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a b s t r a c t

Linear congruential random number generators must have large moduli to attain maximum periods, but
this creates integer overflow during calculations. Several methods have been suggested to remedy this
problem while obtaining portability. Approximate factoring is the most common method in portable
implementations, but there is no systematic technique for finding appropriate multipliers and an
exhaustive search is prohibitively expensive. We offer a very efficient method for finding all portable
multipliers of any givenmodulus value. LettingM = AB+C , themultiplier A gives a portable result if B−C
is positive. If it is negative, the portablemultiplier can be defined as A = ⌊M/B⌋.We also suggest amethod
for discovering the most fertile search region for spectral top-quality multipliers in a two-dimensional
space. The method is extremely promising for best generator searches in very large moduli: 64-bit sizes
and above. As an application to an important and challenging problem, we examined the prime modulus
263

−25, suitable for 64-bit register size, and determined 12 high quality portable generators successfully
passing stringent spectral and empirical tests.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Random numbers are essential tools in many applications, such
as simulation, education, cryptography, the arts, numerical analy-
sis, computer programming, VLSI testing, recreation and sampling.
Besides some physical and tabular sources, there are several deter-
ministic computational techniques to produce random sequences
of data, including congruential, shift register, lagged Fibonacci, in-
verse and cellular automata generators. Linear congruential gen-
erators have attracted the attention of many researchers because
they are efficient, easy to implement and their theory is well doc-
umented.

Mixed linear congruential generators produce a sequence of
integers {Xi} defined by the recursion

Xn+1 = AXn + c(mod M) (1)

with appropriately defined integer constants A, c,M and an initial
value X0. The special case of c = 0 has particular significance and
is called a multiplicative congruential generator. The maximum
possible period of these generators, M − 1, is limited by the
maximum integer size available in the computer and compiler. For
example, 32-bit computers can process integers up to 231

−1. This
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Mersenne prime is a popularmodulus formultiplicative generators
for 32-bit arithmetic. Since the product AXn can produce very large
values, several methods have been suggested in the literature to
prevent integer overflow.

This study considers the portable implementation, relying on
the so-called approximate factoringmethod by using the constants
A, B and C , satisfying the expressionM = AB + C such that B > C .
In the article, the term ‘‘portable’’ is used specifically to refer to
approximately factorable generators.

In Section 2 we offer a systematic search method for efficiently
determining allmultipliers suitable for approximate factoring. Sec-
tion 3 gives a fruitful search interval for the best-quality con-
gruential generators with respect to a spectral test criterion. In
Section 4, we present application examples. In Section 5, we ap-
ply the method to the modulus M = 263

− 25, suitable for 64-bit
computers, and report 12 very goodmultipliers. In the last section,
we summarize the results and suggest some future applications.

2. Implementations for portable generators

Consider the multiplicative congruential generator Xn+1 =

48271Xn(mod (231
− 1)). The calculations required by this gener-

ator may produce integers up to 1.473 × 246 and cause an integer
overflow in 32-bit arithmetic. There are several studies proposing
and reviewing techniques for the correct implementation of ran-
dom number generators, such as [1–8].

http://dx.doi.org/10.1016/j.cpc.2013.03.013
http://www.elsevier.com/locate/cpc
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http://crossmark.dyndns.org/dialog/?doi=10.1016/j.cpc.2013.03.013&domain=pdf
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2.1. Portable implementation by approximate factoring

Among many implementation methods, approximate factoring
has become highly popular for its effectiveness and simplicity. This
method relies on the decomposition of the modulusM as

M = AB + C (2)

where

B =


M
A


(3)

and C = M − AB, subject to the condition B > C , and with ⌊·⌋

denoting the floor function. It was first used by Wichmann and
Hill [9] in an informal remark. Sezgin [7] and Park and Miller [10]
independently proved the validity of themethod. According to this
implementation, the code Xn+1 = AXn(mod M) can be written as:

K = int(Xn/B)
Xn+1 = A ∗ (Xn(mod B)) − C ∗ K
if (Xn+1.lt.0)Xn+1 = Xn+1 + M .

For example, since 2147483647 = 48271 ∗ 44488 + 3399, the
generator

Xn+1 = 48271Xn(mod (231
− 1))

can be coded as:

k = ix/44488
ix = 48271 ∗ mod(ix, 44488) − 3399 ∗ k
if(ix.lt.0)ix = ix + 2147483647.

We state the following theorem for the condition of portability:

Theorem 1. For a modulus M, the multiplier A is portable if and only
if

M
A


> M

A+1 .

Proof. Assume that A is portable. Then in (2) we have B > C . This
implies that B > M − AB. Inserting the value of B from (3) we get
M
A


> M − A


M
A


or
M
A


(A + 1) > M.

Dividing both sides by A+1 gives the asserted result. The opposite
is also true. Assume that

M
A


> M

A+1 . Then the operations in
the reverse direction give

M
A


(A + 1) > M and this implies

BA + B > M = AB + C , giving B > C . �

Corollary 1. All multipliers A ≤
√
M are portable.

Proof. It is easy to see that A =
√
M is portable. Because in this

case the above theorem is satisfied:
M

√
M


>

M
√
M + 1

.

On the other hand, when A <
√
M we will have B ≥ A. But since

A > C , we get B > C . �

Corollary 2. There is no portable multiplier larger than
M

2


.

Table 1
Finding multipliers suitable for approximate factoring in modulusM = 103.

A B C B − C BX > X is Portable A =

13 7 12 −5 5 1 14 = 13 + 1
15 6 13 −7 7 2 17 = 15 + 2
18 5 13 −8 8 2 20 = 18 + 2
21 4 19 −15 15 4 25 = 21 + 4
26 3 25 −22 22 8 34 = 26 + 8
35 2 33 −31 31 16 51 = 35 + 16

Proof.
M

2


is portable, because in this case wewill get the B value

B =


M
A


=


MM
2


= 2.

Therefore the C value will be C = M − AB = M − 2
M

2


= 1

or 0 depending on the M being odd or even. We also see that
A =

M
2


+ k is not portable for positive integers k. Because if

k ≥ 1, we will get B = 1, and B > C implies C = 0. But this is not
the case since we get C = M − AB = M − A ≥ B. �

We note that we always have C = M(mod A) < A, but most of
the time C > B. The portability condition ismet by fewmultipliers.
For example, there are only 92679 multipliers satisfying this
condition forM = 231

− 1 and this number constitutes 0.0043% of
all multiplier candidates. Hence, an exhaustive search for portable
generators is fruitless; some general rules must be determined
for an efficient search algorithm. In this respect, we present the
following remarks:

1. All multipliers ≤
√
M can be used for approximate factoring.

2. The last portable multiplier by approximate factoring is ⌊M/2⌋.
3. Above

√
M , in some cases we may have B− C < 0. If that is the

case, we need an X value such that XB + (B − C) > 0. In order
to get a portable multiplier, this X value must be added to A.

Example. Let us take M = 103, a small modulus, for demonstra-
tive purposes. For values up toA = 10, allmultipliers can beused in
approximate factoring.We observe that 11 and 12 are also satisfac-
tory. But A = 13 gives B = 7 and C = 12, causing a negative B− C
value: B − C = −5. We must have 7X > 5, getting X = 1. When
this occurs, 13+ 1 = 14 can be implemented by approximate fac-
toring. Following the same method, we get five more approximate
factoring generators, as summarized in Table 1.

The following theorem explains themethod for finding the next
portable multiplier when B < C:

Theorem 2. When a multiplier
√
M < A < M/2 gives B < C, the

next portable generator can be obtained by using the multiplier
M

B


.

Proof. From (2)we get B−C = B−M+AB. If this value is negative,
we need to add an X value to A to get a positive B−C . It means that
we will have BX > −(B−C) = M −B−AB or BX > M − (A+1)B.
The X value will be

X >


M − (A + 1)B

B


.

We can take the smallest possible integer X as

X =


M − (A + 1)B

B


+ 1.

This can be simplified as:

X =


M
B


− (A + 1) + 1

=


M
B


− A.
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Fig. 1. The distribution of B − C values for the modulusM = 19997 until A = 1000.
Therefore, when B − C < 0, the next portable multiplier must be
taken simply as A + X =

M
B


. �

For example: With M = 103, A = 35; X =
 103−36×2

2


+ 1 = 31

2


+ 1 = 16; therefore 35 + 16 = 51 is portable. Since B =M

A


=

 103
35


= 2, the same multiplier can be obtained simply asM

B


=

 103
2


= 51.

A FORTRAN program for finding portable multipliers is pre-
sented in Listing 1. It receives modulus values from the keyboard
and stops when 0 is given.

integer a, b
1 print*, "M=? Give 0 to stop"

read*, M
if (m.eq.0) stop
maxa=m/2
a=sqrt(float(m))
print*, "All multipliers less than or equal to ",a," are
portable"
print*, "Other portable multipliers are:"

2 a=a+1
if (a.gt.maxa) goto 1
b=m/a
if(b.gt.m-a*b) then
print*, a
else
a=m/b
print*, a
end if
goto 2
end

Listing 1. The FORTRAN program finding portable multipliers.

2.2. The distribution of B − C

B − C can be expressed as a function of A

B − C =


M
A


− M + A


M
A


.

It has a positive value until A ≤
√
M . After this limit negative

values start to be seen. For large values ofA, B−C values are located
on straight lines with a slope

M
A


and the proportion of negative

points increases. The distribution of B − C is demonstrated for
modulus M = 19997 in Fig. 1. The B − C values are positive for
all multipliers A ≤

√
M = 141. The first negative value is seen

at A = 146, and as the multiplier gets larger, the proportion of
negative values increases, and the values points cluster on straight
lines. For large A, at each line there is only one positive value;
this situation explains the inefficiency of the exhaustive search for
portable multipliers. The figure shows multipliers until A = 1000.
The remainingmultipliers have the samepattern of lines, onlywith
one positive point. Until

√
M , all multipliers are portable for allM .

After the square root, the number of portable multipliers declines.
The cumulative distribution of portable multipliers is depicted in
Fig. 2 for M = 231

− 1. Each point represents 10 000 multiplier
candidates. An inspection of the figure shows that 50% of the
portables are below A = 50000. Only 10% of the portables are
above A = 230000. The percentage of portable multipliers above
A = 500000 is lower than 5%. In the light of the discussion above,
an exhaustive search for large portable multipliers is impractical
for two reasons:

1. These multipliers are very scarce and searching for them is a
waste of time.

2. Aswill be seen in Section 3, the spectral quality of large portable
multipliers is extremely poor.

3. Selecting good multipliers

After finding multipliers suitable for implementation by ap-
proximate factoring, the next step is to determine the full-period
condition and the quality of these multipliers. Random number
generators must be subjected to several theoretical and empirical
tests before they can be used in serious applications. In this respect,
the spectral test is a very reliable theoretical tool to distinguish be-
tween bad and good congruential generators. This test is explained
in detail by Knuth [11]. Letting 0 < A < M and A be relatively
prime toM , the test determines the values of

νt = min


 t

i=1

si2

 (4)

for 2 ≤ t ≤ T , given that

t
i=1

siAi−1
≡ 0 (ModM) (5)

where si are integers 0 ≤ si < M and (s1, . . . , st) ≠ (0, . . . , 0).
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Fig. 2. Cumulative distribution of portable multiplier proportions for modulusM = 231
− 1.
Table 2
The upper and lower limits of the best multipliers for the modulusM = 231

− 1.

Percentile Lower limit of A Upper limit of A Lower limit of S2

Best 20% 42374 = 0.914
√
M 71370 = 1.540

√
M 0.851

Best 10% 44963 = 0.970
√
M 67157 = 1.449

√
M 0.903

Best 5% 46207 = 0.997
√
M 65197 = 1.407

√
M 0.928

Best 1% 48008 = 1.036
√
M 53790 = 1.161

√
M 0.964

Letting dt = 1/νt represent the maximum distance between
adjacent hyper-planes determined by the points of the lattice in
a t-dimensional space, and d∗

t represent the lower bound of this
distance, a figure of merit called the normalized spectral test value
is defined as

St = d∗

t /dt . (6)

For our portable multipliers, if A is small, the identity (5) can be
defined as A − A = 0 (Mod M), implying s1 = 1 and s2 = −A. By
(4) these values will produce the following minimum ν2 value:

ν2 = min


 2

i=1

si2

 =


1 + A2.

Since d∗

2 is the constant 1/M1/2(4/3)1/4, from (6), the normal-
ized spectral value for t = 2 will be:

S2 =

√
1 + A2

√
M(4/3)1/4

.

This is approximately 0.93A/
√
M and explains the steady in-

crease in the quality of small multipliers when they approach the
square root of themodulus. S2 will reach itsmaximumvalue S2 = 1
when A =

√
M/0.93 = 1.075

√
M . When the multiplier exceeds

√
M by a largemargin, this situation produces very small ν2 values.

Because a very large A creates a smaller B value, and since C is even
smaller, taking the identity (5) as AB + C = M (Mod M) = 0, the
generator produces a very small ν2

2
= B2

+ C2 value. The search
for the best two-dimensional lattice structure can be restricted
to a narrow interval. Investigating the distribution of S2 values in
Fig. 5 for portable multipliers 30000 < A < 68000 in a generator
with M = 231

− 1, we can notice that the peak S2 = 0.9985 is
reached at A = 49883 = 1.076

√
M . Sezgin [12] presented per-

centiles of normalized spectral test for dimensions t = 2, . . . , 8.
These percentiles remain unchanged across modulus values. Ta-
ble 2 presents the intervals for the best multiplier percentile limits
for t = 2 inM = 231

− 1.
4. Some numerical examples

In Section 2, the distribution of B−C was described, and a graph
was presented in Fig. 1 for a small modulus. Here, in Fig. 3, we
demonstrate the pattern of large multipliers for a larger modulus,
M = 231

− 1, from A = 300000 to A = 310000. There are only
231 non-negative values (portable multipliers) in this range. The
proportion of portables is 2.31%. As the multipliers increase, this
proportion will fall sharply.

For large modulus values like M = 248, 263 or 2128, only partial
searches are conducted in the random number literature, because,
as mentioned in Section 3, conducting an exhaustive search for
good portable generators is a tedious task. Even with restrictions
on the search, it requires a great amount of computer time. Begin-
ning in 2006 and ending in 2009, Tang and Chang [13] conducted
an exhaustive search for good 64-bit congruential random number
generators under some restrictions on an IBM computer running
Linux and compiled with gcc-02. After this effort, they found only
35 portable multipliers having a spectral performance value above
ST > 0.760. Fig. 4 depicts A/

√
M values for these best generators.

It is interesting to observe that these generators could have been
found in a very short time, because all themultipliers are extremely
close to

√
M .

We conducted a search forM = 231
−1. Fig. 5 shows the distri-

bution of S2 values for portable multipliers 30000 < A < 68000.
Actually, the graph starts as a straight line from A = 2 and con-
tinues near to

√
M in this manner. In later parts, there is an inter-

esting fractal structure and a steady decrease of the spectral value
with increasing A. The remaining part is depicted in Fig. 6 until
A = 2000000 exhibiting the sharp decline in the spectral value.

An example for a larger modulus is depicted in Fig. 7: M =

4503599090499601 in a narrow interval near the square root for
S2 > 0.91 values. Results agree with our remark in Section 3. The
search gave the spectral maximum A as 72179138, which is also
1.076

√
M .

As proven in [12,14], the squared figure of merit defined in
(4), νt

2, changes as a polynomial of degree 2(t − 1) and this
causes very chaotic behavior in higher dimensions. Therefore, in
determining the best multipliers, one should conduct the search
in two-dimensional spectral values first. Fig. 8 shows S2, S3 and
S4 values for a 63-bit modulus: M = 9223372012704246017.
Although its square root, A = 3037000496, is very good for a
two-dimensional space and gives S2 = 0.931 there, it causes a
very small spectral value in dimensions above two. This fact can
be observed from the graphs of S3 and S4 in Fig. 8. The situation is
similar for higher dimensions. But fortunately, the bad lattice range
is very short. In theworst case, within a range of length about 2900,
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Fig. 3. The distribution of B − C for multipliers from A = 300000 to A = 310000 in modulusM = 231
− 1.
Fig. 4. Distribution of A/
√
M values for the 35 best multipliers found by Tang and Chang for 64-bit random number generators.
Fig. 5. Distribution of S2 values for portable multipliers 30000 < A < 68000 in a generator withM = 231
− 1.
S3 reaches values larger than 0.9. In higher dimensions, the range of
bad lattices is negligible. As a result, we suggest searching around
the square root of themodulus, where the spectral test value of the
two-dimensional space reaches its maximum value and provides
the most fertile search area.

5. An application to find 64-bit congruential generators

L’Ecuyer and Simard [15] point out that linear congruential
generators with moduli up to 261 fail several tests in the strin-
gent test package TestU01. It would be interesting to investigate
the quality of larger moduli by this package. Since 64-bit reg-
isters can allow the representation of integer arithmetic up to
263

− 1, we searched the best portable random number genera-
tors for the prime modulus 263

− 25. All multipliers determined
in this study produce full period. If the multiplier A is a primi-
tive root of the modulus M , the generator will have full period
when M is prime. This is a necessary and sufficient condition. In
our case the factorization of M − 1 is 263

− 26 = 2 × 34
× 17 ×

23× 319279× 456065899. Therefore, A is a full-period multiplier
in cases where, for all prime factors q, AM−1/q

≠ 1 Mod(M). In
this search, we determined portable full-period multipliers in the
top 1% region of a two-dimensional space and investigated their
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Fig. 6. Distribution of S2 values for portable multipliers 68000 < A < 2000000 in a generator withM = 231
− 1.
Fig. 7. The spectral values of multipliers having S2 > 0.91 for modulus M = 4503599090499601 in a narrow interval around 1.076
√
M .
Fig. 8. The comparative distribution of S2, S3 (left) and S2, S4 values (right) near
√
M for the 63-bit modulusM = 9223372012704246017. In each figure, S2 is represented

by the horizontal line 0.93.
performance in higher dimensions using the respective percentiles
of these dimensions. Using prime moduli just less than 263 the top
1% region requires testing multipliers from A = 3146332518 to
A = 3525957581. There are only about 380 million numbers in
this interval. The interval of the best 5% multipliers is larger and
contains about 1.24 billion numbers. Compared to the size of the
modulus, these numbers are still rather modest.

Although CPUs with 64-bit architectures have been around for
a long time, software has not caught up with this revolutionary
advancement and most of the users are still employing 32 bit
compiling facilities. Since the modulus values are very large it is
impossible to conduct exhaustive search for 64-bit multipliers.
Therefore current literature contains only some partial searches.
For example, Dyadkin and Hamilton [16] studiedmultipliers in the
form of 5n mod(M) for M = 264 under certain restrictions with-
out considering portability. They identified 200 good multipliers
and left the investigation of the large prime moduli to be the sub-
ject of another study. L’Ecuyer et al. [17] proposed the portable
multiplier A = 2307085864 for modulus 263

− 25. But, when sub-
jected to TestU01, this multiplier fails (p < 10−300) the Birth-
day Spacing test in Crush and BigCrush test batteries, and gives
a very small p-value (p = 4.1 ∗ 10−8) in the Gap r = 0 test of
BigCrush. L’Ecuyer [18] found six multipliers for the modulusM =

263
− 25 without considering portability. Using a fixed worst-case



F. Sezgin, T.M. Sezgin / Computer Physics Communications 184 (2013) 1889–1897 1895
Fig. 9. The distribution of the best 5% spectral test figures ofmerits St for portablemultipliers of the primemodulusM = 263
−25 from A = 3146410910 to A = 3539938125

in dimensions t = 2, . . . , 6.
Table 3
Some useful percentiles of normalized spectral test value S.

Dimension 99% 95% 90% 80% 75% 70% 60% 50%

2 0.964 0.928 0.903 0.851 0.825 0.796 0.738 0.673
3 0.909 0.861 0.824 0.767 0.741 0.716 0.670 0.620
4 0.856 0.808 0.774 0.726 0.705 0.685 0.649 0.610
5 0.825 0.781 0.752 0.714 0.699 0.683 0.654 0.623
6 0.809 0.770 0.744 0.709 0.695 0.680 0.655 0.627
7 0.790 0.751 0.728 0.696 0.686 0.674 0.649 0.629
8 0.768 0.734 0.714 0.686 0.678 0.667 0.643 0.626

performance threshold ST = min1≤t≤T d∗
t/dt , Tang and Chang [13]

conducted an exhaustive search for portable generators for three
different prime modulus values implemented in 64-bit register
size. Since all portable candidate multipliers reported by them
failed the TestU01, they resorted to double-precision floating point
multipliers and determined two recommendable multipliers.

To the best of our knowledge, there are only few good con-
gruential random number generators suitable for 64-bit comput-
ers and compilers. Moreover none of them are portable. Although
there are many popular portable generators for 32-bit word-size,
there is an increasing demand for 64-bits. Hencewe took the prime
modulus M = 263

− 25 and conducted a systematic search as de-
scribed in Section 3, evaluating approximately 394 million multi-
pliers between 3 146 410 910 and 3 539 938 125. Using the spectral
test we examined dimensions from 2 to 6 and eliminated multi-
pliers falling below the 90th percentiles of the corresponding di-
mensions. Hence, we were able to choose the best 10% multipliers
for each dimension. Rather than using the fixed worst-case per-
formance threshold ST , we considered percentiles for each dimen-
sion independently. As proved by Sezgin [12], ST places greater
emphasis on higher dimensions and neglects the most important
part, the smaller dimensions. Instead of a single constant, we used
the percentiles presented in Table 3 for assessing the performance
of the multipliers. According to the table, a fixed threshold about
ST = 0.768 will choose the best 1% multipliers in dimension 8, but
will cause a deterioration in dimension 2, leading to the choice of
multipliers below the upper 35% group. Almost all available mul-
tiplicative congruential generators fail extensive randomness tests
in TestU01 irrespective of themodulus size. This may be due to the
use of fixed thresholds in spectral test implementations.

By using percentile thresholds listed in Table 3, we obtained
1087 portable generators, all above the 90th percentile. There
were 504 generators all above the 95th percentiles of dimensions
t = 2, . . . , 6. Fig. 9 depicts spectral test results St for these best
multipliers. The scatter of S2 values exhibit the same remarkable
pattern observed in Figs. 5 and 7. An interesting property of the St
values is the formation of distinct layers by the swarm of points
in different dimensions. This pattern explains the unsoundness of
employing a single fixed threshold for all t values.

Of these 504 multipliers, we filtered 67 multipliers with very
large spectral values in several dimensions. They were chosen
based on the following criteria:

1. Falling above 97.5th percentiles in all dimensions,
2. or being within the best 1% group in three or more dimensions

and not below the 95th percentiles in the remaining dimen-
sions.

We subjected 32 of these 67 multipliers to the Crush and
BigCrush test batteries of TestU01, and summarized the results
as p-values in Table 4 according to the criteria of L’Ecuyer and
Simard [15]. In the table A, B, and C values are also presented for
the equationM = AB + C .

The results indicate that:

1. Twelve multipliers are successful in all tests of Crush and
BigCrush packages. These can be recommended for sophisti-
cated and very demanding applications. In the Result column
we labeled them as ‘‘Passed all’’. These good generators can also
be used for combined generators with components from dif-
ferent families that are very successful in the above-mentioned
test package.

2. Themultipliers numbered 5, 10, 14, 17, 18, 20, 21, 27, 29, 30, and
31 are within (10−4, 1 − 10−4) interval and can be considered
‘‘Pass’’ according to the TestU01 criteria of L’Ecuyer and
Simard [15]. In the Result column, these are labeled as ‘‘Passed’’.

3. Although not definitively rejected, the remaining nine multi-
pliers can be considered as ‘‘suspect’’ since they have p-values
within the intervals (10−10, 10−4

] and [1 − 10−4, 1 − 10−10).
These are multipliers 1, 2, 3, 6, 9, 13, 22, 23, and 24.

We must emphasize that the listed multipliers are only a small
portion of good generators and by conducting TestU01 to the
remaining multipliers, and using different filtering criteria it will
be possible to obtain several good generators.

Although there are some 64-bit random number genera-
tors available, multiplicative congruential generators remain still
popular due to their well-documented theory, ease of imple-
mentation and widespread applications in program packages. In
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Table 4
Results of Crush and BigCrush test batteries applied to 32multipliers for the modulusM = 263

−25. The values under the Crush and BigCrush columns indicate the p-values
for failed test instances.

No A B C Crush BigCrush Result

1 3154053667 2924291407 1229836314 0.9993, 0.9999 Suspect
2 3157107955 2921462353 1965457668 1−4.1e−6 Suspect
3 3159143104 2919580320 2352662503 6.7e−5, 7.8e−4, 2.7e−4, 0.9995 Suspect
4 3163036175 2915986895 2143849158 Passed all
5 3163786827 2915295037 1975698184 1.8e−4, 5.0e−4 Passed
6 3172190117 2907572275 1636569608 4.4e−5, 1.5e−5 Suspect
7 3200261722 2882068042 1842687459 Passed all
8 3201541663 2880915823 1924342134 Passed all
9 3206549749 2876416322 1526172605 6.7e−5, 0.9995 Suspect

10 3206832497 2876162707 1387686404 0.9993, 7.2e−4 Passed
11 3211103532 2872337171 1961787811 Passed all
12 3213258092 2870411206 1807796831 Passed all
13 3217568780 2866565617 1774138523 1.7e−5, 9.7e−4, 7.2e−4 Suspect
14 3238858873 2847722731 1711633620 3.4e−4 Passed
15 3245854730 2841584976 1808239303 Passed all
16 3261037634 2828354981 1502420829 Passed all
17 3273091456 2817938991 1883414887 8.3e−4, 0.9994 Passed
18 3277628277 2814038462 1237985809 0.9993 Passed
19 3286706186 2806266065 1457397693 Passed all
20 3312958483 2784028862 1575039437 2.6e−4 Passed
21 3338736601 2762533598 1719955385 0.9994 Passed
22 3352494981 2751196374 1274376889 9.2e−5 1.6e−4 Suspect
23 3363261634 2742389097 1414771285 2.7e−5 Suspect
24 3393139931 2718240987 1784223886 1−5.8e−5 Suspect
25 3423977237 2693759741 1723760166 Passed all
26 3459480860 2666114486 1969037823 Passed all
27 3464484710 2662263744 1779421543 0.9995 0.9992, 7.1e−4, 3.1e−4 Passed
28 3465965455 2661126360 1704881983 Passed all
29 3474009732 2654964363 1679595067 0.9996, 6.6e−4, 5.1e−4 Passed
30 3474801229 2654359610 1818815093 3.7e−4 Passed
31 3512389242 2625953845 1688240293 9.7e−4 Passed
32 3512424704 2625927333 1516741351 Passed all
Listing 2, we present the C code of our generator with multiplier
A = 3163036175.

double sezgin64 (void)
{

IX = 3163036175LL*( IX % 2915986895LL )
- 2143849158LL*(IX/2915986895LL);
if ( IX <0LL ) { IX = IX + 9223372036854775783LL; }
return IX*1.084202172485504437e-19;

}

Listing 2. The C code of 64-bit multiplicative congruential
random number generator.

Speed is an important criterion in large scale Monte Carlo stud-
ies. We compared the speed of our generator with the following
well-known generators applicable in 64-bit arithmetic:
1. Combined Multiple Recursive Generator MRG63k3a proposed

by L’Ecuyer [19],
2. The enhanced version of Wichmann and Hill Generator [20],
3. 64-bit Linear Feedback Shift Register Generator lfsr258 by

L’Ecuyer [21],
4. Mersenne Twister MT19937 proposed by Matsumoto and

Nishimura [22],
5. ISAAC64 developed for cryptography by Jenkins [23],
6. 64-bit Universal RNG by Marsaglia and Tsang [24].

Generators were implemented in C, compiled with gcc version
4.5.3, and run on an Intel Core i7 3.07 GHz CPU with 8.00 GB Ram
under the 64-bit Professional Edition of the Windows 7 operat-
ing system. The time taken by 108 calls to the generator func-
tions are presented in Table 5. Our generator is faster than most of
the present popular generators, including the Mersenne Twister.
Table 5 shows that, our generator has excellent runtime charac-
teristics in terms of speed, and since it behaves very well in strin-
gent empirical statistical tests, it is recommendable for general use.
Table 5
CPU time (seconds) for 108 calls of the random number
generators.

Generator Time (s)

MRG63k3a 13.462
Wichmann and Hill 10.435
lfsr258 4.695
Mersenne Twister MT19937 3.650
Sezgin64 3.100
ISAAC64 2.183
64-bit Universal 2.058

Moreover, the LFSR258 and Mersenne Twister generators respec-
tively fail 6 and 2 of the tests in the Crush and BigCrush test batter-
ies of TestU01, whereas our generators pass all tests.

6. Results and future work

Finding high-quality multipliers is an essential part of develop-
ingmultiplicative randomnumber generators. The first step should
be finding multipliers suitable for approximate factoring. For a
modulus M and multiplier A, we define B = ⌊M/A⌋, where ⌊·⌋ is
the floor function. Letting C = M − AB, approximate factoring can
be used for obtaining portable generators if B − C > 0. We ob-
served that all multipliers less than the square root of the modulus
are portable. Above

√
M , most of the time wemay have B−C < 0.

In this case, Amust be replaced by ⌊M/B⌋. The last portable multi-
plier is ⌊M/2⌋.

After determining multipliers portable by approximate factor-
ing, the second step is checking for the full-period condition. In the
third step, the figure of merits obtained in the spectral test must
be evaluated. The best spectral test results are obtained near

√
M

for a two-dimensional space. Although there is a bad lattice region
for higher dimensional spaces near

√
M , the length of the interval
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is negligibly short compared to the magnitude of the modulus. In
this paper, we supplied some of the best percentile ranges for good
multipliers.

As pointed out by L’Ecuyer and Simard [15] linear congruential
generators with moduli up to 261 fail several tests in the stringent
test package TestU01. As a future objective, the best portable ran-
dom number generators could be investigated for other moduli of
sizes 264, 2128 or larger. In these searches, portable full-periodmul-
tipliers in the top 1% of a two-dimensional space may be deter-
mined, and their performance investigated in higher dimensions
using the respective percentiles of these dimensions. We already
presented 12 excellent portable generators suitable for 64-bit im-
plementation. They passed all tests of TestU01 Crush and BigCrush
tests successfully and can be used for demanding applications. We
also plan to present a parallel application.

There is also a need to investigate congruential generators for
moduli larger than 264 (e.g., moduli in the order of 2128). For
exampleM = 2127

− 1 is Mersenne prime and the best multipliers
can be searched near A = 1.076 ∗ 263.5

= 1.4035 ∗ 1019.
As another future extension of this research, one can work

on the application of the search method for good multipliers for
combined and large order Multiple Recursive Generators.
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