmari [1]
minimize the sum of completion times in conjunction with
determining the optimal machining conditions that specify the
processing time of each job. Shabtay and Kaspi [9] and Gurel and
Akturk [4] study the problem of minimizing the total weighted
flow time on a single machine with controllable processing times
using different nonlinear compression cost functions. Yedidsion
et al. [17] minimize maximum lateness on a single machine,
whereas Xu and Feng [16] develop a local search algorithm to
study a single machine scheduling problem with fixed delivery
dates.

The value of the controllable processing times becomes even
more critical during the current economical crisis, since it allows
companies to adjust their production resources more effectively
to meet the due date requirements. As far as our problem is
concerned, controllable processing times may constitute a flex-
ibility in capacity since the available production time is no longer
fixed and can be increased by compressing the processing times of
jobs with, of course, an additional amount of cost. Thus, it brings
up the trade-off between the revenue gained by satisfying due
dates on time and the amount of compression cost.

This study considers the problem of scheduling a set of jobs on
a single CNC machine to minimize the sum of total weighted
tardiness, tooling and machining costs. This is the first study that
uses the total weighted tardiness as a scheduling objective in
addition to minimizing the manufacturing cost. The joint problem
is NP-hard since the total weighted tardiness problem (with fixed
processing times) is strongly NP-hard alone as showed by Lawler
[7]. Therefore, no algorithm is likely to be proposed to solve the
problem optimally in polynomial time. Hence, it is justifiable to
try heuristic approaches to solve our problem.

In this study, we develop an efficient dynamic programming
(DP) based algorithm that considers interactions among the jobs
in a given sequence. The proposed algorithm minimizes the sum
of total weighted tardiness, tooling and machining costs for a
given sequence. We employ a problem space genetic algorithm
(PSGA) that uses the proposed algorithm as a base heuristic to
determine the processing and starting times of each job
simultaneously to minimize the stated objective function. At
each stage of the base DP algorithm, we generate a set of
processing time alternatives for each job (i.e., states of the DP) in a
recursive equation. After finding the processing time for the first
job in the sequence, it generates the processing times for the rest
of the jobs by using the recursive equations and alternative states
of each job in a forward DP algorithm.

In the next section, we define the scope of this study and give
the mathematical formulation of the problem. In Sections 3 and 4,
we introduce our proposed local search and DP-based algorithms,
respectively. Computational results are given in Section 5. Finally,
we give concluding remarks in Section 6.
2. Problem definition

We are given N jobs, and each job may have a different due
date, tardiness penalty and cutting tool type. The problem is
scheduling these jobs on a single CNC machine in order to
minimize the sum of total weighted tardiness, machining and
tooling costs. CNC machine that is continuously available can
process one job at a time. Preemption is not allowed and all jobs
are ready at time 0. Furthermore, we assume that the CNC
machine is equipped with an off-board tool magazine, and tools
can be replaced while the machine is working without interrupt-
ing the actual cutting operation. Cutting speed, vi, and feed rate, fi,
of the CNC machine constitute the machining conditions for each
job i and they can easily be adjusted to new settings. The pair of
(vi, fi) determines the processing time of each job.

The notation used for the mathematical formulation is given
below:
Parameters
C0
 operating cost of the CNC machine ($/min)

pu

i , pl
i
 upper and lower bounds for the processing time of job i
wi
 weight of job i
di
 due date of job i
Decision variables
pi
 processing time of job i
si
 starting time of job i
Ti
 tardiness of job i
If we ignore the scheduling problem, the remaining problem is
reduced to determine the optimum machining conditions, i.e. vn

i

and f ni , for each job that minimizes the sum of machining and
tooling costs. This problem can be solved independently for each
job since there is no coupling constraints among the jobs as
discussed in Kayan and Akturk [5]. There is a one to one
relationship between the machining conditions and processing
time. We can calculate the processing time of each job as
pu

i ¼ ðpDiLiÞ=ð12v�i f �i Þ, where Di and Li are the diameter and length
of the generated surface for the job i, respectively. The processing
time in the optimal solution of this reduced problem gives an
upper bound of the processing time, pu

i , for our problem since if
we increase the processing time above that value, the sum of
machining and tooling costs also increase. Furthermore, the
weighted tardiness is a regular scheduling measure so that the
weighted tardiness cost does not decrease beyond this value as
well. Moreover, the available horsepower of the CNC machine and
the cutting tool life place upper bounds on the cutting speed,
whereas the required surface finish of each job limits the feed
rate. Consequently, these parameters specify another bound on
the processing time such that there is a lower bound for the
processing time of each job, pl

i, due to technological limitations of
the CNC machine along with the job related attributes. In sum, the
lower and upper bounds for the processing times in our problem
are found by determining optimal machining conditions for each
job (i.e., by considering machining and tooling costs only, subject
to the tool life, machine power and surface finish constraints).

As we stated before, our overall objective is minimizing the
sum of total weighted tardiness, machining, and tooling costs
simultaneously. A tardiness penalty is incurred for each time unit,
if job i is completed after its due date, di, such that
Ti ¼maxf0,siþpi�dig. As discussed in Kayan and Akturk [5], the
machining cost for each job, Machi(pi), is a strictly increasing
linear function of the processing time and defined as Machi(pi) ¼
C0pi. The tooling cost of job i is a strictly decreasing nonlinear func-
tion of the processing time and defined as TooliðpiÞ ¼ cai

=ððpiÞ
cbi Þ

such that cai
40 and cbi

40. The parameters cai
and cbi

depend on
the diameter, length, CNC machine power and cutting tool type for
each job i. We have to make two decisions: an optimal processing
time for each job and the sequence of the jobs. By using lower and
upper bounds of the processing times defined above, the
nonlinear mixed integer programming formulation of the original
problem is given below:

Minimize
XN

i ¼ 1

ðwiTiþMachiðpiÞþTooliðpiÞÞ

subject to pl
irpirpu

i , i¼ 1, . . . ,N ð1Þ

siþpirsj3sjþpjrsi, i,j¼ 1, . . . ,N4ia j ð2Þ
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pi40, siZ0, i¼ 1, . . . ,N ð3Þ

The first term in the objective function is the weighted
tardiness cost. The second term is machining cost and the last
one is tooling cost. The first constraint set is the lower and upper
bounds for the processing times. The next set of constraints are
the set of disjunctive noninterference constraints such that the
CNC machine can process one job at a time.

In the following sections, we will present the local search
algorithm for the original problem and the DP-based heuristic for
the subproblem.
3. The proposed simultaneous algorithm

In current literature, determination of processing times and
scheduling these jobs on a production resource are generally
considered as separate problems. These two problems are solved
sequentially at different levels of factory management. Processing
times are determined at the process planning level, while the
scheduling problem is solved afterwards at the operational level. The
most significant drawback of any sequential approach is the fact that
the interaction between two levels is ignored. By using the
flexibilities provided by a CNC machine, the due date requirement
can be satisfied better or operation cost due to machining and
tooling costs can be decreased. Therefore, we propose a problem
space genetic algorithm (PSGA) to exploit the interaction between
two levels. Consequently, the machining conditions and the
weighted tardiness problems can be solved simultaneously to
generate better solutions for the overall problem.

Problem space genetic algorithms (PSGAs) have been shown in
previous research to be quite effective for a variety of scheduling
problems [12]. PSGAs are basically local search algorithms. To
develop a PSGA, it is necessary to define an initial feasible
solution, a base heuristic and a neighborhood structure. In order
to generate an initial solution, we will employ the apparent
tardiness cost (ATC) sequencing rule, which is shown to be
superior to other sequencing rules for the 1J

P
wiTi problem.

Under the ATC rule, jobs are scheduled one at a time; i.e., every
time the machine becomes free, a ranking index is computed for
each remaining job i. The job with the highest ranking index is
then selected to be processed next. The ranking index is a function
of the time t at which the machine became free, as well as the pi,
wi and di of the remaining jobs and a look-ahead parameter K as
discussed in Pinedo [8].

As outlined in Algorithm 1, we first form a job sequence by
utilizing the ATC rule. Afterwards, for a given sequence, we
determine the optimum processing times for the overall objective
function in Step 2.6. The neighborhood is constructed through
perturbation of the ATC priorities and the search is performed in the
space of these perturbations. We then employ the basic principles of
a genetic algorithm in Steps 3–5 to generate new sequences.

Algorithm 1. Simultaneous algorithm, PSGA.

Require pi
l, pi

u, wi and di for each job i, and N.
Step 1. Create an initial population of perturbation vectors,

d, at random from a range of ð�y,yÞ.
Step 2. Sequence generation: For each perturbation vector l

(chromosome) of the population do;
Step 2.1. Set the current time t ¼ 0 and number of

scheduled jobs to k¼0, and calculate average of averages of

processing times as follows: pavg ¼
PN

i ¼ 1ððp
u
i þpl

iÞ=2Þ=N.

Step 2.2. For each unscheduled job i at time t, calculate the
ATC priorities as follows:

aiðtÞ ¼
wi

pavgi

expð�maxð0,di�t�pavgi
Þ=Kpavg Þ
Step 2.3. ATC priorities are normalized into interval [0,1]
yielding ZiðtÞ as follows, let amin(t) ¼ mini ai(t) and amax(t) ¼

maxi ai(t):

ZiðtÞ ¼
aiðtÞ�aminðtÞ

amaxðtÞ�aminðtÞ

Step 2.4. Perturb the priorities of the jobs with this

member by adding the perturbation value dl
i to the normalized

ATC priorities as follows:

ZiðtÞ ¼ ZiðtÞþd
l
i

Step 2.5. Select the job with the highest perturbed priority and
schedule it next in the sequence. Set t¼ tþpavgi

and k ¼ k + 1. If

there are any unscheduled jobs, koN, then go to Step 2.2.
Step 2.6. Solve the following nonlinear mathematical model

to determine the optimum processing times for the newly gene-
rated sequence, and calculate the objective function value for
the given perturbation vector, denoted by V(l).

Minimize
XN

i ¼ 1

ðwiTiþMachiðpiÞþTooliðpiÞÞ

subject to siþpirsiþ1 i¼ 1, . . . ,ðN�1Þ ð4Þ

pl
irpirpu

i i¼ 1, . . . ,N ð5Þ

pi40 and siZ0 ð6Þ

Step 3. After finishing all members in the population, save
the best and worst solutions. If the number of generations
reaches the limit, then stop and report the best solution.

Step 4. Compute the fitness value, f(l), of each perturbation
vector as follows, let Vmax be the maximum objective value in

the population and the parameter f is the selectivity constant
of the algorithm such that:

fl ¼
ðVmax�VlÞ

fP
lðVmax�VlÞ

f

As the selectivity constant, f, increases, better solutions will

have a greater chance of being selected. If f is too large, the
population will converge quickly, which is not desirable, since
we are trying to find a diversified set of solutions.

Step 5. Apply crossover and mutation to get the next
generation using the fitness distribution and update
perturbation vectors, then go to Step 2.

When we reformulate the problem for a given sequence in
Step 2.6, the complexity of the problem decreases. We still need
to calculate the optimum processing times that minimize the
nonlinear objective function (the most time consuming part of the
proposed algorithm), but we are free from sequencing problem
and consequent binary variables. In the original problem,
constraint set (2) includes all permutations of jobs, on the other
hand the set (4) includes just one sequence. Therefore, we
generate different sequences in PSGA to find the best solution.
To increase the computational efficiency of the PSGA, we propose
a DP-based heuristic instead of solving the mathematical model in
Step 2.6 as discussed below.
4. The proposed DP-based heuristic

The motivation behind this algorithm is that if we can
minimize the cost contribution of each job to the total cost, we



M.S. Akturk, T. Ilhan / Computers & Operations Research 38 (2011) 771–781774
can minimize the total cost. Thus, we define a contributed cost
function for each job as the sum of its tooling and machining costs
(which are calculated independently for each job as a function of
its own processing time), and the deviation in the weighted
tardiness costs of itself and all the succeeding jobs for the given
sequence depending on the selected processing time calculated asPN

j ¼ i wjDTardjðpiÞ. In this summation, we measure the impact of
pi on the weighted tardiness cost of each succeeding job including
the job i itself as follows:

ContCostiðpiÞ ¼ TooliðpiÞþMachðpiÞþ
XN

j ¼ i

wjDTardjðpiÞ ð7Þ

In constructing this function, we initially assumed that pk ¼ pk
l for

k ¼ 1,y,i�1, in order to define the contributed cost only on the
processing time of job i. In our DP-based heuristic, finding this
contributed cost is named as Graph Generation, which corresponds
to Steps 2 and 3 below, since we generate a graph that shows how
the contributed cost of job i changes.

For each job, we can easily construct the function given in
Eq. (7). However, we cannot directly calculate the processing time
that minimizes this function. Although we initially set the
processing times of the previous jobs to their lower bounds as
we constructed the contributed cost function, their optimum
processing times may differ from the lower bounds. To deal with
this issue, we first define Di, which is the total deviation in the
sum of processing times of jobs before job i:

Di ¼
Xi�1

k ¼ 1

pk�pl
k ð8Þ

Machining and tooling costs of a job are independent from
Di. However, DTardi is dependent on it. Therefore, our aim is
to find the corresponding processing times of each job for
all possible values of Di. This corresponds to the State Generation

step in our algorithm, in which we generate the state space,
in other words ranges, of Di and processing times for these states.

The proposed algorithm is similar to a backward DP. Its step by
step definition is given in Algorithm 2. Beginning from the last job
processed in the given sequence, generating graphs and states

iteratively, it defines a function for each job that gives how the
processing times of the jobs processed after that job depend on the
deviation of processing time of that job. After finding the processing
time of the first job, the algorithm finds the processing time of the
second job, third job and so on. It is an approximation algorithm
since the defined contributed cost considers the interaction between
jobs on the basis of just tardiness costs. There is also an interaction
through the tooling cost. However, due to the nonlinearity of tooling
cost, developing a practical solution procedure could be very time
consuming.

Algorithm 2. DP-based heuristic.

Step 1. Set i¼N.
Step 2. Graph Generation: For j¼ i to j¼N do;

Step 2.1. Set pk ¼ pk
l for k¼1,y,i�1 and construct the

function Pj(pi) that shows how the processing time of job j

depends on the processing time of job i.
Step 3. Graph generation: Construct the contributed cost for job
i, which is defined in Eq. (7).

Step 4. If i41 goto Step 5, else goto Step 7.
Step 5. State Generation: Generate the function PiðDiÞ, where Di

is the total deviation of processing times of jobs 1 to i�1 from
their corresponding lower bounds as defined in Eq. (8).
Step 6. Generate the function Pi(pi�1) from PiðDiÞ by replacing
Di with pi�1�pi�1

l , then set i ¼ i�1 and goto Step 2.
Step 7. Find the minimum of the following total cost function
for job 1:

ContCost1ðp1Þ ¼
PN

i ¼ 1

wjDTardiðp1ÞþTool1ðp1ÞþMach1ðp1Þ

Step 8. Calculate Piðp
%

1Þ for i ¼ 2,y, N, which give the

processing times of all jobs in the sequence.

In the following two subsections, we give further explanation
about the Steps 2 and 3 and the Step 5 of the proposed algorithm
that are named as graph generation and state generation,
respectively. These are the critical steps of the algorithm since
most of the computational effort in the algorithm is spent in these
steps.
4.1. Explanation of graph generation

In Steps 2 and 3, our aim is to find the contributed cost of job i.
For that purpose, we first find how processing times of jobs
processed after job i depend on the processing time of job i. Then,
we find how the tardiness costs of job i to job N deviate depending
on the increase in the processing time of job i. By using this
information, we construct the contributed cost. As we stated
before, the machining and tooling costs of a job are only a
function of its own processing time. However, the deviations in
tardiness’ of the other jobs are dependent on both starting time
and their processing times. The problem in constructing the
contributed cost of job i arises from calculating how we find the
deviations of the tardiness costs of job j for j¼ i, y, N considering
the changes in the processing times of job l for l ¼ i, y, j.

Since minimizing the total weighted tardiness is a regular
scheduling measure, there is no need to insert idle times in the
final schedule. Therefore, even a slight change in the processing
time of job i changes the starting times of the succeeding jobs
such that we need to determine the processing and starting times
of each job simultaneously to minimize the joint objective
function. To find the DTardj for j¼ i, y, N, we have to first
construct the function Pj(pi) that shows how the processing time
of job j depends on processing time of job i while pk¼pl

k for
k¼1,y,i�1. This is a piecewise linear function which can be
discontinuous. For kth state of pi, which is defined as
rk

j,irpiorkþ1
j,i , it returns a value by a function in the form of

ck
j,i�xk

j,ipi. In this function, ck
j,i symbolizes a parameter whose

superscript k indicates which state it corresponds, and subscript
{j,i} indicates which P function it corresponds. xk

j,i is a 0 or 1 binary
parameter, which indicates pj either decreases in the same
magnitude as pi increases or it remains the same in the kth state.

rk
j,i and rk + 1

j,i are also parameters that show the boundaries of
states. The general form of Pj(pi) is given in Eq. (9). In sum, for a
given sequence, each job corresponds to a different stage in a DP
format and the maximum number of states at each stage is
denoted by Yj,i.

PjðpiÞ ¼ fc
k
j,i�xk

j,ipi for rk
j,irpiorkþ1

j,i ; k¼ 1, . . . ,Yj,ig ð9Þ

For i¼N, it is obvious that PN(pN) ¼ pN where pu
N ZpN Zpl

N . For
ioN, when we come to this step we have already known Pj(pi + 1)
for j¼(i+2), y, N. This function is generated by setting pk¼pl

k for
k¼1, y, i and making pi + 1 variable. In other words,
Diþ1 ¼ piþ1�pl

iþ1. Thus, we can write down Pj depending on
Diþ1, e.g. PjðDiþ1Þ.

From the previous iteration, we know Pi+ 1(pi). Now, in Eq. (8),
we put the Pi + 1(pi) in place of pi + 1, make pi a variable and set pk ¼

pl
k for k ¼ 1, y, i�1 to obtain the Diþ1 as follows:

Diþ1 ¼ Piþ1ðpiÞ�pl
iþ1þpi�pl

i ð10Þ
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Fig. 1. Cost components for each job.
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When we put the Diþ1 in its place in function PjðDiþ1Þ, we find
Pj(pi), j ¼ (i+2), y, N.

After finding Pj(pi) for j ¼ i, y, N (given that pk ¼ pk
l for k ¼ 1,

y, i�1), we can construct
PN

j ¼ i wjDTardjðpiÞ as described in
Algorithm 3.

Algorithm 3. Graph generation.

Step 1. From functions Pj(pi) for j ¼ i, y, N collect all rk
j,i for

k¼ 1, . . . ,oj,iþ1, where oj,i is the number of states of function

Pj(pi). Call the set of them as Oi. Then eliminate duplicate
entries in Oi and name remaining ones as r[k]

i for k¼ 1, y, Wi

such that r½1�i or½2�i o . . .or½Wi �

i .

Step 2. Set pj
0
¼ Pj(pl

i), where pj
0 is the processing time of job j

when there is no deviation in pi from pi
l. We can define it as

follows: p0
j ¼ c½0�j,i �x½0�j,i pi for r½0�i rpirr½1�i .

Step 3. For k ¼ 1 to Wi�1 do;
Step 3.1. Find the pj for j ¼ i+1, y, N by using Pj(pi) over

r½k�i rpirr½kþ1�
i , it is defined as follows:

pj ¼ c½k�j,i�x½k�j,i pi for r½k�i rpirr½kþ1�
i :

Step 3.2. Set si�1 ¼
Pi�2

t ¼ 1 pl
t and for j ¼ i to N do;

Step 3.2.1. Calculate starting time of job j as sj ¼

sj�1+pj�1.
Step 3.2.2. Calculate the deviation in the tardiness cost of

job j as

DTardjðpiÞ ¼maxf0,sjþðpj�pl
jÞ�djg for r½k�i rpirr½kþ1�

i :

Step 3.3. Sum up all wjDTardjðpiÞ and find total weighted

deviation in tardiness’

TotalTardiðpiÞ ¼
XN

j ¼ i

wjDTardjðpiÞ ¼mk
i piþnk

i for r½k�i rpirr½kþ1�
i

mk
i and nk

i are just constants that come from the weighted

summation of the constants in the DTardj functions. If we

define P as the set of jobs whose Tardj40 for j¼ i, y, N, then

mk
i ¼

X
jAP

wjðx
½k�
j,i�x½0�j,i Þ and nk

i ¼
X
jAP

ðsjþðc
½k�
j,i�c½0�j,i Þ�djÞ:

At the end of this algorithm, we reach the function that
shows the total deviation in tardiness costs of job i to job N

depending on pi. It is a piecewise linear function in the following
form as in Fig. 1 and the maximum number of break points is
denoted by W:

TotalTardiðpiÞ ¼ fm
k
i piþnk

i for r½k�i rpior½kþ1�
i ; k¼ 1, . . . ,Wg ð11Þ

For example, if all of the consecutive lines form a convex shape,
i.e. there is no concavity, then the maximum number of break
points is less than or equal to the number of jobs, N. Each such
point represents when a job becomes tardy.

When we sum up this function with Tooli(pi) and Machi(pi), the
Graph Generation steps finish with the contributed cost function at
hand. The algorithm continues with the State Generation step until
the processing time of the first job is found.

4.2. Explanation of state generation

Our main aim in this step is, by using the contributed cost
function given in Eq. (7), to construct the function that gives the
processing time of job i over the different states, or ranges, of Di. In
Steps 2 and 3 of the main algorithm, while constructing the
contributed cost function of job i, we set pk¼pl

k for k¼1, y, i�1
(although optimum processing times could be higher than their
lower bounds). We give the sum of the variations in the processing
times in Eq. (10) for job i. We have to include these variations in our
total cost function so that we can search over Di. We only need to
modify the tardiness cost function as given below. The other cost
components, tooling and machining costs, remain constant with
respect to Di since they are independent from the deviations in the
processing times of the previous jobs in the sequence:

TotalTardu

iðpi,DiÞ ¼ fm
k
i ðpiþDiÞþnk

i for r½k�i rpiþDior½kþ1�
i ; k¼ 1, . . . ,Wg

Each piece in the function above is called as a ‘line’. This line
and the corresponding contributed cost are defined as follows:

Lk
i ðpi,DiÞ ¼mk

i ðpiþDiÞþnk
i for r½k�i rpiþDior½kþ1�

i ; and 1,o:w:

CLk
i ðDi,piÞ ¼ Lk

i ðpi,DiÞþToolðpiÞþMachðpiÞ

To find the PiðDiÞ, we have to solve the following minimization
problem:

PiðDiÞ ¼ fpiAargminfTotalTardu

iðpi,DiÞþTooliðpiÞþMachiðpiÞ

: pl
irpirpu

i gg

For Di ¼ 0, TotalTardu

iðpi,DiÞ is equivalent to TotalTardiðpiÞ

function (given in Eq. (11)) and its example shape is also given
in Fig. 1.

For each Di value, there is only one minimum value of the total
cost function. Moreover there is a range of xrDiry such that
minimum point still remains as the minimum. Our purpose is to find
the minimum values and corresponding ‘‘D�ranges’’ defined in the
function PiðDiÞ so that we can solve the minimization problem above.
To find the minimum of the total cost, we present Algorithm 4. In this
algorithm, we take two adjacent pieces and analyze the contributed
cost function that corresponds to these two pieces. In Step 2.2, if these
two lines form a convex shape (as in Fig. 2), to find RiðDÞ we use
UseConvex subroutine, else we use UseConcave subroutine. For
readability, in the next two subsections, we will drop the subscript i

from all parameters, functions and variables except for pi and Di.

Algorithm 4. Cost function.

Step 1. Set PiðDiÞ ¼ 0 for 0rDirDmax
i where

Dmax
i ¼

Pi�1
k ¼ 1ðp

u
k�pl

kÞ.

Step 2. For k ¼ 1 to Wi�1 do;
Step 2.1. Generate the function RiðDiÞ for kth and (k+1)th

pieces in the TotalTardu

jðpi,DiÞ as follows:

RiðDiÞ ¼ fpiAargminfminfCLk
i ðDi,piÞ,CLkþ1

i ðDi,piÞg : pl
irpirpu

i gg:
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Fig. 2. Illustration of possible locations of breakpoints of tardiness lines and minimum cost points that corresponds to those lines.

M.S. Akturk, T. Ilhan / Computers & Operations Research 38 (2011) 771–781776
Step 2.2. Find Pu

iðDiÞ by combining RiðDiÞ and PiðDiÞ as follows:

Pu

iðDiÞ ¼ fpiAargminfminfContCostiðRiðDiÞÞ,ContCostiðPiðDiÞÞggg

Step 2.3. Set PiðDiÞ ¼ Pu

iðDiÞ.

4.2.1. UseConvex subroutine

Two adjacent tardiness cost lines may form a convex shape as
in Fig. 2. The reason for this is obvious, when a job becomes tardy
at a point without affecting the other jobs, the slope of the
function after that point increases. RðDiÞ has a direct formulation
in this case which we call the UseConvex subroutine. For given Lk

and Lk +1, RðDiÞ is formulated as follows:

RðDiÞ ¼

r½k��Di for 0rDior½k��mink

mink for r½k��minkrDior½kþ1��mink

r½kþ1��Di for r½kþ1��minkrDior½kþ1��minkþ1

minkþ1 for r½kþ1��minkþ1rDior½kþ2��minkþ1

r½kþ2��Di for r½kþ2��minkþ1rDirDmax
i

8>>>>>>>><
>>>>>>>>:
where

mink
¼ arg minfCLk

ð0,piÞ : pl
irpirpu

i g

and

minkþ1
¼ arg minfCLkþ1

ð0,piÞ : pl
irpirpu

i g

In this formulation r[k] is greater than mink. In other cases, for
example r½k�rmink, r½kþ1�rminkþ1 and so on, the formulation is
modified by deleting ranges in which both sides of Di are non-
positive and by changing left side of the Di, whose left side is
negative but whose right side is positive, to zero.

The construction of this formula is based on graphical
observations. First of all, if we take the partial derivatives of CLk

and CLk +1 over their defined regions for Di, we see that
minkþ1rmink since:

@

@pi
CLk
ðDi,piÞ ¼mk�

cacb

pcbþ1
i

þC0 ¼ 0¼)pi ¼
cacb

mkC0

� �1=ðcbþ1Þ

¼mink
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@

@pi
CLkþ1

ðDi,piÞ ¼mkþ1�
cacb

ðpiÞ
cbþ1
þC0 ¼ 0¼)pi

¼
cacb

mkþ1C0

� �1=ðcbþ1Þ

¼minkþ1

mkomkþ1¼)minkþ1rmink

Initially, let r½kþ2�
Zr½kþ1�

Zr½k�Zmink
Zminkþ1 as in Fig. 2a.

In this case, RðDiÞ ¼ r½k��Di, and this case is valid for 0r
Dior½k��mink.

When r½k��minkrDior½kþ1��mink, the tardiness cost function
becomes as in Fig. 2b. In this case, the minimum for L 1 is the
minimum of total cost function (considering only L 1 and L 2).

When rkþ1�minkrDior½kþ1��minkþ1, the tardiness cost
function becomes as in Fig. 2c. In this case, the breakpoint between
two lines, r½kþ1��Di, is the minimum of total cost function. The rest
of the function RðDiÞ can be derived in a similar way.
4.2.2. UseConcave subroutine

Sometimes, two consecutive tardiness cost lines form a
concave shape as in Fig. 3. To explain the reason behind this, let
us consider three jobs, namely i, j, and k, whose processing order
is job i, job j, and job k. Furthermore, let job k be tardy and have a
constant processing time. While pj is constant and as pi increases,
tardiness of job k increases. However, if at a point, say t, pj may
start to decrease as pi increases, at that point, the tardiness of job
k equals to a constant value and remains at that value as long as pj

decreases. This causes concavity because the slope of the total
tardiness cost function falls down after point t. In such a case,
RðDiÞ requires a more detailed analysis. The same subroutine can
also be used for non-consecutive lines, which might occur at Step
2.3 of the State Generation algorithm.

Now consider the following simplified versions of Lk and Ls

with r½s�Zr½kþ1�:

LkðpiÞ ¼
mk � piþðn

kÞ
u, b1rpiob2

1 o:w:

(
LsðpiÞ ¼

ms � piþðn
sÞ
u, b3rpiob4

1 o:w:

(

where

b1 ¼ r½k��Di, b2 ¼ r½kþ1��Di, b3 ¼ r½s��Di

b4 ¼ r½sþ1��Di, ðn
kÞ

u
¼ nkþmkDi, ðn

sÞ
u
¼ nsþmkDi:
kr k+1r k+2r

Cost

Lk+1

Tardiness Cost

Tooling Cost

p
i

Lk

Fig. 3. Two lines that form concave shape.
Corresponding total cost functions CLk and CLs are similar to
the ones in Fig. 4. The possible locations of b1, b2, b3, b4, mink, and
mins relative to each other change depending on the value of Di

and values of r[k], r[s], r[k + 1], and r[s +1]. The possible ordering of
them for each line is as follows:

for Lk

ðAÞ minkrb1ob2 for 0rDirr½k��mink

ðBÞ b1rminkrb2 for r½k��minkrDirr½kþ1��mink

ðCÞ b1ob2rmink for r½kþ1��minkrDirDmax
i

*

for Ls

ð1Þ minsrb3ob4 for 0rDirr½s��mins

ð2Þ b3rminsrb4 for r½s��minsrDirr½sþ1��mins

ð3Þ b3ob4rmins for r½sþ1��minsrDirDmax
i

*

Graphically, (A), (B) and (C) indicate the position of the line Lk,
as Di increases, whereas (1), (2) and (3) for Ls. The positions of Lk

and Ls are important for us. We can explain the reason of that with
an example, consider the case that both of these lines position
over minimums of contributed cost lines corresponding to them
for a defined range of Di. This provides us an important
advantage: now we know that for these two pieces of contributed
cost, the processing time of job j that minimizes the ContCostu is
either ms or mk over this range of Di. All of the combinations of
these cases could be very helpful while constructing RðDÞ.

In our algorithm we construct the RðDiÞ for each possible combi-
nations of A, B, C and 1, 2, 3 over defined ranges of Di. A schematic
representation of possible combinations and the flow between these
combinations and some information about cost components are
given in Fig. 5. For example, (A,1) corresponds to minkrb1ob2 and
minsrb3ob4; (A,2) corresponds to minkrb1ob2 and b3rmins

ob4; and so on. The outgoing arcs from (A,1) means that from (A,1)
we can go either (A,2) or (B,1). If r½k��mink4r½s��mins then we go
from (A,1) to (A,2), else we go from (A,1) to (B,1).

4.3. Illustrative example

We will solve a small scheduling problem for a given sequence to
illustrate how the proposed DP-based heuristic works. We construct
an example for three jobs with the sequence of 1, 2, and 3 (i.e. job 1
is processed first). Machining cost, C0, is 0.5 and the cost of tooling
(used for calculating pl and pu for each job in Kayan and Akturk [5])
is 4.5. The required data for each job is given in Table 1.
b1 b4b3b2

CLk

CLs

Cost

p
i

kmin mins

Fig. 4. The illustration of possible total costs for two tardiness lines.
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tardiness cost
for Lk is fixed

Tooling cost
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tardiness cost Tooling cost
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Fig. 5. Possible combinations of locations of ranges for two tardiness lines and

information about cost components corresponding to each line.

Table 1
Job data for the illustrative example.

Job # D L w d pl pu ca cb

1 7.2 6 1 1 0.70 2.42 2.06 1.35

2 7.1 8 3 2 1.23 3.04 5.18 1.41

3 7.1 5 2 3 0.56 2.08 2.92 1.24
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Job 3 : We start with generating total tardiness function of the
last job in the given sequence, job 3, because its TotalTardu

function includes only its own tardiness cost:

s3 ¼ pl
1þpl

2 ¼ 0:70þ1:23¼ 1:93

Dmax
3 ¼ ð2:42�0:70Þþð3:04�1:23Þ ¼ 3:53

P3ðp3Þ ¼ p3

TotalTard3ðp3Þ ¼
0 for 0:56rp3o1:07

2ðp3�1:07Þ for 1:07rp3r2:08

(

TotalTardu

3ðp3,D3Þ ¼
0 for 0:56rp3þD3o1:07

2ðp3þD3�1:07Þ for 1:07rp3þD3r2:08þ3:53¼ 5:61

(

This function gives how tardiness cost value changes according
to the changes in the processing times of jobs 1, 2 and 3. Now, we
have to generate P3ðD3Þ. The total contributed cost lines that
correspond to each tardiness cost range is as follows:

CL1
ðD3,p3Þ ¼

0:5p3þ2:92=ðp3Þ
1:24 for 0:56rp3þD3o1:07

1 o:w:

(

CL2
ðD3,p3Þ ¼

2:5p3�2:14þ2D3þ2:92=ðp3Þ
1:24 for 1:07rp3þD3r5:61

1 o:w:

(

The minimums of lines CL1 and CL2 are min1
¼2.08

and min2
¼1.05, respectively. We can construct the RðD3Þ by

using the UseConvex subroutine. Since there is no more line
P3ðD3Þ ¼ RðD3Þ:

P3ðD3Þ ¼ RðD3Þ ¼
1:07�D3 for 0:00rD3o0:02

1:05 for 0:02rD3r5:61

(

Afterwards, we can reduce P3ðD3Þ to P3(p2) by setting
D3 ¼ p2�1:23:

P3ðp2Þ ¼
2:30�p2 for 1:23rD3o1:25

1:05 for 1:25rD3r3:04

(

Job 2 : We have to generate TotalTard function of job 2. The
only job after job 2 is job 3 and we already know how its
processing time changes with respect to the processing time of
job 3 from P3(p2). We calculate the tardiness cost for each job and
sum them up:

s3 ¼ pl
1þp2 ¼ 0:70þp2

Tard3ðp2Þ ¼maxf0,p2þP3ðp2Þ�2:30g ¼
0 for 1:23rp2o1:25

p2�1:25 for 1:25rp2r3:04

(

Let s2 ¼ pl
1 ¼ 0:70, such that Dmax

2 ¼ 2:42�0:70¼ 1:72: Consequently,

Tard2ðp2Þ ¼maxf0,p2�1:28g ¼
0 for 1:23rp2o1:28

p2�1:28 for 1:28rp2r3:04

(

TotalTardðp2Þ ¼w2Tard2ðp2Þþw3Tard3ðp2Þ ¼

0 for 1:23rp2o1:25

2ðp2�1:25Þ for 1:25rp2o1:28

5ðp2�1:28Þ for 1:28rp2r3:04

8><
>:

TotalTardu

2ðD2,p2Þ ¼

0 for 1:23rp2þD2o1:25

2ðp2þD2�1:25Þ for 1:25rp2þD2o1:28

5ðp2þD2�1:28Þ for 1:28rp2þD2r4:76

8><
>:

Now, we have to calculate P2ðD2Þ. There are three distinct
piecewise lines in total cost function of job 2 as follows:

CL1
ðD2,p2Þ ¼

0:5p2þ5:18=ðp1:41
2 Þ for 1:23rp2þD2o1:25

1 o:w:

(

CL2
ðD2,p2Þ ¼

2:5p2�2:50þ2D2þ5:18=ðp1:41
2 Þ for 1:25rp2þD2o1:28

1 o:w:

(

CL3
ðD2,p2Þ ¼

5:5p2�6:40þ5D2þ5:18=ðp1:41
2 Þ for 1:28rp2þD2r4:76

1 o:w:

(

The processing times that minimize CL1, CL2 and CL3 are min1

¼ 3.04, min2
¼1.56, and min3

¼1.23, respectively. As it is seen, all
consecutive lines form a convex shape. A graphical representation
is given in Fig. 6. Thus, we can use the UseConvex subroutine and
find the corresponding P2ðD2Þ easily:

P2ðD2Þ ¼
1:28�D2 for 0:00rD2o0:05

1:23 for 0:05rD2r1:72

(

Job 1 : The TotalTard function for job 1 can be found in a similar
way as follows:

TotalTardðp1Þ ¼

2ðp1�0:73Þ for 0:73rp1o0:77

5ðp1�0:77Þ for 0:77rp1o1:00

6ðp1�0:80Þ for 1:00rp1r2:42

8><
>:

Since we reach to the first job in the given sequence, we
skip the state generation step and directly find the point that
minimize the contributed cost function. Its minimum is 0.83, and
hence p1 ¼ 0.83. We can now calculate the processing times of
the jobs 2 and 3 in a backward manner. Since p1¼0.83, then D2,
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2.42�0.83 ¼ 1.59, correspond to the second state of P2ðD2Þ. Thus,
p2 ¼ 1.23. Now, we know both p1 and p2 and can calculate
D3 ¼ 2:42�0:83þ1:23�1:23¼ 1:59. For this value of D3, p3¼1.05.
In this particular instance, the mathematical formulation also
gives the same solution, and hence it is an optimal solution.

When we compare different processing time alternatives in
Table 2 for a given sequence of {1�2�3}, we can easily observe
that the processing time upper bounds, pu, give the minimum
tooling cost, but the maximum machining and weighted tardiness
costs. On the other hand, the processing time lower bounds, pl,
give the minimum machining and weighted tardiness costs, but
the maximum tooling cost. Therefore, the controllable processing
times, denoted by p*, provide an important tradeoff. It is
important to note that the pu values (that minimize the sum of
machining and tooling costs) are the processing time values used
in the scheduling literature. By utilizing the inherent flexibility of
the CNC machines, we could reduce the overall cost by 58%. The
cost of implementing the controllable processing time idea is
virtually negligible; it only requires few changes in the CNC part
program.
5. Experimental results

In this section, the experimental factors of the problem are
specified and the performance of both the proposed DP-based
heuristic and local search algorithm are compared with their
corresponding bench-mark algorithms. Both local search and DP-
based heuristics are coded in C language and compiled with GNU
compiler. The nonlinear model of the original problem for a given
sequence is formulated in GAMS 2.25 and solved by MINOS 5.3.
All problems are solved on a sparc station (Sun Enterprize 4000)
under SunOS 5.7.

We developed a four-factorial experimental design to test both
proposed DP-based heuristic and PSGA. The first factor was the
tardy
job 3 becomes

tardy
job 2 becomes

3.04
min1min2

1.56

Cost

p2

Tooling Cost

1.281.25

tardiness+machining cost

1.23
min3

Fig. 6. Processing time variation of Job 2.

Table 2
Processing time alternatives for the illustrative example.

Processing time Machining

cost

Tooling

cost

Weighted

tardiness

Total

pu
¼(2.42, 3.04, 2.08) 3.77 2.831 20.88 27.481

pl
¼(0.7, 1.23, 0.56) 1.245 12.89 0.0 14.135

p*
¼(0.83, 1.23, 1.05) 1.555 9.516 0.4 11.471
number of jobs, N, and we generated a variety of problems with
40 and 80 jobs. The difficulty of the problem increases exponen-
tially when we increase the N. Furthermore, as the number of job
increases, the decision on the processing times of the jobs
becomes more critical since an increase in the processing time
of a job has greater effect on the total tardiness cost value. In our
computational setting, the operating cost of the CNC machine was
a fixed parameter, and C0¼0.5. On the other hand, the cost of
tooling, Ct, for each job was the second experimental factor, and
were selected randomly from the interval UN[0.5,1.5] and
UN[3.5,4.5] for the low and high levels, respectively, where UN
stands for an uniform distribution. As tooling cost increases, the
tradeoff between tooling cost and the sum of tardiness and
machining costs increases. This increases the difficulty of the
problem as well. Due dates, di, were randomly generated from the
interval UN½ð1�TF�RDD=2Þ,ð1�TFþRDD=2Þ� �Spi, where TF is
the tardiness factor, RDD is the range of due dates, pi is the
average processing time of job i and Spi is the sum of average
processing times of all jobs. Both TF and RDD were set to 0.2, 0.5
and 0.8. In sum, the number of jobs and tooling cost can take
values in two levels, whereas tardiness factor and range of due
date can take values in three levels. Thus, the experimental design
is a 2*2*3*3 full factorial design.

5.1. Computational results for a given sequence

By using the full factorial design, we first tested our DP-based
heuristic. For the benchmark, we solved the mathematical
formulation given in Step 2.6 of the Algorithm 1 (we have a
nonlinear objective function with a linear set of constraints). For
each factor combination, we took 25 replications resulting in 900
randomly generated runs. The summary of the results is listed in
Table 3 showing the minimum, maximum and average results for
each algorithm.

The averages of 25 replications for each factor combination are
given in Table 4. Under the ‘Deviations’ column, we report the
deviation from the optimal solution under ‘Obj’ and what percent
the CPU time (in seconds) of our heuristic is less than the one of
the mathematical formulation under ‘CPU’. The results show that
our proposed heuristic deviates from the optimal solution only 2%
on the average. However, we gain about 82% improvement in the
CPU time on the average. The most difficult case is the factor
combination of (1 1 0 2), where the number of jobs, tooling cost
and the range of due date are at their highest level and the
tardiness factor is at its lowest level. Even in the worst case, our
algorithm deviates 17% on the average. Both of these approaches
can be used as a basic heuristic in Step 2.6 of the proposed PSGA.
Even if the average CPU times for the mathematical model in
Table 4 may seem small, since this step is called hundreds of
times, its effect in the main algorithm becomes very significant.

5.2. Local search parameters and results

We now compare the proposed simultaneous algorithm with a
two-stage sequential algorithm. We first generate different
sequences using a PSGA based local search algorithm. For a given
Table 3
Summary results for the problem with given sequence.

Algorithms Objective Runtimes

Min Average Max Min Average Max

DP-based heuristic 25.54 134.41 410.16 0.03 0.14 0.82

Math. model in GAMS 25.12 131.40 410.05 0.40 0.73 1.48



Table 4
Comparison of DP-based heuristic with Math model in GAMS.

N Ct TF RDD DP-based Algo. Math. model Deviations

Obj CPU Obj CPU Obj CPU

0 0 0 0 31.68 0.09 30.90 0.54 0.02 0.83

0 0 0 1 32.03 0.11 31.15 0.57 0.03 0.81

0 0 0 2 35.23 0.13 33.74 0.59 0.04 0.79

0 0 1 0 46.91 0.06 46.78 0.52 0.00 0.88

0 0 1 1 47.18 0.06 47.03 0.52 0.00 0.88

0 0 1 2 49.65 0.07 49.41 0.53 0.00 0.87

0 0 2 0 72.05 0.06 72.05 0.46 0.00 0.88

0 0 2 1 72.40 0.06 72.39 0.47 0.00 0.88

0 0 2 2 71.35 0.06 71.34 0.49 0.00 0.89

0 1 0 0 77.34 0.14 73.51 0.62 0.05 0.77

0 1 0 1 77.86 0.15 73.61 0.63 0.05 0.77

0 1 0 2 82.31 0.16 75.53 0.65 0.08 0.75

0 1 1 0 94.39 0.08 93.71 0.56 0.01 0.86

0 1 1 1 95.10 0.08 93.92 0.58 0.01 0.86

0 1 1 2 98.87 0.10 95.91 0.58 0.03 0.83

0 1 2 0 121.10 0.06 121.07 0.53 0.00 0.89

0 1 2 1 121.30 0.06 121.25 0.53 0.00 0.89

0 1 2 2 120.31 0.06 119.97 0.54 0.00 0.88

1 0 0 0 68.59 0.18 67.50 0.82 0.02 0.78

1 0 0 1 72.04 0.26 70.16 0.91 0.03 0.71

1 0 0 2 83.20 0.43 78.78 1.02 0.05 0.58

1 0 1 0 119.83 0.13 119.74 0.68 0.00 0.80

1 0 1 1 121.96 0.14 121.87 0.73 0.00 0.81

1 0 1 2 131.53 0.15 131.43 0.79 0.00 0.82

1 0 2 0 210.87 0.10 210.87 0.61 0.00 0.83

1 0 2 1 212.40 0.11 212.40 0.60 0.00 0.82

1 0 2 2 210.29 0.11 210.28 0.61 0.00 0.81

1 1 0 0 177.69 0.31 166.90 1.15 0.06 0.73

1 1 0 1 189.32 0.35 167.90 1.27 0.11 0.72

1 1 0 2 211.56 0.46 176.29 1.31 0.17 0.65

1 1 1 0 230.80 0.15 229.31 1.01 0.01 0.85

1 1 1 1 234.51 0.15 231.20 1.05 0.01 0.85

1 1 1 2 244.08 0.17 239.93 1.09 0.02 0.84

1 1 2 0 324.23 0.11 324.15 0.81 0.00 0.86

1 1 2 1 325.58 0.11 325.48 0.81 0.00 0.86

1 1 2 2 323.13 0.12 322.96 0.87 0.00 0.87
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sequence, in order to find the processing times we can either use
the DP-based heuristic or solve the mathematical model using a
commercial solver. Therefore, we compare the results of the
following three algorithms:
�
 The proposed simultaneous algorithms: This is the proposed
algorithm which is explained in Section 3. We could run the
PSGA for two different base heuristics:
3 PSGA[DP-based]: It uses the DP-based heuristic explained in

Section 4.
3 PSGA [Math Model]: It uses the math formulation of the

problem for given sequences which is modeled in GAMS
and solved by MINOS.
�

Table 5
Definitions and levels of PSGA parameters for the sequential and the proposed

simultaneous algorithms.

Definitions of parameters Sequential Simultaneous

POPSIZE: size of the population in a generation 50 20

MAXGEN: number of generations 100 30

% SEXUAL: probability of sexual reproduction 0.8 0.8

CROSSOVER: crossover type in sexual reproduction Single Single

MUTPROB: mutation probability for each gene 0.05 0.05

f: selectivity of the algorithm 4 4

y: perturbation magnitude 1 1

NUMSTART: number of restarts 5 1
Sequential algorithm: As discussed earlier, this is the algorithm
that reflects the general approach in the current scheduling
literature. The sequential algorithm consists of two stages as
outlined in Algorithm 5. Although the sequential algorithm
solves the subproblems in each stage optimally or almost
optimally, it ignores the interaction between these two
optimization problems. In Stage 2, we could use any algorithm
to solve the 1J

P
wiTi problem using the locally optimum

processing times found in Stage 1 for each job independently.
There are several promising approaches in the literature to
solve the 1J

P
wiTi problem quite effectively, such as Avci et al.

[2], Kellegoz et al. [6], Maheswaran et al. [10], and Wang and
Tang [15]. We have used the algorithm proposed by Avci et al.
[2] in Stage 2. Since they also rely on the problem space genetic
algorithm idea, this gives us a fair comparison to assess the
relative advantage of using a simultaneous approach over a
sequential approach.

Algorithm 5. Sequential algorithm.

Stage 1. Calculate the locally optimum machining conditions,
which are the cutting speed and feed rate of the CNC machine
(or equivalently corresponding processing times), to minimize
the sum of machining and tooling costs for each job indepen-
dently as discussed in Kayan and Akturk [5].
Stage 2. Solve the 1jj

P
wiTi problem for the given processing

times using the problem space genetic algorithm proposed by
Avci et al. [2].

The parameters used in these PSGAs are given in Table 5. For
the sequential PSGA, we assigned parameters to values that give
the best results for the total weighted tardiness problem stated by
Avci et al. [2]. As choosing the values of parameters for our
proposed PSGAs, we used the same values for %SEXUAL, f, y,
MUTPROB, and CROSSOVER. We chose the values of MAXGEN,
POPSIZE and NUMSTART by considering the computational
requirements.

The same factorial design in the previous section is used for all
PSGAs listed above. However, this time, we take five replications
for each factor combination since CPU times are much higher for
PSGAs when compared to the algorithms in the previous section.
Therefore, for each algorithm we took 180 randomly generated
runs. The summary of the results are given in Table 6. On the
average, the proposed PSGA [Dp-based] provides 62% improve-
ment in solution quality over the sequential algorithm. The time-
wise loss that corresponds to this improvement is only 86 CPU
seconds. The results of PSGA[Dp-based] and PSGA [Math Model]
are as expected. Since the only difference between these two
PSGAs are their base heuristics, their time and solution quality
comparative results are not much different from the comparative
results of DP-based heuristic and mathematical formulation for a
given sequence. On the average, the loss in solution quality in
PSGA [Dp-based] is just 3% compared to PSGA [Math Model].
However, time-wise gain is about 361 s or 75%. In most studies in
the literature, the processing times are assumed to be fixed at and
equal to the most economical processing times in terms of
manufacturing costs. As pointed out previously, this might not be
the best alternative for scheduling-related criteria as demon-
strated in Table 6. Controllable processing times provide an
important flexibility in finding solutions with better overall
objective function values.

The averages of five replications for each factor combination
can be seen in Table 7. For all factor combinations, there is a
significant cost-wise improvement. The runtime of PSGA[Dp-
based] can be as low as 10 s and as high as 476 s, while runtime of



Table 6
Summary results of PSGA’s for the problem.

Algorithms Objective Runtimes

Min Average Max Min Average Max

Two-stage PSGA 26.39 246.40 984.15 8.48 33.71 79.83

PSGA[DP-based] 20.75 93.36 282.33 10.15 119.29 476.29

PSGA[GAMS] 20.75 90.42 282.87 300.55 480.23 859.81

Table 7
Comparison of the sequential and the proposed simultaneous algorithms.

N Ct TF RDD Sequential PSGA[DP-based] PSGA[GAMS]

Obj CPU Obj CPU Obj CPU

0 0 0 0 49.15 10.89 24.96 83.31 24.92 296.97

0 0 0 1 64.50 10.70 23.73 71.88 23.35 304.92

0 0 0 2 70.37 9.11 22.48 77.61 22.19 308.27

0 0 1 0 72.86 10.55 32.21 41.96 31.93 275.96

0 0 1 1 81.74 10.62 30.49 46.12 29.80 285.26

0 0 1 2 95.46 9.52 29.87 46.12 28.71 274.66

0 0 2 0 106.97 10.37 47.00 28.56 46.80 251.13

0 0 2 1 106.18 10.14 45.56 28.74 45.58 250.20

0 0 2 2 118.00 9.52 46.37 29.47 45.03 249.41

0 1 0 0 138.71 10.95 58.90 88.38 57.96 322.38

0 1 0 1 148.32 10.83 59.02 71.08 56.47 325.26

0 1 0 2 166.80 9.88 55.63 72.49 54.40 327.03

0 1 1 0 170.78 11.07 70.66 52.35 70.38 306.79

0 1 1 1 172.67 10.96 70.44 57.65 68.14 307.30

0 1 1 2 198.70 9.82 69.88 48.69 67.48 303.50

0 1 2 0 210.21 9.92 89.54 29.20 89.26 282.63

0 1 2 1 202.72 9.38 89.23 31.43 87.68 279.76

0 1 2 2 223.46 9.02 89.03 32.85 87.14 276.51

1 0 0 0 114.11 54.61 52.90 197.85 51.41 475.91

1 0 0 1 134.36 40.38 50.55 229.91 47.64 540.17

1 0 0 2 142.78 45.14 51.24 313.44 45.70 584.54

1 0 1 0 185.31 51.63 75.16 80.60 73.34 410.46

1 0 1 1 201.67 37.00 70.33 86.83 69.07 405.22

1 0 1 2 226.78 47.83 73.00 99.29 71.68 397.48

1 0 2 0 294.62 47.70 128.13 56.08 127.46 326.97

1 0 2 1 299.13 39.32 135.96 56.19 132.90 330.88

1 0 2 2 341.28 40.46 140.09 56.58 138.90 339.80

1 1 0 0 374.20 47.29 137.15 226.80 125.96 653.18

1 1 0 1 377.78 41.37 133.31 232.28 121.27 658.71

1 1 0 2 427.82 47.03 135.17 268.00 119.05 661.15

1 1 1 0 476.72 46.88 166.16 99.82 161.54 568.34

1 1 1 1 469.41 41.83 169.34 94.78 160.84 570.60

1 1 1 2 541.59 45.45 177.17 85.90 169.00 498.64

1 1 2 0 606.89 47.12 233.04 57.85 229.17 457.64

1 1 2 1 586.60 36.38 237.79 58.30 234.60 446.81

1 1 2 2 671.74 39.67 239.37 61.71 238.47 461.38
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PSGA[Math Model] is between 300 and 859 s and seem more
stable. According to our computational results, both the sequen-
tial algorithm and PSGA[Math Model] do not exploit the problem
structure to improve the solution quality, or to reduce the run
time. However, the DP-based heuristic exploits the problem
characteristics, such as position of a job in a given sequence, to
improve the solution quality and computational requirements.
6. Conclusion

The integration of scheduling and process planning issues
creates more realistic problems. In this paper, we proposed a joint
algorithm to determine the processing time of each job and to
schedule these jobs on a single CNC machine considering the total
weighted tardiness and manufacturing cost. To the best of our
knowledge, the single CNC machine scheduling problem that
considers job-dependent tardiness penalties and controllable
processing times simultaneously is not studied in the literature.
We first compared the proposed DP-based heuristic with an exact
algorithm for a given sequence and show that the deviation from
the optimal solution is very small compared to the gain from the
computational time. Afterwards, we compared the proposed PSGA
with a two-stage sequential algorithm. The experimental results
indicate that there is a significant interaction between machining
conditions and weighted tardiness problems and solving these
two problems together increases the cost effectiveness of the
system greatly. Our results clearly indicate that the proposed
PSGA that uses proposed DP-based heuristic gives the best results
in terms of time-cost ratio. As a future research, for the CNC
machines with an on-board tool magazine (that means machine
has to be stopped in order to replace a cutting tool due to tool
wear or part change due to limited tool magazine size), tool
replacement decisions should be integrated to the joint problem
in addition to the process planning and part sequencing problems
since they also affect the part completion times.
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