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The focus of this study is a robot centered cell consisting of m computer numerical control (CNC)

machines producing identical parts. Two pure cycles are singled out and further investigated as

prominent cycles in minimizing the cycle time. It has been shown that these two cycles jointly

dominate the rest of the pure cycles for a wide range of processing time values. For the remaining

region, the worst case performances of these pure cycles are established. The special case of 3-machines

is studied extensively in order to provide further insight for the more general case. The situation where

the processing times are controllable is analyzed. The proposed pure cycles also dominate the rest when

the cycle time and total manufacturing cost objectives are considered simultaneously from a bicriteria

optimization point of view. Moreover, they also dominate all of the pure cycles in in-line robotic cells.

Finally, the efficient frontier of the 3-machine case with controllable processing times is depicted as an

example.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The foundation of new automation technologies and the
technological advancements which improve the efficiency of
automation equipments increased the importance of automation
applications in manufacturing industry. Robots are one of the
most common automation equipments used in industry and they
are mostly used as material handling tools. In the current
literature, a robotic cell is defined as a manufacturing cell
composed of a number of machines and a material handling
robot. There are different robotic cell layouts studied in the
literature, namely, in-line robotic cells, robot centered cells, and
mobile-robot cells. In in-line robotic cells, the machines are
positioned in a linear formation and the robot moves in front of
the machines on a linear track to transport parts. Most of the
studies in robotic cell scheduling literature focus on in-line
robotic cells or mobile-robot cells.

An extensive literature review of robotic cell scheduling is
presented in the survey of Dawande et al. [3]. In addition, Crama
et al. [2] present the cyclic scheduling problems in robotic flowshops.
In robotic flowshops, each part is processed on all of the machines in
the cell in the order respecting the layout. In general, the processing
time on each machine is assumed to be fixed. However, the recent
developments in process and operational flexibility challenge the
necessity and accuracy of this assumption. Furthermore, the existing
studies work on a single objective of maximizing throughput. In
ll rights reserved.
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manufacturing industry, however, the focus is on minimizing cost as
well as on maximizing throughput, simultaneously. In addition, most
of the studies are limited to 1-unit cycles in 2- or 3-machine cells.
Although this configuration is easier to analyze, it may not be realistic
for some manufacturing settings. Sethi et al. [12] proved that 1-unit
cycles give optimal solutions in 2-machine robotic cells producing
identical parts. For a more detailed discussion on cyclic scheduling of
identical parts in robotic cells, we refer the interested reader to
Brauner [1]. In our study, we consider a scheduling problem of an
m-machine flexible robotic cell with m-unit cycles producing identical
parts. Our study differs from the literature, since we consider process
and operational flexibility and m-unit cycles in m-machine cells.

There are few studies in the literature working on the scheduling
problems in robot centered cells. As Han and Cook [9] mention, robot
centered cells can improve the efficiency in the cell. The focus of this
study is on the robot centered cells in which the robot is placed in the
center of the cell and the machines are positioned in a circular
formation around the robot. The robot rotates between the buffer and
the machines in order to transfer the parts. The robot centered cells
are used in many applications because of their space efficiency
compared to in-line robotic cells as discussed in Gultekin et al. [6]. In
addition, the installation cost of stationary base robots which are used
in robot centered cells is less and the programming of these robots are
easier compared to in-line robotic cells. The robot centered cell
considered in this study is presented in Fig. 1. There is an I/O-station
which is composed of an input device that contains the raw parts to
be processed in the cell and an output device that stores the parts
produced in the cell. Consistent with many studies in the literature,
we assume the parts to be produced in the cell are identical requiring
the same set of processes to be performed. Moreover, we assume that
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Fig. 1. 3-Machine robot centered cell.
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there is no buffer between any machines. In a recent study,
Drobouchevitch et al. [5] consider the problem of finding an optimal
robot move sequence that maximizes the throughput in robot
centered cells including an I/O-station. Dawande et al. [4] study the
multiple part-type production in a robot centered cell. In both studies,
each part must go through m-machines in the same sequence, a
setting known as flowshop type robotic cell.

In a robotic cell for machining operations, the processing stations
are predominantly CNC machines and these machines can commu-
nicate with the robot as well as with the cell controller on a real-time
basis. The operational flexibility of CNC machines enables them to
perform different operations on parts. As a result of operational
flexibility, in a recent study, Gultekin et al. [8] defined a new class of
cycles called pure cycles. In a pure cycle, the robot loads and unloads
all of the m machines with a different part during one repetition of the
cycle. So, each repetition of a pure cycle produces m parts. By using
this definition, the robot and part movement in our study is described
as follows: The robot transfers a part from the I/O-station to one of the
machines. After all the operations on the part is finished, the robot
transfers part from the machine to I/O-station again. Since Gultekin
et al. [8] proved that pure cycles dominate all of the flowshop type
cycles for the single objective problem of maximizing throughput, we
focus on pure cycles in our study.

The scheduling literature on controllable processing times is
presented in the survey paper of Shabtay and Steiner [13]. Within
the bicriteria context of minimizing the cycle time and the total
manufacturing cost simultaneously, the processing times are
considered as controllable. Most of the studies in robot centered
cells consider fixed processing times which are easier to analyze.
However, process flexibility results in controllable processing
times in which the processing times can be increased or decreased
without violating a given upper bound in order to increase
efficiency. To the knowledge of the authors, the only studies
within the robotic cell scheduling literature which consider the
bicriteria optimization problem of minimizing the total manu-
facturing cost and the cycle time simultaneously are Gultekin
et al. [7] and Yildiz et al. [15], the former focusing on the flowshop
setting and the latter focusing on the in-line setting. Furthermore,
there are some studies such as Crama et al. [2], van de Klundert
[10], and Lei and Wang [11] on robotic flowshops where the
processing times are specified by a lower bound and an upper
bound, i.e. processing time windows. Different than our study, the
studies on processing time windows do not consider the
manufacturing cost associated with the selected processing time.

The study is organized as follows: in Section 2, the assumptions
and definitions used throughout this study are presented. In Section 3,
we analyze the m-machine robot centered cell with fixed processing
times in order to minimize the cycle time. In Section 4, different from
the existing literature, we consider controllable processing times in
m-machine robot centered cells and prove that the robot centered
cells increase the efficiency of the cell when compared with in-line
robotic cells. Furthermore, we determine the robot move sequence
and the processing times that minimize the cycle time and the total
manufacturing cost simultaneously. In Section 5, the concluding
remarks and future research directions are presented.
2. Assumptions and definitions

In this section, we present the preliminary background
information and set up the notation to be used throughout the
remaining text. In this study, we consider identical parts to be
processed on identical CNC machines and focus on a new class of
cycles introduced to the literature in Gultekin et al. [8] as pure
cycles. We assume that each machine is capable of performing all
of the required operations of identical parts. The following
definitions are borrowed from Gultekin et al. [8].

Definition 1. Li is the robot activity during which the robot takes
a part from the input buffer and loads machine i¼1,2,y,m.
Similarly, Ui, i¼1,2,y,m, is the robot activity corresponding to
movements while the robot unloads machine i and drops the part
to the output buffer. Let A¼ ðL1, . . . ,Lm, U1, . . . ,UmÞ be the set of all
activities.

A pure cycle is composed of m loading and m unloading
activities and can be defined as follows:

Definition 2. Under a pure cycle, starting with an initial state, the
robot performs each of the 2m activities {L1,y,Lm, U1,y,Um}
exactly once and the final state of the system is identical with the
initial state.

In particular, for a 2-machine robotic cell the robot activity
sequence L1U2L2 U1 constitutes a pure cycle. Since a repetition of
any pure cycle produces m parts, pure cycles are classified as
m-unit cycles.

In the considered cell, the input and the output devices are
combined in an I/O-station. Within our setting, all of the required
operations on a part are processed only on one machine. Thus, the
only possible part movements are defined as follows: the robot
takes a part from the input device at the I/O-station and loads it
onto one of the machines. After all of the required operations on
the part are finished, the robot unloads the part from the machine
and drops the part to the output device at the I/O-station. Let Ci

m

denote the ith pure cycle in an m-machine cell and TCm
i

denote its
corresponding cycle time, i.e. the total time required to complete
an m-unit pure cycle. We shall adopt the following notation
throughout this study:
d :
 The time required for rotational movement between two
consecutive machines. Since this is assumed to be additive,
the traveling time between machine i and j is

minfji�jj,mþ1�ji�jjgd.

e :
 The load/unload times of machines by the robot which are

assumed to be the same for all machines.

P:
 Total processing time of any one of the identical parts on

any one of the identical machines.
3. Problem definition and analysis

The number of different pure cycles in an m-machine cell is
(2m�1)!. In this section, we single out two of the pure cycles as
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potentially the most prominent ones in minimizing the cycle time
or in other words in maximizing the throughput rate. A similar
approach is undertaken in Yildiz et al. [15] for in-line robotic cells.

Analyzing the structure of the cycle time of pure cycles, it is
apparent that the cycle time of a pure cycle is composed of two
components. The first component is the total time required for the
robot activities and the second one is the total waiting time of the
robot in front of the machines before unloading them. The time
required for robot activities in turn is composed of load/unload
and part transportation times. The time required for the robot
load/unload times is calculated as follows: for each part, the part
is taken from I/O-station ðeÞ, then loaded onto machine i ðeÞ, after
all of the operations are finished the part is unloaded from
machine i ðeÞ and finally the part is dropped into I/O-station ðeÞ,
which makes a total of 4e time units for one part. For an
m-machine cell, a pure cycle produces m parts, thus the total time
required for loading/unloading is 4me and it is the same for all
possible pure cycles for such a cell. However, the robot travel time
and the total waiting time differ according to the robot move
sequence. Let the total robot travel time for pure cycle Ci

m be aid
and the total waiting time at machine k be wk. Now, the cycle time
of pure cycle Ci

m can be presented as

TCm
i
¼ 4meþaidþw1þw2þ � � � þwm: ð1Þ

There could be two different approaches to minimize the cycle
time in Eq. (1). The first approach is to minimize the robot travel
time. If the processing times are small or negligible, this approach
is more efficient in order to minimize the cycle time. The second
approach is minimizing the total waiting times. In this study, we
focus on the second approach, since it is more frequently observed
in practice.

The waiting time of machine k can be represented as
wk ¼maxf0,P�vkg where vk is defined as the amount of time
between just after loading the machine k and the time robot
returns back in front of machine k to unload it. Since P is a
constant, in order to reduce this waiting time, we have to find the
pure cycles resulting in higher vk values. To do this, the loading
activity of machine k should be immediately sequenced after
unloading activity in the robot move sequence, and hence UkLk

should be the activity sequence. In order to minimize the total
waiting time, all of the individual waiting times on all machines
have to be minimized. Thus, for each machine, the loading activity
has to be immediately sequenced after the unloading activity. The
resulting robot move sequence is

Upð1ÞLpð1ÞUpð2ÞLpð2Þ, . . . ,UpðmÞLpðmÞ

where pðkÞ denotes the distinct machine visited in the kth order
within this cycle. There are (m�1)! pure cycles in the structure
defined above. Within this set, in order to minimize the cycle
time, we shall focus on those for which the robot travel time is
minimized. Note that in each pure cycle having the prescribed
sequencing structure, the robot has to travel at least
2d
Pm

k ¼ 1 minfk,mþ1�kg ¼ dmðmþ2Þ=2ed time for the execution
of m loading and unloading activities. Moreover, since every one
of the machines and the I/O-station have to be visited in some
sequence, the robot has to travel at least another ðmþ1Þd time. In
other words, the lower bound for the robot travel time is

ðdmðmþ2Þ=2eþmþ1Þd: ð2Þ

This line of thought brings us to the following two particular
pure cycles which have robot travel times as low as the lower
bound stated in (2).

Definition 3. C2
m is the robot move cycle in an m-machine robotic

cell with the following activity sequence: L1UmLmUm�1Lm�1, . . . ,
U2L2U1.
Definition 4. C3
m is the robot move cycle in an m-machine robotic

cell with the following activity sequence: L1U2L2U3L3U4L4, . . . ,
Um�1Lm�1UmLmU1.

The initial states of the cell are identical for both of C2
m and C3

m.
All of the machines except machine 1 are loaded with a part and
machine 1 is empty. The robot is in front of the I/O-station and it
is idle. The first activity is identical for both of the cycles C2

m and
C3

m and it is L1. After L1, the robot is in front of machine 1 for both
cycles. At this point, the robot starts to move in opposite
directions in the two cycles. However, the individual moves
thereafter are mirror images of each other and result in exactly
the same robot move times. The following lemma states this more
formally:

Lemma 1. For a given fixed processing time P, the cycle times of C2
m

and C3
m are identical and represented as follows: TCm

2
¼ TCm

3
¼ 4meþ

ðdmðmþ2Þ=2eþmþ1Þdþmaxf0,P�ð4m�4Þe�ðdmðmþ2Þ=2eþm

þ1 �2dm=2eÞdg.

Proof. Assume the starting time of the initial state is time 0 and
let tl be the completion time of activity lAA. At time tUi

, the robot
is at I/O station and at time tLi

, the robot is at machine i. The cycle
times of C2

m and C3
m are calculated as follows:
C2
m
 C3

m

tL1
¼ 2eþd,
 tL1

¼ 2eþd,
tUm
¼ tL1
þ2eþ3dþwm,
 for i¼2,3,y,m�1
tLm
¼ tUm

þ2eþd,

for i¼m�1,y,3,2
tUi
¼ tLi�1

þ2eþd
þminfi,mþ1�igdþwi,
tLi
¼ tUi
þ2eþminfi,mþ1�igd,
tUi
¼ tLiþ 1

þ2eþd
þminfi,mþ1�igdþwi,
tUm
¼ tLm�1

þ2eþ2dþwm,
tLi
¼ tUi
þ2eþminfi,mþ1�igd,
 tLm

¼ tUm
þ2eþd,
tU1
¼ tL2
þ2eþ2dþw1.
 tU1

¼ tLm
þ2eþ3dþw1.
After the last activity in both C2
m and C3

m, which is U1, the robot is

in front of the I/O-station as in the initial state of both cycles. tU1

gives the cycle time in both of the proposed cycles and it is

calculated as follows:

4meþðdmðmþ2Þ=2eþmþ1Þdþw1þw2þ � � � þwm: ð3Þ

The waiting time for machine i is defined as wi ¼maxf0,P�vig

and depends on vi which is defined as the amount of time

between just after loading machine i and the time the robot

returns back in front of machine i to unload it. The time between

two consecutive loadings of machine i gives the cycle time. In

order to calculate vi, first we calculate the complement of vi for

cycle time which is the time between just starting to unload the

machine i and just after loading machine i. This time is calculated

as follows:

The robot waits to unload machine i(wi), unloads machine iðeÞ,
travels to (I/O) station ðminfi,mþ1�igdÞ, drops part to (I/O) station

ðeÞ, takes a part ðeÞ, travels to machine iðminfi,mþ 1�igdþwiÞÞ,

and loads machine iðeÞ. In total this makes: 4eþ2minfi,mþ

1�igdþwi.

Since the total of vi and its complement gives the cycle time, we

calculate the value of vi by subtracting the complement from TCm
2

.

The vi’s are calculated for both of the cycles C2
m and C3

m, and found

to be the same for these two cycles as:

vi ¼ TCm
2
�ð4eþ2minfi,mþ1�igdþwiÞ ¼ ð4m�4Þeþðdmðmþ2Þ=2e

þmþ1�2minfi,mþ1� igÞdþw1þw2þ � � � þwm�wi, 8i.
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First, we prove that feasible solutions of vi and wi are the same

for C2
m and C3

m for the corresponding machines. For C2
m, in order to

find the feasible solutions of vi and wi, the system of 2m equations

which are presented as follows should be solved:

wi ¼maxf0,P�vig, 8i,

vi ¼ ð4m�4Þeþðdmðmþ2Þ=2eþmþ1�2minfi,mþ1�igÞd
þw1þw2þ � � � þwm�wi, 8i:

Similarly, the system has to be solved for C3
m and the same

feasible solution set arises for C3
m.

For the same feasible vi and wi values the cycle times of C2
m and

C3
m are the same and calculated by using Eq. (3) as follows:

TCm
2
¼ 4meþðdmðmþ2Þ=2eþmþ1Þdþw1þw2þ � � � þwm ¼ TCm

3
:

ð4Þ

In order to find the cycle time, we only have to find the total

waiting time
P

iwi in Eq. (4). In particular,
1.
 If Prvi,8i, then w1þw2þ � � � þwm ¼ 0.

2.
 Else if (kA ½1, . . . ,m� such that vk oP, then

wk ¼ P�vk ¼ P�ð4m�4Þe�ðdmðmþ2Þ=2e
þmþ1�2minfk,mþ1�kgÞd�

P
iakwi. Hence,

w1þw2þ � � � þwm ¼ P�ð4m�4Þe�ðdmðmþ2Þ=2e
þmþ1�2minfk,mþ1�kgÞd.
Now we can conclude that: TCm
2
¼ TCm

3
¼ 4meþðdmðmþ

2Þ=2eþmþ1Þdþmaxf0,P�ð4m�4Þe�ðdmðmþ2Þ=2eþmþ1�2min

fk,mþ1�kgÞd; 8kA ½1, . . . ,m�g.

Since minfk,mþ1�kg takes its maximum value when k¼ dm=2e,

the equation becomes: TCm
2
¼ TCm

3
¼ 4meþðdmðmþ2Þ=2eþ mþ1Þdþ

maxf0,P�ð4m�4Þe�ðdmðmþ2Þ=2eþmþ1�2dm=2eÞdg. &

With the next theorem, we establish the cycle time lower
bound of pure cycles for the robot centered cells.

Theorem 1. For an m-machine robot centered cell, the cycle time of

any pure cycle is no less than

TI=O ¼maxf4meþdmðmþ2Þ=2ed,4eþ2dm=2edþPg: ð5Þ

Proof. A lower bound for pure cycles can be calculated by using
two different definitions of the cycle time. The first lower bound is
obtained from the exact robot activity duration and the second
one is obtained from the given processing time vector. Since the
robot has to perform a given set of robot activities, the total time
required for these activities constitutes a lower bound. Thus, the
first lower bound is obtained as follows: the set of robot activities
can be analyzed in two groups and the first group is robot loading/
unloading times. First, a part is taken from the I/O-station ðeÞ, then
loaded to one of the machines ðeÞ, after the processing on the
machine is finished, the part is unloaded ðeÞ and dropped to the
I/O-station ðeÞ. This makes a total of 4me for a repetition of cycle.
The robot travel times constitute the second group of robot
activities. The robot takes a part from I/O-station and travels to
machine i to load it ðminfi,mþ1�igdÞ, after the processing on the
part is finished, the robot unloads the machine and travels to the
I/O-station to drop the finished part ðminfi,mþ1�igdÞ.
1.
 Suppose the number of machines is even, then the total robot
travel time is calculated as:
Xm

i ¼ 1
2minfi,mþ1�igd¼ 2dþ4dþ6dþ � � � þmdþmd

þðm�2Þdþðm�4Þdþ � � � þ2d¼ dmðmþ2Þ=2ed:
Suppose the number of machines is odd, then the total robot
2.

travel time is calculated as:Xm

i ¼ 1
minfi,mþ1�igd¼ 2dþ4dþ6dþ � � �

þðmþ1Þdþðm�1Þdþðm�3Þdþ � � � þ2d¼ dmðmþ2Þ=2ed:
Consequently, the total of robot activities requires at least
4meþdmðmþ2Þ=2ed time units.

The second definition of a cycle time that leads to another lower

bound is the minimum time between two consecutive loadings of

any machine. The minimum time needed to unload machine i

after loading it is P time units. After processing of the part is

finished, the part is unloaded ðeÞ, it is transferred to I/O-station

ðminfi,mþ1�igdÞ, and dropped ðeÞ. After that, the robot takes a

new part from I/O-station to make the consecutive loading of

machine i ðeÞ, brings the new part to machine i ðminfi,mþ1�igdÞ,
and finally loads it ðeÞ. The total time between two consecutive

loadings of machine i is at least 4eþ2minfi,mþ1�igdþP.

However, there are m machines and the total time for consecutive

loadings are different for each of them. Thus, the cycle time has to

be greater than or equal to the minimum time required between

two consecutive loadings of any machine in the cell. So, the

second lower bound of the cycle time is 4eþ2maxfminfi,mþ

1�ig,i : 1, . . . ,mgdþP. &

The next theorem determines the processing time region
where either C2

m or C3
m results in the minimum cycle time which is

the cycle time lower bound for pure cycles in that region.

Theorem 2. For an m-machine robot centered cell, either C2
m or C3

m

dominates the rest of the pure cycles when:

ð4m�4Þeþðdmðmþ2Þ=2eþmþ1�2dm=2eÞdrP:

Proof. Using the results of Lemma 1 and Theorem 1 for this
region, we have

TCm
2
¼ TCm

3
¼ 4eþ2dm=2edþP¼ TI=O : &

The next lemma establishes the worst case performances of
the two cycles for the remaining processing time region. The
worst case performance is calculated by comparing the cycle time
obtained from C2

m and C3
m to the cycle time lower bound. Let T*

represent the minimum cycle time attainable within the specified
region.

Lemma 2. When Poð4m�4Þeþðdmðmþ2Þ=2eþmþ1�2dm=2eÞd
we have

TCm
2
¼ TCm

3
r 1þ

ðmþ1Þd
4meþdmðmþ2Þ=2ed

� �
� T�:

Proof. In the mentioned processing time region, the cycle time
lower bound is calculated by using Theorem 1 as 4meþ
dmðmþ2Þ=2edrTI=O . Then,

TCm
2

T�
¼

TCm
3

T�
r

TCm
3

TI=O
r

4meþðdmðmþ2Þ=2eþmþ1Þd
4meþdmðmþ2Þ=2ed

¼ 1þ
ðmþ1Þd

4meþdmðmþ2Þ=2ed
:

&

Since ðmþ1Þd=4meþdmðmþ2Þ=2ed is a decreasing function of
m, the difference between cycle time lower bound and the cycle
time of either C2

m or C3
m decreases as the number of machines

increases.
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3.1. Detailed analysis of 3-machine case

In order to give some managerial insight, we analyze the
3-machine robot centered cell in more detail. There are 120
possible pure cycles in a 3-machine cell. The robot move
sequences and cycle times of a selected sample of these pure
cycles including the collection of best pure cycles (as will be
formally shown later) are given in Table 1.

Fig. 2 plots the respective cycle times of a subset of these
cycles against the processing time. The graph for the cycle time
lower bound of TI/O for 3-machine cells is also provided by dashed
lines. The bold lines in the graph represent the minimum cycle
times for the corresponding processing times. The graph clearly
highlights the effectiveness of some of these pure cycles. In
particular, pure cycles C2

3, C3
3, C4

3, C7
3, C15

3 , and C19
3 stand out as

nondominated ones for a range of processing time values. With
cycles C2

3 and C3
3, the waiting times are minimized and hence these

cycles are favorable for higher processing time values. In contrast,
cycles C4

3 and C19
3 have the minimum total robot travel times and

are favored for lower P values. In between these two extremes are
the cycles C7

3 and C15
3 which try to balance the robot travel times

and the waiting times.
The following sequence of lemmas will lead to Theorem 3

which will formalize our dominance results.

Lemma 3. A pure cycle which has two consecutive load activities is

never uniquely optimum.
Table 1
A sample of pure cycles and their corresponding cycle times.

Cycle Robot move sequence Cycle time ðTC3
i
Þ

C1
3 L1L3U 2L2U1U3 12eþ12dþmaxf0,P�8d�6eg

C2
3 L1U3L3 U2L2U1 12eþ12dþmaxf0,P�8d�8eg

C3
3 L1U2L2U3 L3U1 12eþ12dþmaxf0,P�8d�8eg

C4
3 L1U1 L2U2 L3U3 12eþ8dþ3P

C5
3 L1 U1L2 U2U3 L3 12eþ10dþ2P

C6
3 L1U1 L2L3 U2U3 12eþ12dþPþmaxf0,P�4d�2eg

C7
3 L1U2 L2U1 L3U3 12eþ10dþPþmaxf0,P�4e�6dg

C8
3 L1L2 L3U1 U2U3 12eþ16dþmaxf0,P�8d�4eg

C9
3 L1L3 U3L2 U2U1 12eþ10dþ2P

C10
3 L1L3 U3U1 L2U2 12eþ10dþ2P

C11
3 L1U2 L3U3 L2U1 12eþ10dþPþmaxf0,P�4e�4dg

C12
3 L1U1 L2U3 L3U2 12eþ10dþPþmaxf0,P�4e�4dg

C13
3 L1L2 U2L3 U3U1 12eþ10dþ2P

C14
3 L1L2 U2U1 L3U3 12eþ10dþ2P

C15
3 L1U1 L3U2 L2U3 12eþ10dþPþmaxf0,P�4e�6dg

C16
3 L1U1 L3L2 U2U3 12eþ10dþ2P

C17
3 L1U1 U3L2 U2L3 12eþ10dþ2P

C18
3 L1U1 U3L3 L2U2 12eþ10dþ2P

C19
3 L1U1 L3U3 L2U2 12eþ8dþ3P

C20
3 L1U3 L2U2 L3U1 12eþ12dþPþmaxf0,P�6d�4eg

C21
3 L1U3 L3U1 L2U2 12eþ12dþPþmaxf0,P�6d�4eg
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Fig. 2. 3-Machine cell analysis.
Proof. A list of all pure cycles of the stated form and their cycle times
or lower bounds on their cycle times are tabulated in Table 4 in the
Appendix. It can be seen that either C2

3 (C3
3) or C7

3 (C15
3 ) has a cycle time

no worse than the bounds given in this table. &

Lemma 4. A pure cycle of the form UiLj UkLi UjLk where i,j, and k are

distinct elements from set {1, 2, 3} is never uniquely optimum.
Proof. It can be easily verified that the cycle time of a pure cycle
in the stated form is at least 12eþ12dþmaxf0,P�ð4eþ4dÞg which
is dominated by the cycle time of C2

3 (C3
3). &

In light of the previous two lemmas, it is possible to eliminate
all pure cycles but those of the following three forms, namely, UiLi

UjLj UkLk (i.e., C2
3 and C3

3), LiUi LjUj LkUk (i.e., C4
3 and C19

3 ), and UiLi UjLk

UkLj (i.e.,C7
3, C11

3 , C12
3 , C15

3 , C20
3 , and C21

3 ) where i,j, and k are distinct
elements from {1,2,3}. Moreover, cycles C7

3 and C15
3 have the same

cycle time and dominate the four cycles C11
3 , C12

3 , C20
3 , and

C21
3 which share a similar form. Ultimately, in a 3-machine cell,

there are six cycles, namely, C2
3, C3

3, C4
3, C7

3, C15
3 , and C19

3 that are
potentially optimal and the following theorem identifies the
regions of optimality for these cycles.

Theorem 3. For a 3-machine robot centered cell:
1.
 If Prd, then C4
3 (or C19

3 ) has the minimum cycle time.

2.
 If drPr2d, then C7

3 (or C15
3 ) has the minimum cycle time.
3.
 If PZ2d, then C2
3 (or C3

3) has the minimum cycle time.
Proof. The proof follows from a simple comparison of the three
distinct cycles times, namely, 12eþ12dþmaxf0,P�8d�8eg,
12eþ8dþ3P, and 12eþ10dþPþmaxf0,P�4e�6dg. &

4. Bicriteria analysis of C2
m and C3

m

Up to now, we have focused solely on the cycle time objective
and restricted our attention to the 3-machine case. We now analyze
the m-machine case when the processing times are assumed to be
controllable with the bicriteria viewpoint of minimizing the cycle
time and the total manufacturing cost simultaneously. As shown in
the previous section, the pure cycles C2

m and C3
m are quite effective in

minimizing the cycle time. We propose that these two prominent
cycles are also efficient pure cycles in terms of both objectives.

4.1. Problem definition

Let Pi denote the processing time on machine i, which is now to
be considered as a decision variable. A feasible processing time value
on any machine is bounded from above by an upper bound PU which
is the same for every machine, i.e. 0rPirPU . We let P ¼ ðP1,P2, . . . ,
PmÞ denote a processing time vector. We present the set of feasible
processing time vectors as Pfeas ¼ fðP1,P2, . . . ,PmÞARm : 0r
PirPU8ig. We further need the following definitions:
f ðPiÞ:
 The manufacturing cost incurred on
machine i which is monotonically

decreasing for 0rPirPU , 8i.
F1ðC
m
i ,PÞ ¼

Pm
i ¼ 1 f ðPiÞ:
 Total manufacturing cost depending

only on the processing times.

F2ðC

m
i ,PÞ:
 Cycle time corresponding to

processing time vector P and the pure
cycle Ci

m.
The manufacturing cost is the sum of machining and tooling costs
for manufacturing operations. As the processing time decreases, the
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machining cost decreases, but the tool life decreases as well and
ultimately the tooling cost increases. We have defined the upper
bound PU as the processing time value that minimizes the
manufacturing cost function for each part without considering its
impact on the cycle time objective. Since cycle time is a regular
scheduling measure, increasing the processing time of any part
beyond PU will not improve the cycle time value. Consequently, any
processing time value greater than PU will lead to an inferior solution
because both objectives will get worse. We thus assume that the
manufacturing cost function is a monotonically decreasing and
strictly convex function of the processing time. In the bicriteria
optimization problem under consideration, the total manufacturing
cost incurred throughout a cycle depends only on the processing
times. On the other hand, the cycle time depends on both the robot
move cycle and the selected processing times. A feasible solution to
our problem is composed of a feasible robot move sequence and a
feasible processing time vector. Since our study considers only the
pure cycles, the set of feasible cycles in an m-machine cell is the set of
pure cycles in that cell, i.e. iA ½1, . . . ,ð2m�1Þ!�. The bicriteria
optimization problem at hand is the following:

minimize F1ðC
m
i ,PÞ

minimize F2ðC
m
i ,PÞ

Subject to PAPfeas:

In our study, we used the posteriori optimization method since
the considered two objectives are equally important. In this
method, all of the nondominated solutions are found by
minimizing the nondecreasing composite function F(f,g) where f

stands for the total manufacturing cost and g stands for the cycle
time. We use the epsilon-constraint method denoted by eðf jgÞ to
find the nondominated points that minimize f for a given upper
bound of g as discussed in T’Kindt and Billaut [14]. So, for each
pure cycle, the following ECP is solved to find the nondominated
processing time vector for a given cycle time level K:

ðECPÞ minimize F1ðC
m
i ,PÞ

Subject to F2ðC
m
i ,PÞrK

PAPfeas:

The following definitions will be utilized when comparing cycles:

Definition 5. For a robot move sequence Ci
m and a given

cycle time level K, the set of nondominated points is defined
as P�ðCm

i jKÞ ¼ fPAPfeas : There is no other PuAPfeas such that F1

ðCm
i , PuÞoF1ðC

m
i ,PÞ where F2ðC

m
i ,PÞrK and F2ðC

m
i ,PuÞrKg.

For a given cycle time level, in order to decide which pure cycle
dominates another, we compare the incurred manufacturing cost
values. More formally:

Definition 6. We say that a cycle Ci
m dominates another cycle Cj

m

for a given cycle time level K, if there is no P̂AP�ðCm
j jKÞ such that

F1ðC
m
j ,P̂ÞoF1ðC

m
i , ~PÞ for all ~PAP�ðCm

i jKÞ, where F2ðC
m
j ,P̂ÞrK and

F2ðC
m
i , ~PÞrK .

4.2. Solution procedure

In this section, we first determine the cycle time of the proposed
pure cycles C2

m and C3
m when a processing time vector is given.

Afterwards, we determine the nondominated points of C2
m and C3

m.
Finally, the cycle time region where either C2

m or C3
m dominates the

rest of the pure cycles is determined by comparing the total
manufacturing cost obtained from the nondominated solutions of
C2

m and C3
m with the lower bound of the total manufacturing cost. With

the next lemma, we can determine the cycle time of either C2
m or C3

m

when there is a given processing time vector.
Lemma 5. The cycle time of C2
m (and C3

m) for a given processing time

vector P¼(P1,y,Pm) is:
TCm

2
¼ TCm

3
¼ 4meþðdmðmþ2Þ=2eþmþ1Þdþmaxf0,maxfPi�ð4m

�4Þe�ðdmðmþ2Þ=2eþmþ1�2minfi,mþ1�igÞd,i : 1, . . . ,mgg.

Proof. The cycle times of C2
m and C3

m are calculated in Eq. (3) as
4meþðdmðmþ2Þ=2eþmþ1Þdþw1þw2þ � � � þwm. The waiting
time on machine i is defined as wi ¼maxf0,Pi�vig. The values of
vi’s are determined in the proof of Lemma 1 as vi ¼ ð4m�4Þe
þðdmðmþ2Þ=2eþmþ1�2minfi,mþ1�igÞdþw1þw2þ � � � þwm�

wi for all machines.

There are two different cases for a total waiting time and the

sufficient conditions for these cases are determined as follows:
1.
 If Pirvi for 8iA ½1, . . . ,m�, then wi¼0, for i¼1,y,m.

2.
 Else if (kA ½1, . . . ,m� such that vkoPk, then wk ¼ Pk�vk ¼

Pk�ð4m�4Þe�ðdmðmþ2Þ=2eþm

þ1�2minfk,mþ1�kgÞd�
P

iakwi:

Hence,
w1þw2þ . . . þwm ¼ Pk�ð4m�4Þe�ðdmðmþ2Þ=2eþmþ1�2min
fk,mþ1�kgÞd:

So, w1þw2þ � � � þwm ¼maxf0,maxfPk�ð4m�4Þe� ðdmðmþ2Þ=
2eþmþ1�2minfk,mþ1�kgÞdg and the cycle time is obtained by
replacing the total of waiting time in Eq. (3) with this max
function. &

With the next theorem, the cycle time lower bound for pure
cycles in robot centered cells for a given processing time vector is
derived.

Theorem 4. For an m-machine robot centered cell with controllable

processing times, the cycle time of any pure cycle is no less than:
TL ¼max f4me þdmðmþ2Þ=2ed ,4eþ2maxfminfi,mþ1�igdþPi,i :
1, . . . , mgg.

Proof. From the definition of pure cycles, it is apparent that the
cycle time of a pure cycle is bounded from below by two lower
bounds. The first lower bound is obtained from the exact robot
activity time that is composed of loading/unloading and part
transportation times. In Theorem 1, this lower bound is calculated
for fixed processing times. Since, loading/unloading and part
transportation times do not depend on processing times, this
lower bound remains the same for controllable processing times
as 4meþdmðmþ2Þ=2ed.

The second lower bound is the minimum time required

between two consecutive loadings of any machine. In Theorem

1, for machine i, this lower bound is calculated as 4eþ2minfi,mþ

1�igdþP for a fixed processing time P. Now we consider

controllable processing times, thus the minimum time required

between two consecutive loadings of machine i is calculated as

4eþ2minfi,mþ1�igdþPi. However, there are m machines and the

total time for consecutive loadings are different from each other.

Since the cycle time is at least equal to the total time for

consecutive loadings of any machine in the cell, the second lower

bound is 4eþmaxif2minfi,mþ1�igdþPig. &

With the next lemma, for a given cycle time level K, the
individual upper bounds of processing times of pure cycles is
determined. Let PðKÞ ¼ ðP1ðKÞ, . . . ,PmðKÞÞ be the vector of indivi-
dual upper bounds. Since increasing the processing times
decreases the corresponding manufacturing costs, our aim is to
find the maximum processing time for each machine within the
feasible boundaries.

Lemma 6. For a given cycle time level K, the vector of upper bounds

of processing times in robot centered cells for pure cycles is:
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PðKÞ ¼ ðP1ðKÞ, . . . ,PmðKÞÞ, where PiðKÞ ¼minfPU ,K�ð4eþ2minfi,mþ
1�igdÞg,8i.

Proof. The two bounds constraining the processing times are the
following:
1.
 The processing times must be less than or equal to PU which
leads to P iðKÞrPU , 8i.
2.
 In addition, the processing times on machines cannot exceed a
specific value, otherwise the cycle time K will be exceeded.
Using the results of Theorem 4, we must have:
TL ¼maxf4meþdmðmþ2Þ=2ed,4eþmaxf2minfi,mþ1�igd
þPi,i : 1, . . . , mggrK .
In particular, maxf2minfi,mþ1�igdþPi,i : 1, . . . ,mgrK�4e,
and therefore PirK�4e�2minfi,mþ1�igd, 8i. This implies
that PiðKÞrK�ð4eþ2minfi,mþ1�igdÞ,8i: &

Let us now deviate from the cycle time analysis towards the
analysis of the effect of controllable processing times on
minimizing the total manufacturing cost. Evidently, the total
manufacturing cost might be decreased by using controllable
processing times the reason simply being that we can increase the
processing times without exceeding the cycle time limit. The cycle
times of C2

m and C3
m are equal as shown in Lemma 5, thus these two

cycles result in the same set of nondominated processing time
vectors, i.e., P�ðCm

2 jKÞ ¼ P�ðCm
3 jKÞ. In the next lemma, the proces-

sing time vectors that give the minimum total manufacturing cost
obtained from either C2

m or C3
m for a given cycle time level K are

determined.

Lemma 7. Given any feasible cycle time level K, the nondominated

processing time vector of C2
m (or C3

m) is defined as ðP�1,P�2, . . . ,P�mÞA
P�ðCm

2 jKÞ ¼ P�ðCm
3 jKÞ where P�i ¼minfPU ,K�ð4eþ2minfi,mþ

1�igdÞg, 8i.

Proof. For a given cycle time level K, a feasible processing time
vector is composed of processing times on machines that satisfy
two upper bounds.
1.
 All processing times must be at most PU.

2.
 In addition, the processing times, Pi’s, are bounded so as not to

exceed the cycle time level K. By fixing the cycle time to K in
Lemma 5, we have: K ¼ 4meþðdmðmþ2Þ=2eþmþ 1Þdþmax
f0,maxfPi�ð4m�4Þe�ðdmðmþ2Þ=2eþmþ1�2minfi,mþ1�igÞd,
i : 1, . . . ,mgg.
This leads to PirK�ð4eþ2minfi,mþ1�igdÞ.

The possible largest processing times without violating the bounds
found in the first and the second arguments above compose the
nondominated processing time vectors in Lemma 7. &

The numerical example below will be useful in order to see an
application of Lemma 7.

Example 1. Consider a 5-machine robot centered cell. Let d¼ 0:1,
e¼ 0:1, PU

¼4.5 and K¼5.0. For this cycle time level, the
nondominated processing time vector ðP�1,P�2,P�3,P�4,P�5ÞA
P�ðC5

2 j5:0Þ ¼ P�ðC5
3 j5:0Þ is calculated using Lemma 7 as follows:

P�1
P�2
P�3
P�4
P�5

2
6666664

3
7777775
¼

minfPU ,K�ð4eþ2dÞg
minfPU ,K�ð4eþ4dÞg
minfPU ,K�ð4eþ6dÞg
minfPU ,K�ð4eþ4dÞg
minfPU ,K�ð4eþ2dÞg

2
6666664

3
7777775
¼

minf4:5,4:4g

minf4:5,4:2g

minf4:5,4:0g

minf4:5,4:2g

minf4:5,4:4g

2
6666664

3
7777775
¼

4:4

4:2

4:0

4:2

4:4

2
6666664

3
7777775
:

It is interesting to notice that although the parts are identical, the
optimum processing times may be different for each machine.
The next theorem presents the cycle time region where either
C2

m or C3
m dominates the rest of the pure cycles according to our

bicriteria optimization problem. Any feasible cycle time K of C2
m

and C3
m as determined by using Lemma 5 must satisfy 4meþ

ðdmðmþ2Þ=2eþmþ1ÞdrK. This is exactly the minimum required
time for loading and unloading and travel times for the robot even
when the waiting times, wi, or the processing times, Pi, are equal
to zero. Therefore, we consider this region in the following
theorem.

Theorem 5. Whenever C2
m or C3

m is feasible, they dominate all other

pure cycles in robot centered cells.

Proof. Since P�ðCm
2 jKÞ ¼ P�ðCm

3 jKÞ ¼ ðP1,P2, . . . ,PmÞ ¼ PðKÞ where
Pi ¼minfPU ,K�ð4eþ2minfi,mþ1�igdÞg,8i, there is no other pro-
cessing time vector with any component greater than that of the
nondominated processing time vector obtained from C2

m (or
C3

m). &

The following example depicts this strong result.

Example 2. Consider a 5-machine robot centered cell with the
same parameters as in Example 1. In that example, the
nondominated processing time vector of C2

5 and C3
5 is calculated

as P�ðC5
2 j5:0Þ ¼ P�ðC5

3 j5:0Þ ¼ ð4:4,4:2,4:0,4:2,4:4Þ. The upper bound
of processing time vector for cycle time level K¼5.0 is calculated
from Lemma 6 as follows:

PðKÞ ¼

P1ðKÞ

P2ðKÞ

P3ðKÞ

P4ðKÞ

P5ðKÞ

2
6666664

3
7777775
¼

minfPU ,K�ð4eþ2dÞg
minfPU ,K�ð4eþ4dÞg
minfPU ,K�ð4eþ6dÞg
minfPU ,K�ð4eþ4dÞg
minfPU ,K�ð4eþ2dÞg

2
6666664

3
7777775
¼

minf4:5,4:4g

minf4:5,4:2g

minf4:5,4:0g

minf4:5,4:2g

minf4:5,4:4g

2
6666664

3
7777775
¼

4:4

4:2

4:0

4:2

4:4

2
6666664

3
7777775
:

Since the nondominated processing time vectors of C2
5 and C3

5

are equal to the upper bound of processing time vectors
P�ðC5

2 j5:0Þ ¼ P�ðC5
3 j5:0Þ ¼ PðKÞ, there is no other pure cycle that

can result in less total manufacturing cost than either C2
5 or C3

5.
Recently, Gultekin et al. [8] analyzed pure cycles with fixed

processing times and Yildiz et al. [15] analyzed pure cycles with
controllable processing times in m-machine in-line robotic cells.
In this study, we consider the pure cycles in robot centered cells
and propose new robot move sequences. With the next theorem,
we compare the results of our study to Gultekin et al. [8] and
prove that the pure cycles in robot centered cells dominate the
pure cycles in in-line robotic cells.

Theorem 6. C2
m (or C3

m) of robot centered cells dominates all pure

cycles of in-line robotic cells.

Proof. The cycle time lower bound for pure cycles in in-line
robotic cells is derived by Gultekin et al. [8] as 4meþ2mðmþ1Þd.
For this region, the processing time vector resulting in the lower
bound of total manufacturing cost for in-line robotic cells can
be found as P inlineðKÞ ¼ ðP1ðKÞ, . . . ,PmðKÞÞ, where PiðKÞ ¼minfPU ,
K�ð4eþð2mþ2ÞdÞg, 8i.

Since 4meþðdmðmþ2Þ=2eþmþ1Þdo4meþ2mðmþ1Þd, from

Lemma 5, we know that the proposed C2
m and C3

m cycles are

feasible in this region. In addition, by using Lemma 7, we find the

optimum processing time vector obtained from either C2
m or C3

m for

robot centered cells as follows: ðP�1,P�2, . . . ,P�mÞAðP
�
ðCm

2 jKÞ ¼

P�ðCm
3 jKÞÞ where P�i ¼minfPU ,K�ð4eþ2minfi,mþ1�igdÞg,8i.
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When we compare these two processing time vectors, we have

PinlineðKÞ ¼

P1ðKÞ

P2ðKÞ

^

PiðKÞ

^

Pm�1ðKÞ

PmðKÞ

2
666666666664

3
777777777775

¼

minfPU ,K�ð4eþð2mþ2ÞdÞg
minfPU ,K�ð4eþð2mþ2ÞdÞg

^

minfPU ,K�ð4eþð2mþ2ÞdÞg
^

minfPU ,K�ð4eþð2mþ2ÞdÞg
minfPU ,K�ð4eþð2mþ2ÞdÞg

2
666666666664

3
777777777775

r

minfPU ,K�ð4eþ2dÞg
minfPU ,K�ð4eþ2minf2,m�1gdÞg

^

minfPU ,K�ð4eþ2minfi,mþ1�igdÞg
^

minfPU ,K�ð4eþ2minfm�1,2gdÞg
minfPU ,K�ð4eþ2dÞg

2
666666666664

3
777777777775

¼

P�1
P�2
^

P�i
^

P�m�1

P�m

2
666666666664

3
777777777775

¼ P�ðCm
2 jKÞ ¼ P�ðCm

3 jKÞ:

Finally, it can be seen that the optimum processing time vector

obtained from C2
m and C3

m in robot centered cell is greater than or

equal to the processing time upper bound of in-line robotic cell

for pure cycles, i.e., P�ðCm
2 jKÞ ¼ P�ðCm

3 jKÞZPinlineðKÞ. Thus, the

cost obtained from P�ðCm
2 jKÞ and P�ðCm

3 jKÞ is less than the cost

obtained from P inlineðKÞ. In other words, F1ðC
m
2 ,P�ðCm

2 jKÞÞ ¼ F1ðC
m
3 ,

P�ðCm
3 jKÞÞrF1ðC

m
i ,PinlineðKÞÞ. &

4.3. 3-Machine case with controllable processing times

In this section, we study the bicriteria optimization problem in
the special case of 3-machine cells. The previous section has
established the dominance of cycles C2

3 (or C3
3) whenever they are

feasible. Thus, we only need to do our analysis for the region
when the cycle time value K is strictly less than 12eþ12d. In the
sequel, we will consider all feasible pure cycles in this restricted
cycle time region and for each provide its set of nondominated
processing time vectors as defined in Definition 5.

The cycle time calculations and the derivation of nondomi-
nated points are depicted only for cycle C7

3 which involves the
most complicated analysis.

Lemma 8. The cycle time of C7
3 for a given processing time

vector P¼(P1,P2,P3) is: TC3
7
¼ 12eþ10dþmaxfP3,P1þP3�4e�6d,

P2�8e�6dg.

Proof. The robot move sequence of C7
3 is L1U2L2U1L3U3. The cycle

time is the sum of three quantities, namely, total robot move time,
total robot load/unload, pick-up/drop time, and total waiting
time. Initially the robot is in front of I/O buffer, takes a part ðeÞ,
moves to machine 1 ðdÞ, loads machine 1 ðeÞ, moves to machine 2
ðdÞ, waits until the job is finished (w2), unloads machine 2 ðeÞ,
moves to I/O buffer ð2dÞ, drops the part ðeÞ, takes a part ðeÞ, moves
to machine 2 ð2dÞ, loads machine 2 ðeÞ, moves to machine 1 ðdÞ,
waits until the job is finished (w1), unloads machine 1 ðeÞ, moves
to I/O buffer ðdÞ, drops the part ðeÞ, takes a part ðeÞ, moves to
machine 3 ðdÞ, loads machine 3 ðeÞ, waits until the job is finished
(P3), unloads machine 3 ðeÞ, moves to I/O buffer ðdÞ, and drops the
part ðeÞ. The union of all these evaluates to: TC3

7
¼ 12eþ10dþw1þ

w2þP3 with w1 ¼maxf0,P1�v1g and w2 ¼maxf0,P2�v2g and
where vi for i¼1,2 is the amount of time between just after
loading the machine i and the time the robot returns back to
machine i to unload it.

We determine v1 as follows: after loading machine 1, the robot

moves to machine 2 ðdÞ, waits until the job is finished (w2),
unloads the part ðeÞ, moves to I/O buffer ð2dÞ, drops the part ðeÞ,
takes a part ðeÞ, moves to machine 2 ð2dÞ, loads machine 2 ðeÞ, and

finally moves to machine 1 to unload it ðdÞ. Thus, v1 ¼ 4eþ6dþw2.

Similarly, v2 ¼ 8eþ6dþw1þP3. In turn, TC3
7
¼ 12eþ10dþmax

f0,P1�4e� 6d�w2gþmaxf0,P2�8e�6d�w1�P3gþP3.

There are four possible cases that may arise:
1.
 If P1rv1 and P2rv2 then w1¼0, w2¼0. Thus, TC3
7
¼ 12eþ

10dþP3.

2.
 If P14v1 and P2rv2 then w1 ¼ P1�4e�6d and w2¼0. Thus,

TC3
7
¼ 12eþ 10dþP1þP3�4e� 6d.
3.
 If P1rv1 and P24v2 then w1¼0 and w2 ¼ P2�8e �6d�P3.
Thus, TC3

7
¼ 12eþ10dþP2�8e�6d.
4.
 If P14v1 and P24v2 then w1 ¼ P1�4e�6d�w2 and w2 ¼

P2�8e�6d�P3�w1. Thus, w1þw2 ¼ P1�4e�6d¼ P2�8e�
6d�P3.

More compactly, TC3
7
¼ 12eþ10dþmaxfP3,P1þP3�4e�6d,P2�

8e�6dg. &

In this section, we shall assume for simplicity that the cycle
time value K is small enough so that no processing time value hits
its allowed upper bound of PU. If this is not the case, PU should
appear as a bounding value in all the processing time derivations.
The following lemma provides the nondominated processing time
vector of C7

3 under this nonrestrictive assumption.

Lemma 9. For a given cycle time level K such that 12eþ10dr
Kr16eþ16d, the nondominated processing time vector of C7

3 is

ðP�1,P�2,P�3Þ ¼ ð4eþ6d,K�4e�4d,K�12e�10dÞ.

Proof. There are two upper bounds that bound the processing
times:
1.
 All processing times must satisfy the upper bound, PU,
limitation. We assume for simplicity that this bound is not
tight.
2.
 In addition, the processing times, Pi’s, are jointly bounded so as
not to exceed the cycle time level K. By fixing the cycle time to
K in the previous lemma, we have

K ¼ 12eþ10dþmaxfP3,P1þP3�4e�6d,P2�8e�6dg:

This leads to the following system of inequalities:

P3rK�12e�10d,

P1rK�8e�4d�P3,

P2rK�4e�4d:

It can easily be verified that ðP�1,P�2,P�3Þ ¼ ð4eþ6d,K�4e�4d,

K�12e�10dÞ is the unique vector satisfying the above system of

inequalities tightly. Moreover, in the specified cycle time region of

12eþ10drKr16eþ16d, P�3rP�1rP�2. Since both P2
* and P3

* are at

their possible largest values, the only way to improve the cost is

by increasing P1
* value. However, the nonincreasing nature of the

underlying cost function implies that it is not possible to decrease

cost by increasing P1
* value and correspondingly decreasing P3

*

value. &

Tables 2 and 3 enlist the results of the analysis done for C7
3 above

for all the 14 feasible cycles in the region of study. As can be observed
in Table 3, sometimes, the nondominated point is not unique and only
upper bounds can be attained for the processing times.

Since the manufacturing cost is machine independent, for each
cycle Ci

3 we may assume without loss of generality that the
nondominated processing time vector P�ðC3

i jKÞ ¼ ðP
�
1,P�2,P�3Þ is

permuted such that P�1rP�2rP�3. It can easily be verified that
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with this ordering of nondominated processing times:

P�ðC3
4 jKÞ ¼ P�ðC3

19jKÞ,

P�ðC3
5 jKÞ ¼ P�ðC3

9 jKÞ ¼ P�ðC3
13jKÞ ¼ P�ðC3

18jKÞ,

P�ðC3
7 jKÞ ¼ P�ðC3

15jKÞ,

P�ðC3
10jKÞ ¼ P�ðC3

17jKÞ,

P�ðC3
11jKÞ ¼ P�ðC3

12jKÞ,
Fig. 3. Efficient frontier of 3-machine cel

Table 3

The nondominated processing times (or bounds) of feasible pure cycles when Ko12e

Cycle P�ðC3
i jKÞ

Machine 1

C4
3

ðK�12e�8dÞ=3

C5
3

ðK�12e�10dÞ=2

C7
3 4eþ6d

C9
3 K�4e�2d

C10
3 rK�8e�6d

C11
3 K�4e�2d

C12
3 K�12e�10d

C13
3 K�4e�2d

C14
3 rK�8e�4d

C15
3 K�12e�10d

C16
3 rK�12e�10d

C17
3 rK�12e�10d

C18
3

ðK�12e�10dÞ=2

C19
3

ðK�12e�8dÞ=3

Table 2

The feasible pure cycles and their corresponding cycle times when Ko12eþ12d.

Cycle Cycle time

C4
3 12eþ8dþP1þP2þP3

C5
3 12eþ10dþP1þP2þmaxf0,P3�8e�8d�P1�P2g

C7
3 12eþ10dþmaxf0,P1�4e�6d�w2gþmaxf0,P2�8e�6d�w1�P3gþP3

C9
3 12eþ10dþmaxf0,P1�8e�8d�P3�P2gþP2þP3

C10
3 12eþ10dþmaxf0,P1�4e�4d�P3gþP2þP3

C11
3 12eþ10dþmaxf0,P1�8e�8d�P3�w2gþmaxf0,P2�4e�4d�w1gþP3

C12
3 12eþ10dþP1þmaxf0,P2�4e�4d�w3gþmaxf0,P3�8e�8d�w2�P1g

C13
3 12eþ10dþmaxf0,P1�8e�8d�P3�P2gþP2þP3

C14
3 12eþ10dþmaxf0,P1�4e�6d�P2gþP2þP3

C15
3 12eþ10dþP1þmaxf0,P2�8e�6d�P1�w3gþmaxf0,P3�4e�6d�w2g

C16
3 12eþ10dþP1þP2þmaxf0,P3�4e�6d�P2g

C17
3 12eþ10dþP1þP2þmaxf0,P3�4e�4d�P1g

C18
3 12eþ10dþP1þP2þmaxf0,P3�8e�8d�P1�P2g

C19
3 12eþ8dþP1þP2þP3
P�ðC3
14jKÞ ¼ P�ðC3

16jKÞ:

With these equivalence relationships we may simplify our
comparison of 14 cycles into just the comparison of the leftmost
six cycles appearing above. Now, we are ready to present the
results of the bicriteria optimization problem in the special case of
3-machine cells.

Let K1 be the cycle time for which the total manufacturing
costs of P�ðC3

4 jK1Þ and P�ðC3
7 jK1Þ coincide. More formally,

3f ððK1�12e�8dÞ=3Þ ¼ f ð4eþ6dÞþ f ðK1�4e�4dÞþ f ðK1�12e�10dÞ:

For C7
3 to be feasible, K1412eþ10d must hold. Moreover, if

KZ12eþ11d, then P�ðC3
4 jK1ÞrP�ðC3

7 jK1Þ. Hence, 12eþ10doK1o
12eþ11d must hold and the actual point value of K1 will be
determined by the manufacturing cost function.

Theorem 7. For 3-machine robot centered cells,
1.
l wi

þ12
If KoK1, then either C4
3 or C19

3 dominates the rest of the pure cycles.

2.
 If K1rKo12eþ12d, then either C7

3 or C15
3 dominates the rest of

the pure cycles.

3.
 If KZ12eþ12d, then either C2

3 or C3
3 dominates the rest of the

pure cycles.

Proof.
�
 Case 3. In the region when the cycle time satisfies KZ12eþ12d,
C2

3 (or C3
3) is feasible, and Theorem 5 establishes Case 3.
th controllable processing times.

d.

Machine 2 Machine 3

ðK�12e�8dÞ=3 ðK�12e�8dÞ=3

ðK�12e�10dÞ=2 K�4e�2d
K�4e�4d K�12e�10d
ðK�12e�10dÞ=2 ðK�12e�10dÞ=2

rK�12e�10d rK�12e�10d
4eþ4d K�12e�10d
4eþ4d K�4e�2d
ðK�12e�10dÞ=2 ðK�12e�10dÞ=2

rK�12e�10d rK�12e�10d
K�4e�4d 4eþ6d
rK�12e�10d rK�8e�4d
rK�12e�10d rK�8e�6d
ðK�12e�10dÞ=2 K�4e�2d
ðK�12e�8dÞ=3 ðK�12e�8dÞ=3
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�

Cycle times (or lower bounds) of all possible pure cycles of the form stated in

Lemma 3.

Robot move sequence Cycle time

LiLj UiLk UkUj 12eþ12dþPþmaxf0,P�2e�4dg
LiLj UiLk UjUk Z12eþ12dþmaxf0,P�2e�4dg
LiLj UiUk LkUj Z12eþ12dþmaxf0,P�2e�4dg
LiLj UiUk UjLk Z12eþ14dþmaxf0,P�2e�4dg
LiLj UiUj LkUk Z12eþ12dþPþmaxf0,P�2e�4dg
LiLj UiUj UkLk Z12eþ14dþmaxf0,P�2e�4dg
LiLj UjLkUkUi Z12eþ10dþ2P

LiLj UjLk UiUk 12eþ12dþPþmaxf0,P�2e�4dg
LiLj UjUk LkUi 12eþ12dþP

LiLj UjUk UiLk Z12eþ12dþP

LiLj UjUi LkUk Z12eþ10dþ2P

LiLj UjUi UkLk Z12eþ12dþP

LiLj UkLk UiUj Z12eþ12dþmaxf0,P�6e�8dg
LiLj UkLk UjUi Z12eþ12dþmaxf0,P�4e�6dg
LiLj UkUi LkUj Z12eþ12dþmaxf0,P�4e�6dg
LiLj UkUi UjLk Z12eþ14dþmaxf0,P�4e�6dg
Case 2. P�ðC3
10jKÞrP�ðC3

7 jKÞ and P�ðC3
14jKÞrP�ðC3

7 jKÞ and there-
fore C7

3 dominates both C10
3 and C14

3 in the sense of Definition 6.
Note that

P�ðC3
7 jKÞ ¼ P�ðC3

5 jKÞþ
K�12e�10d

2
,
20eþ22d�K

2
,�2d

� �
:

In other words, P�ðC3
7 jKÞ is attained from P�ðC3

5 jKÞ by
incrementing the second component and decrementing the
third component. In the specified region of Case 2, since the
increment is more in absolute value than the decrement, and
since the manufacturing cost is nondecreasing by assumption,
C7

3 dominates C5
3 in this region. Similarly,

P�ðC3
7 jKÞ ¼ P�ðC3

11jKÞþð0,2d,�2dÞ

and again by the nondecreasing nature of the manufacturing
cost function, we conclude that C7

3 dominates C11
3 for all cycle

time values.
If K1rKo12eþ12d, then P�ðC3

7 jKÞZP�ðC3
4 jKÞ and the dom-

inance of C7
3 over C4

3 follows from Definition 6.

LiLjUkUj LkUi Z12eþ12dþmaxf0,P�2e�4dg
�

LiLj UkUj UiLk Z12eþ14dþmaxf0,P�4e�6dg
Case 1. If KoK1 then C4
3 has a lower manufacturing cost value

than C7
3 and since C7

3 dominates all the other pure cycles, C4
3 will

be the best cycle in this region. &

Finally, to put all the findings of this section into perspective,
we provide Fig. 3 which depicts the efficient frontier of the
3-machine cell with bold lines.
5. Conclusion

In this study, we consider an m-machine robot centered cell
producing identical parts on identical CNC machines. The existing
robotic cell scheduling literature mainly focuses on in-line or
mobile robotic cells. In many practical applications, robot
centered cells are used simply because they require less space
than in-line robotic cell layouts. Furthermore, stationary base
robots (as in robot-centered cells) are cheaper to install and easier
to program and, consequently, more robust than mobile robots.
Initially, we focus on minimizing the cycle time with uniform and
fixed processing times on each machine. We present the cycle
time lower bound of pure cycles for robot centered cells. We
propose two pure cycles and establish that they dominate the rest
of the pure cycles for a large range of processing time values. For
the remaining region, we provide the worst case performance of
the proposed cycles. Later, the processing times are considered as
controllable—a situation which is a closer reflection of the real
life. The cycle time lower bound is determined for controllable
processing times. The proposed two pure cycles are shown to
dominate the rest of the pure cycles and the pure cycles in in-line
robotic cells, whenever they are feasible. Finally, for the 3-
machine case, the bicriteria optimization problem of minimizing
both the cycle time and the total manufacturing cost, simulta-
neously, is solved. Interestingly, pure cycles are used extensively
in metal cutting industry, not because they are provably optimal,
but because they are very practical and easy to understand and
implement. More specifically, in a pure cycle, each part is loaded
and unloaded only once, which means less gaging, one probable
reason why this cycle is preferred in practice.

Future lines of research directions might be to extend the
current study to include multiple part types or dual gripper
robots.
Appendix

See the Table 4.
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